Random Samples

Definition 6.1

A set of random variables X_{1}, \ldots, X_{n} is called a Random Sample from a population if X_{1}, \ldots, X_{n} are mutually independent and each X_{i} has the same cdf F.

* F describes the assumed distribution in the population.
* Corresponding to F is a pdf (or pmf) f.
* X_{1}, \ldots, X_{n} are Independent and Identically Distributed (iid).

Inference

* Joint pdf (pmf) of the sample

$$
f\left(x_{1}, \ldots, x_{n} \mid \boldsymbol{\theta}\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \boldsymbol{\theta}\right)
$$

* Usually the parameter vector $\boldsymbol{\theta}$ is unknown.
* Aim is to make inference about θ based on the observed sample x_{1}, \ldots, x_{n}.
* Inference is based on statistics.

Statistics

Definition 6.2
Let X_{1}, \ldots, X_{n} be a random sample from an infinite population and let $T\left(x_{1}, \ldots, x_{n}\right)$ be a function mapping the support of $X_{1}, \ldots, X_{n}, \mathcal{X}^{n}$ to \mathbb{R}^{m} where $m \leqslant n$. Then the random variable (or vector)

$$
Y=T\left(X_{1}, \ldots, X_{n}\right)
$$

is called a statistic. The distribution of the random variable Y is known as its sampling distribution.

* Since Y is a function of X_{1}, \ldots, X_{n} its sampling distribution can, in theory, be found from $f\left(x_{1}, \ldots, x_{n} \mid \boldsymbol{\theta}\right)$.

Sample Mean and Variance

Definition 6.3
If X_{1}, \ldots, X_{n} is a random sample then the sample mean is

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

and the sample variance is

$$
S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1} .
$$

The positive square root, S, of the sample variance is called the sample standard deviation.

* Observed values of X_{1}, \ldots, X_{n} are x_{1}, \ldots, x_{n}
* Observed values of \bar{X} and S^{2} are

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1} .
$$

Linear Combinations

Theorem 6.1

Let X_{1}, \ldots, X_{n} be a sequence of random variables with finite means and variances and let a_{1}, \ldots, a_{n} be real constants. Then

$$
\begin{aligned}
\mathrm{E}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) & =\sum_{i=1}^{n} a_{i} \mathrm{E}\left(X_{i}\right) \\
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) & =\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+\sum_{j \neq i} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i>j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

Linear Combinations of Random Samples

Corollary 6.1.1
Let X_{1}, \ldots, X_{n} be a random sample from a distribution having finite mean, μ and finite variance, σ^{2}, and let a_{1}, \ldots, a_{n} be real constants. Then

$$
\begin{aligned}
\mathrm{E}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) & =\mu \sum_{i=1}^{n} a_{i} \\
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) & =\sigma^{2} \sum_{i=1}^{n} a_{i}^{2}
\end{aligned}
$$

Moments of Statistics

Lemma 6.1

Let X_{1}, \ldots, X_{n} be a random sample and let g be a function such that $Y=g\left(X_{1}\right)$ has finite mean and variance. Then

$$
\begin{aligned}
\mathrm{E}\left(\sum_{i=1}^{n} g\left(X_{i}\right)\right) & =n \mathrm{E}\left(g\left(X_{1}\right)\right) \\
\operatorname{Var}\left(\sum_{i=1}^{n} g\left(X_{i}\right)\right) & =n \operatorname{Var}\left(g\left(X_{1}\right)\right)
\end{aligned}
$$

Convolutions

Theorem 6.2 (Bivariate Convolution)

If X and Y are independent random variables with pdfs f_{X} and f_{Y} respectively and $Z=X+Y$ then the pdf of Z is

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(w) f_{Y}(z-w) d w
$$

Theorem 6.3 (General Convolution)

