
Multiple Random Variables

Definition 4.1

An n-dimensional random vector is a function from a sample

space S into IRn.

∗ Each of the components of a random vector are random

variables and so each can be continuous or discrete.

∗ For convenience of notation we will primarily deal with the

situation where all components are either discrete or they are

all continuous.

∗ When some components are discrete and some are continu-

ous we use integration for the continuous parts and summa-

tions for the discrete parts as appropriate.
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Bivariate Random Vectors

∗ For simplicity we shall consider n = 2 at first so our random

vector is the ordered pair (X1, X2).

Definition 4.2

The joint cumulative distribution function of the bivariate ran-

dom vector (X1, X2) is defined as

FX1,X2(x1, x2) = P (X1 6 x1, X2 6 x2)

= P (X1 6 x1
⋂
X2 6 x2) for all (x1, x2) ∈ IR2
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Joint Probability Mass Function

Definition 4.3

Let (X1, X2) be a discrete bivariate random vector. The joint

probability mass function is defined as

fX1,X2(x1, x2) = P (X1 = x1, X2 = x2) for all (x1, x2) ∈ IR2

∗ The joint pmf f(x1, x2) satisfies

1. f(x1, x2) > 0 for every (x1, x2) ∈ IR2.

2.
∑

(x1,x2)∈IR2

f(x1, x2) = 1.
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Discrete Bivariate Probabilities and Expectations

∗ For any set A ⊂ IR2 we have

P
(
(X1, X2) ∈ A

)
=

∑
(x1,x2)∈A

f(x1, x2)

∗ Expectations of scalar functions g(x2, y2) are defined as

E
(
g(X1, X2)

)
=

∑
(x1,x2)∈IR2

g(x1, x2)f(x1, x2).
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Joint Probability Density Function

Definition 4.4

A non-negative function f(x1, x2) mapping IR2 to IR is called

the joint probability density function of a continuous bivariate

random vector (X1, X2) if

P
(
(X1, X2) ∈ A

)
=

∫∫
A
f(x1, x2) dx dy for every A ⊂ IR2.

∗ The joint pdf f(x1, x2) satisfies

1. f(x1, x2) > 0 for every (x1, x2) ∈ IR2.

2.
∫ ∞
−∞

∫ ∞
−∞

f(x1, x2) dx1 dx2 = 1.

∗ Expectations of scalar functions g(x1, x2) are defined as

E
(
g(X1, X2)

)
=

∫ ∞
−∞

∫ ∞
−∞

g(x1, x2)f(x1, x2) dx1 dx2.
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Marginal Distributions

∗ The joint distribution describes the behaviour of the random

vector.

∗ In many situations we wish to extract the distribution of just

one component.

∗ We use the term marginal distribution to describe the distri-

bution of one component of the random vector.

∗ Note that these are simply univariate distributions as we saw

previously.

∗ Note that, although we can derive the marginal distributions

from the joint the reverse is generally not true.

4-6



Marginal Probability Mass Functions

Theorem 4.1

Let (X1, X2) be a discrete bivariate random vector with joint pmf

fX1,X2. Then the marginal pmfs of X1 and X2 are given by

fX1(x1) = P (X1 = x1) =
∑

x2∈IR
fX1,X2(x1, x2)

fx2(x2) = P (X2 = x2) =
∑

x1∈IR
fX1,X2(x1, x2)
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Marginal Probability Density Functions

Theorem 4.2

Let (X1, X2) be a continuous bivariate random vector with joint

pdf fX1,X2. Then the marginal pdfs of X1 and X2 are given by

fX1(x1) =
∫ ∞
−∞

fX1,X2(x1, x2) dx2

fX2(x2) =
∫ ∞
−∞

fX1,X2(x1, x2) dx1
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Properties of the Joint CDF

∗ FX1,X2(x1, x2) is right continuous in both of its arguments.

