Some Useful Inequalities and Identities

Theorem 5.1 (Chebychev's Inequality)
Let X be a random variable and $g(x)$ be a non-negative function such that $\mathrm{E}(g(X))$ exists. Then, for any constant $r>0$,

$$
\mathrm{P}(g(X) \geqslant r) \leqslant \frac{\mathrm{E}(g(X))}{r}
$$

Corollary 5.1.1
Let X be a random variable with finite mean μ and variance σ^{2} then for any $t>0$

$$
\mathrm{P}(|X-\mu| \geqslant t \sigma) \leqslant \frac{1}{t^{2}}
$$

Markov's Inequality

Theorem 5.2 (Markov's Inequality)
Suppose X is a non-negative random variable with $\mathrm{P}(X=0)<1$ then for any constant $r>0$

$$
\mathrm{P}(X \geqslant r) \leqslant \frac{\mathrm{E}(X)}{r}
$$

* In fact, Markov showed that equality in the above theorem is attained if, and only if, X takes probabilities on only 2 points 0 and r which clearly shows that Chebychev's bound is almost never attained.

Normal Tail Probabilities

* If we restrict to the normal family of distributions then we get the following useful result.
* The first part gives much tighter bounds than Chebychev for this distribution.
* The second part gives us a lower bound on the probabilities which cannot be found in general.

Theorem 5.3

If Z is a standard normal random variable then

$$
\begin{aligned}
& \mathrm{P}(|Z| \geqslant t) \leqslant \sqrt{\frac{2}{\pi}} \frac{\mathrm{e}^{-t^{2} / 2}}{t} \\
& \mathrm{P}(|Z| \geqslant t) \geqslant \sqrt{\frac{2}{\pi}} \frac{t \mathrm{e}^{-t^{2} / 2}}{1+t^{2}}
\end{aligned}
$$

Another Inequality Related to Chebychev's

* When moment generating functions exist we get the following result.
* Depending on the value of t used, we can often get better bounds with this also.

Theorem 5.4
Suppose that X is a random variable whose moment generating function $M_{X}(t)$ exists for $-h<t<h$. Then for any constant $a \in \mathbb{R}$,

$$
\begin{array}{ll}
\mathrm{P}(X \geqslant a) \leqslant \mathrm{e}^{-a t} M_{X}(t) & \text { for any } 0<t<h \\
\mathrm{P}(X \leqslant a) \leqslant \mathrm{e}^{-a t} M_{X}(t) & \text { for any }-h<t<0
\end{array}
$$

Recurrence Relationships

* For discrete random variables we can often write recurrence relationships of the form

$$
\mathrm{P}(X=x+1)=h(\mathrm{P}(X=x))
$$

for some function h.

* These relationships are called recurrence relationships.
* If there is a certain x for which the probability is known or very easily calculated, these relationships can make other probabilities easy to find also.

Some Discrete Recurrence Relationships

* If X is a Poisson random variable with mean λ then

$$
\mathrm{P}(X=x+1)=\frac{\lambda}{x+1} \mathrm{P}(X=x) \quad x=0,1,2, \ldots
$$

* If $X \sim \operatorname{Binomial}(n, p)$ then

$$
\mathrm{P}(X=x+1)=\frac{p(n-x)}{(1-p)(x+1)} \mathrm{P}(X=x) \quad x=0,1, \ldots, n-1
$$

* If $X \sim$ Negative Binomial (r, p) then

$$
\mathrm{P}(X=x+1)=\frac{(1-p)(r+x)}{x+1} \mathrm{P}(X=x) \quad x=0,1,2, \ldots
$$

A Relationship for the Gamma Distribution

* Gamma probabilities are hard to find in general.
* If the shape parameter is a positive integer, however, they can be found by integration by parts.
* In this case the recurrence has to do with probabilities for different random variables in the same family.
* Since probabilities are easy to find for the case of $\alpha=1$ we can use these relationships to find them for any positive integer α.