Let X_{1}, \ldots, X_{n} be a sequence of independent random variables such that X_{i} has pdf $f_{X_{i}}$ and let $Z=\sum X_{i}$. Then the pdf of Z is

$$
\begin{aligned}
f_{Z}(z)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} & {\left[f_{X_{1}}\left(w_{1}\right) \prod_{i=2}^{n-1} f_{X_{i}}\left(w_{i}-w_{i-1}\right)\right.} \\
& \left.f_{X_{n}}\left(z-w_{n-1}\right)\right] d w_{1} \cdots d w_{n-1}
\end{aligned}
$$

Sample Mean

Theorem 6.4
Let X_{1}, \ldots, X_{n} be a random sample from a population with mean μ and finite variance σ^{2} and let \bar{X} be the corresponding sample mean. Then

$$
\mathrm{E}(\bar{X})=\mu, \quad \text { and } \quad \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}
$$

Theorem 6.5

Let X_{1}, \ldots, X_{n} be a random sample from a population with moment generating function $M_{X}(t)$ then the sampling distribution of the sample mean \bar{X} has moment generating function

$$
M_{\bar{X}}(t)=\left[M_{X}\left(\frac{t}{n}\right)\right]^{n}
$$

Estimators and Estimates

* A statistic that is used to estimate a population quantity (parameter) θ is called an estimator.
* The observed value of an estimator is called the estimate.

Definition 6.4

A statistic $T\left(X_{1}, \ldots, X_{n}\right)$ is said to be an unbiased estimator of the parameter θ if, and only if,

$$
\mathrm{E}_{\theta}\left(T\left(X_{1}, \ldots, X_{n}\right)\right)=\theta
$$

for all possible values of θ.
Theorem 6.6
Let X_{1}, \ldots, X_{n} be a random sample from a population with finite mean and variance μ and σ^{2}. Then \bar{X} is an unbiased estimator of μ and S^{2} is an unbiased estimator of σ^{2}.

Samples from Exponential Family Distributions

Theorem 6.7
Suppose that X_{1}, \ldots, X_{n} is a random sample from a full (not curved) exponential family with common pdf (or pmf)

$$
f(x \mid \boldsymbol{\theta})=h(x) c(\boldsymbol{\theta}) \exp \left(\sum_{j=1}^{k} w_{j}(\boldsymbol{\theta}) t_{j}(x)\right)
$$

such that the set $\left\{w_{1}(\boldsymbol{\theta}), \ldots, w_{k}(\boldsymbol{\theta})\right\}$ contains an open subset in \mathbb{R}^{k}

Define the statistics $T_{j}=\sum_{i=1}^{n} t_{i}\left(X_{j}\right)$ for $j=1, \ldots, k$ then the joint distribution of $\boldsymbol{T}=\left(T_{1}, \ldots, T_{k}\right)$ is k-dimensional exponential family of the form

$$
f_{\boldsymbol{T}}\left(t_{1}, \ldots, t_{k} \mid \boldsymbol{\theta}\right)=h_{1}\left(t_{1}, \ldots, t_{k}\right)[c(\boldsymbol{\theta})]^{n} \exp \left(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}\right)
$$

Normal Random Samples

Theorem 6.8

Let X_{1}, \ldots, X_{n} be a sample from a $N\left(\mu, \sigma^{2}\right)$ population and let

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \text { and } \quad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

be the sample mean and variance. Then
(i) \bar{X} and S^{2} are independent.
(ii) $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$.
(iii) $(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$.

Pivotal Quantities

Definition 6.5

Suppose $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ is a sample from a population with cdf depending on some parameters $\boldsymbol{\theta}$. A quantity $R(\boldsymbol{X}, \boldsymbol{\theta})$ which is a function of the data and the parameters is called a pivotal quantity (or simply a pivot) if the sampling distribution of R does not depend on the parameters $\boldsymbol{\theta}$.

