
Families of Distributions

∗ We shall generally deal with families of distributions.

∗ A family of distributions is defined to be a set of different

distributions indexed by one or more parameters.

∗ We can therefore study the properties of the whole family by

finding the properties in terms of these parameters.

∗ In probability we generally specify values of the parameters

but in statistics the exact values of the parameters are un-

known and we use data to makes inferences about them.
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Discrete Uniform Distribution

∗ One parameter N , a positive integer.

∗ fX(x | N) =
1

N
x = 1, . . . , N.

∗ E(X) =
N + 1

2
Var(X) =

N2 − 1

12

∗ Can be transformed to any set of N consecutive integers.
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Hypergeometric Distribution

∗ Sample K objects from N without replacement. Number of

M items of interest selected.

∗ fX(x | N,M,K) =

(M
x

)(N −M
K − x

)
(N
K

) .

∗ x ∈ IN : max{0,K − (N −M)} 6 x 6 min{K,M}.
Usually K < min{M,N −M} so range is 0,1, . . . ,K.

∗ In that case E(X) =
KM

N
Var(X) =

KM

N

(
(N −M)(N −K)

N(N − 1)

)
.
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Bernoulli Distribution

Definition 3.1

A Bernoulli Trial is a random experiment for which the sample

space contains exactly two possible outcomes, usually labelled

success and failure.

∗ A random variable can be defined by

X(success) = 1 X(failure) = 0.

∗ Such a random variable is said to have a Bernoulli(p) distri-

bution with pmf

fX(x | p) = px(1− p)1−x x = 0,1 0 6 p 6 1.

∗ Other random variables can be defined based on sequences

of independent Bernoulli trials.
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Binomial Distribution

∗ Suppose we run n independent Bernoulli trials each with suc-

cess probability p.

∗ Let Y be total number of successes.

∗ Y is said to have a binomial(n, p) distribution with pmf

fY (y | n, p) =
(n
y

)
py(1− p)n−y y = 0,1, . . . , n.

∗ E(X) = np Var(X) = np(1− p)

∗ The moment generating function is MX(t) =
[
pet + 1− p

]n
.
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Negative Binomial Distribution

∗ Run independent Bernoulli trials until observe r successes.

∗ Random variable is the number of trials required.

∗ Probability mass function

fX(x | r, p) =
(x− 1

r − 1

)
pr(1− p)x−r x = r, r + 1, . . .

∗ Y = X − r is the number of failures before r successes

fY (y | r, p) =
(y + r − 1

r − 1

)
pr(1− p)y y = 0,1, . . .
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Negative Binomial Distribution

∗ The mean and variance are given by

E(Y ) =
r(1− p)

p
Var(Y ) =

r(1− p)

p2

∗ If we denote E(Y ) = µ it can be shown that

Var(Y ) = µ+
1

r
µ2

∗ Often used to model overdispersion in count data.

∗ The geometric distribution is a special case with r = 1.
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Poisson Distribution

∗ Used to model count of number of events in a time interval.

∗ Probability mass function

fX(x | λ) =
e−λλx

x!
x = 0,1, . . .

∗ E(X) = Var(X) = λ.

∗ Moment generating function

MX(t) = exp
{
λ(et − 1)

}
∗ Can be used to approximate the binomial distribution when
n→∞, p→ 0, np→ λ > 0.

∗ Also limiting case of the negative binomial as r → ∞, p → 1
and r(1− p)→ λ > 0.
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Uniform distribution

∗ Probability density function

fX(x | a, b) =


1

b− a
a 6 x 6 b

0 otherwise

∗ E(X) =
b+ a

2
Var(X) =

(b− a)2

12
.

∗ The standard uniform has a = 0 and b = 1.
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Gamma Distribution

∗ The Gamma function

Γ(α) =
∫ ∞

0
tαe−t dt for α > 0

is a generalization of the factorial function satisfying

Γ(α+ 1) = αΓ(α)

Γ(n+ 1) = n! for any positive integer n.