A Relationship for the Gamma Distribution

Theorem 5.5

Suppose that $X_{\alpha, \beta}$ is a gamma random variable with probability density function

$$
f(x \mid \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} \mathrm{e}^{-x / \beta} \quad x>0
$$

Suppose $\alpha>1$ and a and b are any non-negative constants with $a<b$ then
$\mathrm{P}\left(a<X_{\alpha, \beta}<b\right)=\beta(f(a \mid \alpha, \beta)-f(b \mid \alpha, \beta))+\mathrm{P}\left(a<X_{\alpha-1, \beta}<b\right)$
Corollary 5.5.1
Let $f(x \mid \alpha, \beta)$ and $F(x, \mid \alpha, \beta)$ denote the pdf and cdf of a $\operatorname{Gamma}(\alpha, \beta)$ random variable. Then for $\alpha>1$ and any $x>0$

$$
F(x \mid \alpha, \beta)=F(x \mid \alpha-1, \beta)-\beta f(x \mid \alpha, \beta)
$$

Stein's Lemma

Theorem 5.6 (Stein's Lemma)

Suppose that Z is a standard normal random variable and let $g(x)$ be a differentiable function such that $\mathrm{E}\left(\left|g^{\prime}(Z)\right|\right)<\infty$ then

$$
\mathrm{E}(Z g(Z))=\mathrm{E}\left(g^{\prime}(Z)\right)
$$

Corollary 5.6.1
Suppose that $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ and let $g(x)$ be a differentiable function such that $\mathrm{E}\left(\left|g^{\prime}(X)\right|\right)<\infty$ then

$$
\mathrm{E}((X-\mu) g(X))=\sigma^{2} \mathrm{E}\left(g^{\prime}(X)\right)
$$

Other Useful Identities for Distributions

Theorem 5.7

Let X_{p} be a χ_{p}^{2} random variable and let h be a function whose expectation exists for any χ^{2} random variable. Then

$$
E\left(h\left(X_{p}\right)\right)=p \mathrm{E}\left(\frac{h\left(X_{p+2}\right)}{X_{p+2}}\right)
$$

Theorem 5.8 (Hwang)
Let $g(x)$ be function such that $g(-1)$ is finite and $\mathrm{E}(g(X))$ exists for the two distributions below then

1. If $X \sim \operatorname{Poisson}(\lambda)$ then

$$
E(\lambda g(X))=E(X g(X-1))
$$

2. If $X \sim$ Negative Binomial(r, p) then

$$
\mathrm{E}((1-p) g(X))=\mathrm{E}\left(\frac{X}{r+X-1} g(X-1)\right)
$$

Some Further Inequalities

Theorem 5.9 (Cauchy-Schwarz Inequality)
Let X and Y be any two random variables then

$$
|\mathrm{E}(X Y)| \leqslant \mathrm{E}(|X Y|) \leqslant \sqrt{\mathrm{E}\left(X^{2}\right) \mathrm{E}\left(Y^{2}\right)}
$$

Corollary 5.9.1
Suppose that X and Y are two random variables with finite means and finite variances then

$$
|\operatorname{Cov}(X, Y)| \leqslant \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}
$$

A Generalization of Cauchy-Schwarz

Theorem 5.10 (Hölder's Inequality)

Let X and Y be two random variables and let p and q be positive numbers greater than 1 such that $1 / p+1 / q=1$ then

$$
|E(X Y)| \leqslant E(|X Y|) \leqslant\left(E\left(|X|^{p}\right)\right)^{1 / p}\left(E\left(|Y|^{q}\right)\right)^{1 / q}
$$

The proof of Hölder's Inequality depends on the following lemma from number theory

Lemma 5.1
Let a and b be any positive numbers and let p and q be positive numbers satisfying $1 / p+1 / q=1$ then

$$
\frac{a^{p}}{p}+\frac{b^{q}}{q} \geqslant a b
$$

Consequences of Hölder's Inequality

Theorem 5.11 (Liapounov's Inequality)
If X is a random variable and $0<r<s$ then

$$
\mathrm{E}\left(|X|^{r}\right) \leqslant \mathrm{E}\left(|X|^{s}\right)^{r / s}
$$

Theorem 5.12 (Minkowski's Inequality)
Let X and Y be two random variables and let $p>1$ then

$$
\left(\mathrm{E}\left(|X+Y|^{p}\right)\right)^{1 / p} \leqslant\left(\mathrm{E}\left(|X|^{p}\right)\right)^{1 / p}+\left(\mathrm{E}\left(|Y|^{p}\right)\right)^{1 / p}
$$

Jensen's Inequality

Definition 5.1

A function g is said to be convex if for every x, y and $0<\lambda<1$

$$
g(\lambda x+(1-\lambda y)) \leqslant \lambda g(x)+(1-\lambda) g(y)
$$

A function g is concave if $-g$ is convex and so

$$
g(\lambda x+(1-\lambda y)) \geqslant \lambda g(x)+(1-\lambda) g(y)
$$

Theorem 5.13 (Jensen's Inequality)
If X is a random variable with finite mean and g is a convex function then

$$
\mathrm{E}(g(X)) \geqslant g(\mathrm{E}(X))
$$