∗ Similar to the univariate case we have

lim
(x1,x2)→(−∞,−∞)

FX1,X2(x1, x2) = 0

lim
(x1,x2)→(∞,∞)

FX1,X2(x1, x2) = 1

∗ When we take limits with respect to one component we have

lim
x1→−∞

FX1,X2(x1, x2) = 0

lim
x1→∞

FX1,X2(x1, x2) = FX2(x2)

and similarly for x2.
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Conditional Distributions

∗ Conditional distributions specify the distribution of one com-
ponent f we know the value of the other.

∗ In the discrete case we apply the definition of conditional
probability to get

fX1|X2
(x1 | x2) = P(X1 = x1 | X2 = x2)

=
P(X1 = x1, X2 = x2)

P(X2 = x2)

=
fX1,X2(x1, x2)

fX2(x2)

provided fX2(x2) = P(X2 = x2) > 0.

∗ Note that we have

FX1,X2(x1, x2) =
∑
u6x1

∑
v6x2

fX1|X2
(u | v)fX2(v)
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Continuous Conditional Densities

∗ In the continuous case, we always have that P(X2 = x2) = 0
so we cannot proceed in this way.

∗ However note that analogously to the discrete case we can
write

FX1,X2(x1, x2) =
∫ x1

−∞

∫ x2

−∞

fX1,X2(u, v)

fX2(v)
fX2(v) dv du

∗ We can therefore define the conditional density function

fX1|X2
(x1 | x2) =

fX1,X2(x1, x2)

fX2(x2)

provided the marginal density fX2(x2) > 0.

∗ It is easy to verify that this does indeed define a univariate
density function.
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Conditional Expectations

∗ Conditional pmfs and pdfs can be used in exactly the same

way as other univariate pmfs and pdfs.

∗ In particular we can get the conditional expected value of

g(X2) given X1 = x1 as

E
(
g(X2) | X1 = x1

)
=


∑
x2

g(x2)fX2|X1
(x2 | x1) (discrete)

∫ ∞
−∞

g(x2)fX2|X1
(x2 | x1) dy (continuous)

∗ In particular we can get the conditional mean and variance

of X2 given X1 = x1.
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Conditional Mean and Variance

∗ If we do not specify an actual value of the conditioning vari-

able the conditional moments become functions of the con-

ditioning random variable.

∗ Hence E(X2 | X1) and Var(X2 | X1) are random variables.

Theorem 4.3

Let X1 and X2 be two random variables then

E(X1) = E
(

E(X1 | X2)
)

Var(X1) = E
(

Var(X1 | X2)
)

+ Var
(

E(X1 | X2)
)

∗ The inner moments are found using the conditional distribu-

tion of X1 given X2 and the outer moments are found using

the marginal distribution of X2.
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Independent Random Variables

Definition 4.5

Two random variables X1 and X2 are said to be independent if,

and only if, we can write

fX1,X2(x1, x2) = fX1(x1)fX2(x2) for every (x1, x2) ∈ IR2

Lemma 4.1

Let (X,Y ) be a bivariate random vector with joint pmf or pdf

fX,Y (x, y). Then X and Y are independent if, and only if, there

exist functions g(x) and h(y) such that

fX,Y (x, y) = g(x)h(y) for every x ∈ IR and y ∈ IR.
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Properties of Independent Random Variables

Theorem 4.4

Suppose that X1 and X2 are independent random variables then

1. For any sets A ⊂ IR, B ⊂ IR, the events {X1 ∈ A} and {X2 ∈ B}
are independent events; that is

P(X1 ∈ A,X2 ∈ B) = P(X1 ∈ A)P(X2 ∈ B)

2. If g and h are univariate functions then

E
(
g(X1)h(X2)

)
= E

(
g(X1)

)
E
(
h(X2)

)

Theorem 4.5

Let X1 and X2 be two independent random variables with mo-
ment generating functions MX1(t) and MX2(t) then the moment
generating function of the random variable Z = X1 +X2 is

MZ(t) = MX1(t)MX2(t)
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Covariance

Definition 4.6

Suppose that X1 and X2 are two random variables then we define
the covariance of the joint distribution to be

Cov(X1, X2) = E
(
(X1 − µ1)(X2 − µ2)

)
where E(X1) = µ1 and E(X2) = µ2, provided µ1, µ2 and E(X1X2)
all exist.

