Some Useful Inequalities and Identities

Theorem 5.1 (Chebychev’s Inequality)
Let X be a random variable and g(x) be a non-negative function
such that E(g(X)) exists. Then, for any constant r > 0,

E (9(X))

r

P(g(X) > r) <

Corollary 5.1.1
Let X be a random variable with finite mean n and variance o2
then for any t > 0O

P(IX — pl > to) < tiQ



Markov’s Inequality

Theorem 5.2 (Markov’s Inequality)
Suppose X is a non-negative random variable with P(X =0) < 1
then for any constant r > 0O

E(X)

/’/i

P(X>r) <

* In fact, Markov showed that equality in the above theorem
is attained if, and only if, X takes probabilities on only 2
points O and r which clearly shows that Chebychev’'s bound
IS almost never attained.
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Normal Tail Probabilities

* If we restrict to the normal family of distributions then we
get the following useful result.

* The first part gives much tighter bounds than Chebychev for
this distribution.

* The second part gives us a lower bound on the probabilities
which cannot be found in general.

Theorem 5.3
If 7 is a standard normal random variable then

Det?/2
P12 > t) < \/; t

Dte—t7/2
P(|Z|>t) > (/=
w14 t2
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Another Inequality Related to Chebychev’s

* When moment generating functions exist we get the follow-
ing result.

* Depending on the value of ¢t used, we can often get better
bounds with this also.

T heorem 5.4

Suppose that X is a random variable whose moment generating

function Mx(t) exists for —h < t < h. Then for any constant
a € IR,

P(X >a) < e “Mx(t) for any 0 <t<h

P(X <a) < e “Mx(t) forany —h<t<0
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Recurrence Relationships

* For discrete random variables we can often write recurrence
relationships of the form

P(X=z+4+1) = h(P(Xza;))

for some function h.
* T hese relationships are called recurrence relationships.

* If there is a certain x for which the probability is known
or very easily calculated, these relationships can make other
probabilities easy to find also.
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Some Discrete Recurrence Relationships

* If X is a Poisson random variable with mean X\ then

A
P X=z4+1) = ——P(X =2x) r=0,1,2,.
x4+ 1
* If X ~ Binomial(n,p) then
p(n — x)
P(X =x241) = P(X =ux) r=20,1,...
(1-p)(z+1)
* If X ~ Negative Binomial(r,p) then
1 —
P(X=a+1) = L=POFD)o vy L0102
r+1



A Relationship for the Gamma Distribution

X

*

Gamma probabilities are hard to find in general.

If the shape parameter is a positive integer, however, they
can be found by integration by parts.

In this case the recurrence has to do with probabilities for
different random variables in the same family.

Since probabilities are easy to find for the case of o = 1
we can use these relationships to find them for any positive
integer «.
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A Relationship for the Gamma Distribution

Theorem 5.5
Suppose that Xaﬁ iIs a gamma random variable with probability
density function

1 a—1.—z/p3
x| o, = ———~x e x>0
f@laf) = =50
Suppose a« > 1 and a and b are any non-negative constants with
a < b then

P (a < Xap < b) — B(f(a o, B)—f(b | a,ﬁ))—I—P (a < Xq_18< b)

Corollary 5.5.1
Let f(x | a,8) and F(x,| a,8) denote the pdf and cdf of a
Gamma(a, 3) random variable. Then for o« > 1 and any x > 0O

Fz|a,B) = Flz|a—-1,8)-8f(z|a,p)



Stein’s Lemma

Theorem 5.6 (Stein’s Lemma)
Suppose that Z is a standard normal random variable and let
g(x) be a differentiable function such that E (|¢'(Z)|) < co then

E(29(2)) = E(d(2)

Corollary 5.6.1
Suppose that X ~ Normal(u,c?) and let g(z) be a differentiable
function such that E (|¢/(X)|) < oo then

E((X —mg(X)) = o?E(g'(X))



Other Useful Identities for Distributions

T heorem 5.7

Let X, be a Xp random var/ab/e and let h be a function whose
expectation exists for any X random variable. Then

_ h(Xp42)
o < el

Theorem 5.8 (Hwang)

Let g(x) be function such that g(—1) is finite and E(g(X)) exists
for the two distributions below then

1. If X ~ Poisson()\) then
E()\g(X)) = E(Xg(X— 1))
2. If X ~ Negative Binomial(r,p) then

E(1-p90) = E( oy 9(X - D)
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Some Further Inequalities

Theorem 5.9 (Cauchy-Schwarz Inequality)
Let X andY be any two random variables then

E(XY)| < E(|XY]) < VE(X?)E(Y?)
| | < E(IxY]) <

Corollary 5.9.1
Suppose that X andY are two random variables with finite means
and finite variances then

Cou(X,Y)| < VVar(X) Var(y)
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A Generalization of Cauchy-Schwarz

Theorem 5.10 (Holder’s Inequality)

Let X andY be two random variables and let p and q be positive
numbers greater than 1 such that 1/p+1/q =1 then

Exy)| < E(xv)) < (EqxP) " (EqQYIH)Y

The proof of Holder’'s Inequality depends on the following lemma
from number theory

Lemma 5.1
Let a and b be any positive numbers and let p and q be positive
numbers satisfying 1/p+ 1/q =1 then

P pa
“+Z >
p q
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Consequences of Holder’s Inequality

Theorem 5.11 (Liapounov’s Inequality)
If X is a random variable and 0 < r < s then

E(X") < E(X)7*

Theorem 5.12 (Minkowski’s Inequality)
Let X and Y be two random variables and let p > 1 then

<E<|X—|—Y|p))1/p < (E<|X|p>>1/p_|_<E (Iy|p)>1/p
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Jensen’s Inequality

Definition 5.1
A function g is said to be convex if for every x, y and 0 < A < 1

g(Az+ (1 =) < Ag(@) + (1 - Ng(y)

A function g is concave if —g is convex and so

g(Az+ (1= Ay)) > Ag(@) + (1 - Ng(y)

Theorem 5.13 (Jensen’s Inequality)
If X is a random variable with finite mean and g is a convex
function then

E (9(X)) > g(EC0))
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