∗ The Gamma probability density function is

fX(x | α, β) =
1

Γ(α)βα
xα−1e−x/β 0 < x <∞ α > 0, β > 0

∗ E(X) = αβ Var(X) = αβ2

∗ Moment generating function

MX(t) = (1− βt)−α t < β−1
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Special Cases of the Gamma Distribution

∗ The exponential distribution is a special case of the gamma

distribution with α = 1

fX(x | β) =
1

β
e−x/β 0 < x <∞

∗ The exponential random variable has the memoryless prop-

erty

P (X > s | X > t) = P (X > s− t) for s > t > 0

∗ Another special case of the gamma is when β = 2 and α =

p/2 for some positive integer p. This is called the chi-squared

distribution.
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Normal (Gaussian) Distribution

∗ Probability density function

fX(x | µ, σ2) =
1√
2πσ

exp

{
−

(x− µ)2

2σ2

}
x ∈ IR

∗ If X ∼ normal(µ, σ2) then Z = (X − µ)/σ ∼ normal(0,1).

∗ E(Z) = 0 and Var(Z) = 1 so E(X) = µ and Var(X) = σ2.

∗ The moment generating function is

MX(t) = exp
{
µt+

1

2
t2σ2

}
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Beta Distribution

∗ Two positive parameters α and β and probability density func-
tion

fX(x | α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 0 < x < 1

∗ The moments of the beta distribution are

µ′r = E (Xr) =
Γ(α+ r)Γ(α+ β)

Γ(α+ β + r)Γ(α)

∗ Hence we have

E(X) =
α

α+ β
Var(X) =

αβ

(α+ β)2(α+ β + 1)
.

∗ If α = β then the distribution is symmetric about x = 0.5.

∗ Taking α = β = 1 gives the uniform(0,1) distribution.
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Exponential Families

Definition 3.2

A family of distributions with pdf (or pmf) f(x; θ) indexed by a

vector parameter θ is an exponential family distribution if we

can write

f(x | θ) = h(x)c(θ) exp


k∑
i=1

wi(θ)ti(x)


where h(x) > 0 and t1(x), . . . , tk(x) are functions of x alone and

c(θ) > 0 and w1(θ), . . . , wk(θ) are functions of θ alone.

The quantities ηi = wi(θ) are called the natural parameters of

the family. This gives the natural parameterization

fX(x | η) = h(x)c∗(η) exp


k∑
i=1

ηiti(x)


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Moments of Exponential Family Distributions

Theorem 3.1

Suppose that X is a random variable from an exponential family

in natural parameterization. Then

E
(
tj(X)

)
= −

∂

∂ηj
log c∗(η)

Var
(
tj(X)

)
= −

∂2

∂η2
j

log c∗(η)
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Full and Curved Exponential Family Distributions

Definition 3.3

Let η be the d-dimensional natural parameter vector of an expo-

nential family

fX(x | η) = h(x)c∗(η) exp


k∑
i=1

ηiti(x)


If d = k then the family is said to be full exponential family, if

d < k then the family is called a curved exponential family.

∗ If the support {x : f(x | θ) > 0} is a function of θ, then the

family is generally not an exponential family.

∗ Exponential family distributions are very useful in data anal-

ysis.
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Location Families

Definition 3.4

Let f(x) be any probability density function and µ any real con-

stant. Then the family of pdfs given by

g(x | µ) = f(x− µ)

is a location family with standard pdf f(x) and µ is called the

location parameter for the family.

∗ Suppose that Z has pdf f(z) then the random variable X =

Z + µ has pdf g(x | µ).
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Scale Families

Definition 3.5

Let f(x) be any probability density function and σ > 0 a constant.

Then the family of pdfs given by

g(x | σ) =
1

σ
f

(
x

σ

)
is a scale family with standard pdf f(x) and σ is called the scale

parameter for the family.

∗ Suppose that Z has pdf f(z) then the random variable X =

σZ has pdf g(x | σ).
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Location-Scale Families

Definition 3.6

Let f(x) be any probability density function and µ ∈ IR, σ > 0 be
constants. Then the family of pdfs given by

g(x | µ, σ) =
1

σ
f

(
x− µ
σ

)
is a location-scale family with standard pdf f(x). µ is called the
location parameter and σ is called the scale parameter for the
family

∗ Suppose that Z has pdf f(z) then the random variable X =
µ+ σZ has pdf g(x | µ, σ).

∗ We cab choose the standard pdf f(z) such that if Z has pdf
f(z) then E(Z) = 0 and Var(Z) = 1. In that case we have

E(X) = µ Var(X) = σ2.
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