∗ It is easy to see that Cov(X1, X2) = E(X1X2)−E(X1) E(X2).

∗ The sign of the covariance gives the direction of any linear
relationship between X1 and X2.

∗ The magnitude, however, is very dependent on the measure-
ment scales for the random variables.

Cov(aX1, bX2) = abCov(X1, X2) for any a, b not equal to 0.
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The Correlation Coefficient

Definition 4.7

Suppose that X1 and X2 are two random variables then we define

the correlation coefficient of the joint distribution to be

ρX1,X2 =
Cov(X1, X2)√

Var(X1) Var(X2)

provided E(X2
1), E(X2

2) and E(X1X2) all exist.

∗ The correlation coefficient clearly has the same sign as the

covariance.

∗ It is a unit-free number, however, which does not depend on

the scales of measurement of either random variable.

ρaX1,bX2 = ρX1,X2 for any a, b not equal to 0.
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Independence and Correlation

Theorem 4.6

If X1 and X2 are independent random variables then

Cov(X1, X2) = 0.

∗ Clearly the correlation coefficient is also 0 for independent

random variables.

∗ The inverse is not true in general.

∗ This is because covariance and correlation only measure lin-

ear relationships. Two random variables can have strong

non-linear relationships but have correlation equal to 0.

4-18



Properties of the Correlation

Theorem 4.7

Let X1 and X2 be any two random variables for which the cor-

relation coefficient ρ exists. Then

1. −1 6 ρ 6 1.

2. |ρ| = 1 if, and only if, there exist numbers a 6= 0 and b ∈ IR

with sign(a) = sign(ρ) such that

P (X2 = aX1 + b) = 1
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The Bivariate Normal Distribution

Definition 4.8

Let µ1 ∈ IR, µ2 ∈ IR, σ1 > 0, σ2 > 0 and −1 < ρ < 1 be five
numbers. The joint probability denstiy function

f(x1, x2) =
1

2πσ1σ2

√
1− ρ2

× exp

{
−

1

2(1− ρ2)

(
(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2

)}

for any ordered pair (x1, x2) ∈ IR2 is called the Bivariate Normal

joint pdf.
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Properties of the Bivariate Normal

Theorem 4.8

Suppose that the random vector (X1, X2) has the bivariate nor-
mal pdf given in Definition 4.8 then

1. The correlation coefficient between X1 and X2 is equal to ρ.

2. The marginal distribution for X1 is the normal(µ1, σ
2) and

similarly X2 ∼ normal(µ2, σ
2
2).

3. The conditional distribution of X1 | X2 = x2 is a normal with
mean and variance

E(X1 | X2 = x2) = µ1 + ρ
σ1

σ2
(x2 − µ2)

Var(X1 | X2 = x2) = σ2
2(1− ρ2)
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The Bivariate Normal and Independence

Theorem 4.9

Suppose that (X1, X2) is a bivariate normal random vector with

correlation coefficient ρ then ρ = 0 if, and only if, X1 and X2 are

independent random variables.

∗ Note that it is possible for two normal random variables to

have correlation zero but not be independent.

∗ What the above theorem says it is not possible for a bivari-

ate normal random vector to have zero correlation and the

components be independent.

∗ Marginal normality, however, does not imply bivariate nor-

mality.
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Transformations of Discrete Bivariate Random
Vectors

∗ Suppose that (X1, X2) is a bivariate random vector and we

are interested in the random vector (Y1, Y2) given by

Y1 = g1(X1, X2) Y2 = g2(X1, X2)

for two functions g1, g2 which map IR2 to IR.