* If X_{1}, \ldots, X_{n} are iid $\mathrm{N}\left(\mu, \sigma^{2}\right)$ then

$$
Z=\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim \mathrm{N}(0,1)
$$

* We shall see that another pivot in this situation is

$$
T=\frac{\sqrt{n}(\bar{X}-\mu)}{S}
$$

The Student's t Distribution

Theorem 6.9

If Z and X are two independent random variables with $Z \sim$ $N(0,1)$ and $X \sim \chi_{\nu}^{2}$ then the random variable

$$
T=\frac{Z}{\sqrt{X / \nu}}
$$

has pdf given by

$$
f_{T}(t)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi \nu}\left\ulcorner\left(\frac{\nu}{2}\right)\right.}\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{\nu+1}{2}} \quad \text { for } t \in \mathbb{R} .
$$

The distribution with this pdf is called the Student's t distribution with ν degrees of freedom.

Properties of the t_{ν} Distribution

* $\mathrm{E}\left(T^{r}\right)$ exists if, and only if, $r<\nu$.
* $\mathrm{E}(T)=0$ for $\nu>1$.
* $\operatorname{Var}(T)=\frac{\nu}{\nu-2}$ for $\nu>2$.
* Suppose that $X \sim t_{1}$ then

$$
f_{X}(x)=\frac{1}{\pi\left(1+x^{2}\right)} \quad-\infty<x<\infty .
$$

This is called the standard Cauchy distribution.

Connection between T and Normal Distributions

Theorem 6.10

Suppose that T_{1}, T_{2}, \ldots is a sequence of random variables such that $T_{\nu} \sim t_{\nu}$ and $Z \sim N(0,1)$. Then

$$
\mathrm{P}\left(T_{\nu} \leqslant x\right) \rightarrow \mathrm{P}(Z \leqslant x) \text { as } \nu \rightarrow \infty \text { for any } x \in \mathbb{R}
$$

Theorem 6.11

Suppose that X_{1}, \ldots, X_{n} is a random sample from a $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ population and that \bar{X} and S^{2} are the sample mean and sample variance. Then

$$
T=\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1}
$$

Two-Sample Inference

Theorem 6.12

Suppose that X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} are independent random samples from normal populations with parameters (μ_{X}, σ^{2}) and $\left(\mu_{Y}, \sigma^{2}\right)$ respectively. Let \bar{X} and \bar{Y} be the sample means and S_{X}^{2} and S_{Y}^{2} be the sample variances. Define the pooled variance estimate

$$
S_{p}^{2}=\frac{(n-1) S_{X}^{2}+(m-1) S_{Y}^{2}}{n+m-2}
$$

Then

$$
\begin{gather*}
\frac{(n+m-2) S_{p}^{2}}{\sigma^{2}} \sim \chi_{n+m-2}^{2} \tag{i}\\
T=\frac{(\bar{X}-\bar{Y})-\left(\mu_{X}-\mu_{Y}\right)}{S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}} \sim t_{n+m-2} \tag{ii}
\end{gather*}
$$

Snedecor's F Distribution

Definition 6.6

A random variable Y is said to have and F distribution with p numerator degrees of freedom and q denominator degrees of freedom if, and only if, its pdf is given by

$$
f_{Y}(y)=\frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right)\left\ulcorner\left(\frac{q}{2}\right)\right.}\left(\frac{p}{q}\right)^{p / 2} \frac{y^{(p / 2)-1}}{[1+(p / q) y]^{(p+q) / 2}} \text { for } 0<y<\infty .
$$

Theorem 6.13

Suppose that X_{1} has a Chi-squared(p) distribution, X_{2} has a Chisquared (q) distribution and X_{1} and X_{2} are independent. Then the random variable

$$
Y=\frac{X_{1} / p}{X_{2} / q}
$$

has an F distribution with p and q degrees of freedom.

