
Some Useful Inequalities and Identities

Theorem 5.1 (Chebychev’s Inequality)

Let X be a random variable and g(x) be a non-negative function

such that E(g(X)) exists. Then, for any constant r > 0,

P
(
g(X) > r

)
6

E
(
g(X)

)
r

Corollary 5.1.1

Let X be a random variable with finite mean µ and variance σ2

then for any t > 0

P
(
|X − µ| > tσ

)
6

1

t2
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Markov’s Inequality

Theorem 5.2 (Markov’s Inequality)

Suppose X is a non-negative random variable with P(X = 0) < 1

then for any constant r > 0

P(X > r) 6
E(X)

r

∗ In fact, Markov showed that equality in the above theorem

is attained if, and only if, X takes probabilities on only 2

points 0 and r which clearly shows that Chebychev’s bound

is almost never attained.
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Normal Tail Probabilities

∗ If we restrict to the normal family of distributions then we

get the following useful result.

∗ The first part gives much tighter bounds than Chebychev for

this distribution.

∗ The second part gives us a lower bound on the probabilities

which cannot be found in general.

Theorem 5.3

If Z is a standard normal random variable then

P
(
|Z| > t

)
6

√
2

π

e−t
2/2

t

P
(
|Z| > t

)
>

√
2

π

te−t
2/2

1 + t2
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Another Inequality Related to Chebychev’s

∗ When moment generating functions exist we get the follow-

ing result.

∗ Depending on the value of t used, we can often get better

bounds with this also.

Theorem 5.4

Suppose that X is a random variable whose moment generating

function MX(t) exists for −h < t < h. Then for any constant

a ∈ IR,

P(X > a) 6 e−atMX(t) for any 0 < t < h

P(X 6 a) 6 e−atMX(t) for any − h < t < 0
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Recurrence Relationships

∗ For discrete random variables we can often write recurrence

relationships of the form

P(X = x+ 1) = h
(
P(X = x)

)
for some function h.

∗ These relationships are called recurrence relationships.

∗ If there is a certain x for which the probability is known

or very easily calculated, these relationships can make other

probabilities easy to find also.
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Some Discrete Recurrence Relationships

∗ If X is a Poisson random variable with mean λ then

P(X = x+ 1) =
λ

x+ 1
P(X = x) x = 0,1,2, . . .

∗ If X ∼ Binomial(n, p) then

P(X = x+1) =
p(n− x)

(1− p)(x+ 1)
P(X = x) x = 0,1, . . . , n−1

∗ If X ∼ Negative Binomial(r, p) then

P(X = x+ 1) =
(1− p)(r + x)

x+ 1
P(X = x) x = 0,1,2, . . .
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A Relationship for the Gamma Distribution

∗ Gamma probabilities are hard to find in general.

∗ If the shape parameter is a positive integer, however, they

can be found by integration by parts.

∗ In this case the recurrence has to do with probabilities for

different random variables in the same family.

∗ Since probabilities are easy to find for the case of α = 1

we can use these relationships to find them for any positive

integer α.
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A Relationship for the Gamma Distribution

Theorem 5.5

Suppose that Xα,β is a gamma random variable with probability

density function

f(x | α, β) =
1

Γ(α)βα
xα−1e−x/β x > 0

Suppose α > 1 and a and b are any non-negative constants with

a < b then

P
(
a < Xα,β < b

)
= β

(
f(a | α, β)−f(b | α, β)

)
+P

(
a < Xα−1,β < b

)
Corollary 5.5.1

Let f(x | α, β) and F (x, | α, β) denote the pdf and cdf of a

Gamma(α, β) random variable. Then for α > 1 and any x > 0

F (x | α, β) = F (x | α− 1, β)− βf(x | α, β)
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Stein’s Lemma

Theorem 5.6 (Stein’s Lemma)

Suppose that Z is a standard normal random variable and let

g(x) be a differentiable function such that E
(
|g′(Z)|

)
<∞ then

E
(
Zg(Z)

)
= E

(
g′(Z)

)
Corollary 5.6.1

Suppose that X ∼ Normal(µ, σ2) and let g(x) be a differentiable

function such that E
(
|g′(X)|

)
<∞ then

E
(
(X − µ)g(X)

)
= σ2 E

(
g′(X)

)
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Other Useful Identities for Distributions

Theorem 5.7

Let Xp be a χ2
p random variable and let h be a function whose

expectation exists for any χ2 random variable. Then

E
(
h(Xp)

)
= pE

(
h(Xp+2)

Xp+2

)

Theorem 5.8 (Hwang)

Let g(x) be function such that g(−1) is finite and E(g(X)) exists
for the two distributions below then

1. If X ∼ Poisson(λ) then

E
(
λg(X)

)
= E

(
Xg(X − 1)

)
2. If X ∼ Negative Binomial(r, p) then

E
(
(1− p)g(X)

)
= E

(
X

r +X − 1
g(X − 1)

)
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Some Further Inequalities

Theorem 5.9 (Cauchy-Schwarz Inequality)

Let X and Y be any two random variables then∣∣∣E(XY )
∣∣∣ 6 E

(
|XY |

)
6

√
E(X2) E(Y 2)

Corollary 5.9.1

Suppose that X and Y are two random variables with finite means

and finite variances then∣∣∣Cov(X,Y )
∣∣∣ 6

√
Var(X) Var(Y )
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A Generalization of Cauchy-Schwarz

Theorem 5.10 (Hölder’s Inequality)

Let X and Y be two random variables and let p and q be positive
numbers greater than 1 such that 1/p+ 1/q = 1 then∣∣∣E(XY )

∣∣∣ 6 E
(
|XY |

)
6

(
E (|X|p)

)1/p(
E (|Y |q)

)1/q

The proof of Hölder’s Inequality depends on the following lemma
from number theory

Lemma 5.1

Let a and b be any positive numbers and let p and q be positive
numbers satisfying 1/p+ 1/q = 1 then

ap

p
+
bq

q
> ab
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Consequences of Hölder’s Inequality

Theorem 5.11 (Liapounov’s Inequality)

If X is a random variable and 0 < r < s then

E (|X|r) 6 E (|X|s)r/s

Theorem 5.12 (Minkowski’s Inequality)

Let X and Y be two random variables and let p > 1 then(
E
(
|X + Y |p

))1/p
6

(
E
(
|X|p

))1/p
+
(
E
(
|Y |p

))1/p
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Jensen’s Inequality

Definition 5.1

A function g is said to be convex if for every x, y and 0 < λ < 1

g
(
λx+ (1− λy)

)
6 λg(x) + (1− λ)g(y)

A function g is concave if −g is convex and so

g
(
λx+ (1− λy)

)
> λg(x) + (1− λ)g(y)

Theorem 5.13 (Jensen’s Inequality)

If X is a random variable with finite mean and g is a convex

function then

E
(
g(X)

)
> g

(
E(X)

)
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