∗ We can find the joint probability mass function in the discrete

case similar to how we did for univariate random variables

fY1,Y2(y1, y2) = P
(
g1(X1, X2) = y1, g2(X1, X2) = y2

)
=

∑∑
A(y1,y2)

fX1,X2(x1, x2)

where A(y1, y2) = {(x1, x2) ∈ X : g1(x1, x2) = y1, g2(x1, x2) = y2}.
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Transformations of Discrete Bivariate Random
Vectors

∗ In many instances we are actually interested in moving from

a bivariate random vector (X1, X2) to a univariate random

variable Y = g(X1, X2).

∗ We can do this by first finding the joint pmf for the random

vector defined by (Y,X2) and then summing over all possible

values of x2 to get the marginal pmf for Y .

∗ In the discrete case, however, we can simplify that to

fY (y) =
∑∑
A(y)

fX1,X2(x1, x2)

where A(y) = {(x1, x2) ∈ X : g(x1, x2) = y}.
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Transformations of Continuous Bivariate Random
Vectors

∗ For continuous random vectors we shall assume that the

transformation (X1, X2)→ (Y1, Y2) is one-to-one.

∗ For such functions we can define the inverse transformation

X1 = h1(Y1, Y2) X2 = h2(Y1, Y2)

∗ The Jacobian of the transformation is then defined as the

determinant of the matrix of partial derivatives of the inverse

functions

J =

∣∣∣∣∣∣∣∣∣∣
∂h1(y1, y2)

∂y1

∂h1(y1, y2)

∂y2
∂h2(y1, y2)

∂y1

∂h2(y1, y2)

∂y2

∣∣∣∣∣∣∣∣∣∣
=

∂x1

∂y1
×
∂x2

y2
−
∂x2

∂y1
×
∂x1

∂y2

4-25



Transformations of Continuous Bivariate Random
Vectors

Theorem 4.10

Let (X1, X2) be a continuous bivariate random vector with joint

pdf fX1,X2(x1, x2) on support A = {(x, y ∈ IR : fX1,X2(x1, x2) > 0}.
Let the functions g1(x1, x2) and g2(x1, x2) define a one-to-one

transformation of A to

B = {(y1, y2) : g1(x1, x2) = y1, g2(x1, x2) = y2 for some (x1, x2) ∈ A}

and let the inverse transformation be given by x1 = h1(y1, y2),

x2 = h2(y1, y2). Then the pdf of the random vector (Y1, Y2)

where Y1 = g1(X1, X2) and Y2 = g2(X1, X2) is given by

fY1,Y2(y1, y2) = fX1,X2(h1(y1, y2), h2(y1, y2))|J |

where J is the Jacobian of the transformation given on the pre-

vious slide
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Piecewise Transformations

∗ As in the univariate case this can be extended to transfor-

mations which are not one-to-one.

∗ In that case we consider a partition A1, . . . , Ak of A such that

the transformation is one-to-one from each Ai to a common

B.

∗ We then apply the previous theorem to each set in the par-

tition and sum the results to get the pdf of (Y1, Y2).

∗ The partition may also include a set A0 such that P ((X1, X2) ∈
A0) = 0 without changing the result.
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Hierarchical Models

∗ For many complicated random processes, it is easiest to

model it using a sequence of conditional and marginal mod-

els.

∗ In the simplest hierarchy we have the conditional distribution

of X | Y and the marginal distribution of Y .

∗ The joint distribution is then given by

fX,Y (x, y) = fX|Y (x | y)fY (y)

∗ The marginal distribution of X can then be found as

fX(x) =


∑
y fX|Y (x | y)fY (y) if Y is discrete

∫∞
−∞ fX|Y (x | y)fY (y) dy if Y is continuous
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Mixture Distributions

∗ The marginal distribution of X in this case is called a mixture

distribution.