Comparison of 2 Normal Variances

Theorem 6.14
Suppose that X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} are independent random samples from normal populations with parameters (μ_{X}, σ_{X}^{2}) and (μ_{Y}, σ_{Y}^{2}) respectively. Let S_{X}^{2} and S_{Y}^{2} be the sample variances. Then

$$
\frac{S_{X}^{2} / \sigma_{X}^{2}}{S_{Y}^{2} / \sigma_{Y}^{2}} \sim F_{n-1, m-1}
$$

Order Statistics

Definition 6.7

Let X_{1}, \ldots, X_{n} be a random sample then the order statistics of the sample are denoted $X_{(r)}, \quad r=1, \ldots, n$ where

$$
X_{(1)} \leqslant X_{(2)} \leqslant \cdots \leqslant X_{(n)} .
$$

Theorem 6.15
Let X_{1}, \ldots, X_{n} be a random sample from a distribution with cdf F_{X}. Then the cdf of the sample maximum, $X_{(n)}$, is

$$
F_{X_{(n)}}(x)=\left[F_{X}(x)\right]^{n} .
$$

and that for the minimum, $X_{(1)}$, is

$$
F_{X_{(1)}}(x)=1-\left[1-F_{X}(x)\right]^{n} .
$$

Distribution of Order Statistics (Discrete)

Theorem 6.16

Let X_{1}, \ldots, X_{n} be a random sample from a discrete distribution on the values $x_{1}<x_{2}<\cdots$. Let the common probability mass function of the random variables be $\mathrm{P}\left(X=x_{i}\right)=p_{i}$ with corresponding cdf

$$
\mathrm{P}\left(X \leqslant x_{i}\right)=P_{i}=\sum_{k=1}^{i} p_{k}
$$

and let us define $P_{0}=0$.
If $X_{(r)}$ is the $r^{\text {th }}$ order statistic of the sample then

$$
\begin{aligned}
\mathrm{P}\left(X_{(r)} \leqslant x_{i}\right) & =\sum_{k=r}^{n}\binom{n}{k} P_{i}^{k}\left(1-P_{i}\right)^{n-k} \\
\text { and } \mathrm{P}\left(X_{(r)}=x_{i}\right) & =\sum_{k=r}^{n}\binom{n}{k}\left[P_{i}^{k}\left(1-P_{i}\right)^{n-k}-P_{i-1}^{k}\left(1-P_{i-1}\right)^{n-k}\right]
\end{aligned}
$$

Distribution of Order Statistics (Continuous)

Theorem 6.17
Let X_{1}, \ldots, X_{n} be a random sample from a continuous distribution with pdf f_{X} and cdf $F_{X}(x)$ and let $X_{(r)}$ be the $r^{\text {th }}$ order statistic. Then the pdf of $X_{(r)}$ is

$$
f_{X_{(r)}}(x)=\frac{n!}{(r-1)!(n-r)!} f_{X}(x)\left[F_{X}(x)\right]^{r-1}\left[1-F_{X}(x)\right]^{n-r} .
$$

Joint Distribution of Two Order Statistics (Continuous)

Theorem 6.18

Let X_{1}, \ldots, X_{n} be a random sample from a continuous distribution with pdf f_{X} and cdf $F_{X}(x)$ and let $X_{(r)}$ and $X_{(s)}$ be two order statistics with $r<s$. Then the joint pdf of $X_{(r)}$ and $X_{(s)}$ is

$$
\begin{aligned}
f_{X_{(r)}, X_{(s)}}(u, v)= & \frac{n!}{(r-1)!(s-r-1)!(n-s)!} f_{X}(u) f_{X}(v) \\
& \times\left[F_{X}(u)\right]^{r-1}\left[F_{X}(v)-F_{X}(u)\right]^{s-r-1}\left[1-F_{X}(v)\right]^{n-s}
\end{aligned}
$$

for $-\infty<u<v<\infty$.

Joint Distribution of All Order Statistics (Continuous)

Theorem 6.19
Let X_{1}, \ldots, X_{n} be a random sample from a continuous distribution with pdf f_{X} and let $X_{(1)}, \ldots X_{(n)}$ be the order statistics. Then the joint pdf of all of the order statistics is

$$
\begin{aligned}
& f_{X_{(1)}, \ldots X_{(n)}}\left(x_{1}, \ldots, x_{n}\right)=n!f_{X}\left(x_{1}\right) \cdots f_{X}\left(x_{n}\right) \\
& \text { for }-\infty<x_{1}<\cdots<x_{n}<\infty .
\end{aligned}
$$