∗ Mixture distributions often have rather formidable looking

pmfs or pdfs.

∗ Theorem 4.3 gives us simple ways to find the moments of X

using the hierarchical structure.
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Finite Mixture Distributions

Definition 4.9

A random variable X is said to have a finite mixture distribution
if its pdf or pmf can be written as

fX(x) =
k∑

j=1

pifi(x)

where 0 < pj j = 1, . . . , k,
∑k

1 pj = 1 and each fi is a pdf (or each
fi is a pmf).

∗ Note that this can be thought of as a hierarchical model if
Y is discrete with pmf

P(Y = y) = py y = 1, . . . , k

and the conditional distribution has pdf (pmf)

fX|Y (x | y) = fy(x) y = 1, . . . , k
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Countable Mixture Distributions

Definition 4.10

A random variable X is said to have a countable mixture distribu-

tion if there exists a discrete probability mass function fY (y) and

a sequence of conditional density or mass functions fX|Y (x | y)

such that the marginal density (or mass) for X is given by

fX(x) =
∑
y
fX|Y (x | y)fY (y).

∗ The pmf fY (y) is usually called the mixing distribution.

∗ Most often, these mixture models arise when a “parameter”

of the distribution of X is not fixed but is itself a random

variable.
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Uncountable Mixture Distributions

∗ We can generalize mixture distributions by allowing fY (y) to

be a probability density function.

∗ Then we get the mixture pdf (pmf) to be

fX(x) =
∫ ∞
−∞

fX|Y (x | y)fY (y) dy.

∗ Some books call these compound distributions but they are

really just mixture distributions with a continuous mixing dis-

tribution.

∗ They typically arise from a hierarchical structure in which the

conditional distribution of X depends on a random “param-

eter” which is defined over an uncountable set (such as an

interval).
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General Multivariate Distributions

∗ A multivariate random vector X = (X1, . . . , Xn) is a function
mapping a sample space S to X ⊂ IRn.

∗ If X is countable then the joint probability mass function for
any x = (x1, . . . , xn) is

fX(x) = P (X1 = x1, . . . , Xn = xn)

and for any A ⊂ IRn we have

P (X ∈ A) =
∑
x∈A

f(x).

∗ If X is continuous then the joint probability density function
of X is the non-negative real function fX(x) such that for
any A ⊂ IRn

P (X ∈ A) =
∫
· · ·

∫
A
fX(x) dx =

∫
· · ·

∫
A
fX(x1, . . . , xn) dx1 · · · dxn
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Expectations, Marginal and Conditional Distribu-
tions

∗ If g(x1, . . . , xn) is a real-valued function then

E
(
g(X)

)
=


∑

x∈IRn

g(x)fX(x) (discrete case)

∫ ∞
−∞
· · ·

∫ ∞
−∞

g(x)fX(x) dx (continuous case)

∗ Marginal pmfs (pdfs) of some subset of the components of

X is found by summing (integrating) the pmf (pdf) over the

remaining components.

∗ Conditional pmfs (pdfs) of some subset of the components

given the rest is found by dividing the full joint pmf (pdf)

by the marginal pmf (pdf) of the conditioning components

evaluated at their given values.
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The Multinomial Distribution

∗ Generalizes the binomial to the case where there are more

than two categories and we want to count the number in

each category.

Definition 4.11

Suppose that m and n are positive integers and let p1, . . . , pn be

constants such that 0 6 pi 6 1 for i = 1, . . . , n and sumipi = 1.

Then the random vector (X1, . . . , Xn) has a multinomial distri-

bution with m trials and probabilities p1, . . . , pn if the joint pmf

is

fX(x1, . . . , xn) =
m!

x1! · · ·xm!
p
x1
1 · · · p

xn
n

for any (x1, . . . , xn) such that each xi is a non-negative integer

and
∑
i

xi = m.
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Properties of the Multinomial Distribution

Theorem 4.11

If (x1, . . . , Xn) is a multinomial random vector with m trials and
probabilities p1, . . . , pn then the marginal distribution of Xi is the
binomial distribution with parameters m and pi.

The conditional distribution of (X1, . . . , Xi−1, Xi+1, . . . , Xn) given
Xi = xi is the multinomial distribution with m − xi trials and
probabilities (p′1, . . . , p

′
i−1, p

′
i+1, . . . , p

′
n) where

p′j =
pj

1− pi
j = 1, . . . , i− 1, i+ 1, . . . , n

Theorem 4.12

If (x1, . . . , Xn) is a multinomial random vector with m trials and
probabilities p1, . . . , pn then for any i, j ∈ {1, . . . , n} with i 6= j,

Cov(Xi, Xj) = −mpipj
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Multivariate Independence

Definition 4.12

Let X1, . . . , Xn be random variables with joint pmf or pdf fX(x1, . . . , xn)
and let fXi(xi) denote the marginal pmf or pdf of Xi. Then
X1, . . . , Xn are called independent random variables if for every
(x1, . . . , xn) ∈ IRn

fX(x1, . . . , xn) =
n∏
i=1

fXi(xi)

Theorem 4.13

Let (X1, . . . , Xn) be a random vector with joint pdf or pmf fX(x1, . . . , xn).
Then the random variables X1, . . . , Xn are independent if, and
only if, there exist non-negative functions g1, . . . , gn such that for
every (x1, . . . , xn) ∈ IRn

fX(x1, . . . , xn) =
n∏
i=1

gi(xi).
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Properties of Independent Random Variables

Theorem 4.14

Let X1, . . . , Xn be independent random variables and let g1, . . . , gn
be univariate real-valued functions. Then

E

 n∏
i=1

gi(Xi)

 =
n∏
i=1

E
(
gi(Xi)

)

Theorem 4.15

Let X1, . . . , Xn be independent random variables with moment
generating functions MXi

(t) i = 1, . . . , n and let ai, . . . , an and b
be real constants. Then the moment generating function of the
random variable Y = a1X1 + · · ·+ anXn + b is

MY (t) = ebt
n∏
i=1

MXi
(ait)
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Multivariate Transformations

Definition 4.13

Suppose that there is a one-to-one transformation

G (x1, . . . , xn) =
(
g1(x), . . . , gn(x)

)
= (y1, . . . , yn)

with inverse

H(y1, . . . , yn) =
(
h1(y), . . . , hn(y)

)
= = (x1, . . . , xn).

The Jacobian of the transformation is defined as the determinant

of the matrix of partial derivatives of the inverse functions.

J(x,y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x1
∂y2

· · · ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

· · · ∂x2
∂yn

... ... . . . ...

∂xn
∂y1

∂xn
∂y2

· · · ∂xn
∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂h1(y)
∂y1

∂h1(y)
∂y2

· · · ∂h1(y)
∂yn

∂h2(y)
∂y1

∂h2(y)
∂y2

· · · ∂h2(y)
∂yn

... ... . . . ...

∂hn(y)
∂y1

∂hn(y)
∂y2

· · · ∂hn(y)
∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Multivariate Transformations

Theorem 4.16

Suppose that X is a continuous random vector pdf fX and the

transformation

Yi = gi(X1, . . ., Xn) i = 1, . . . , n

is a one-to-one transformation from the support, X , of X to the

support, Y, of Y with inverse transformation

Xi = hi(Y1, . . . , Yn) i = 1, . . . , n.

Let J(x,y) be the Jacobian of the transformation and suppose

that it is not identically equal to zero over Y. Then the joint pdf

of Y is

fY (y1, . . . , yn) = fX(h1(y), . . . , hn(y)) |J(x,y)| .

4-40


