
Random Samples

Definition 6.1

A set of random variables X1, . . ., Xn is called a Random Sample

from a population if X1, . . ., Xn are mutually independent and

each Xi has the same cdf F .

∗ F describes the assumed distribution in the population.

∗ Corresponding to F is a pdf (or pmf) f .

∗ X1, . . ., Xn are Independent and Identically Distributed (iid).
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Inference

∗ Joint pdf (pmf) of the sample

f(x1, . . ., xn | θ) =
n∏
i=1

f(xi | θ)

∗ Usually the parameter vector θ is unknown.

∗ Aim is to make inference about θ based on the observed

sample x1, . . ., xn.

∗ Inference is based on statistics.
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Statistics

Definition 6.2

Let X1, . . ., Xn be a random sample from an infinite popula-

tion and let T (x1, . . ., xn) be a function mapping the support of

X1, . . ., Xn, Xn to IRm where m 6 n. Then the random variable

(or vector)

Y = T (X1, . . ., Xn)

is called a statistic. The distribution of the random variable Y

is known as its sampling distribution.

∗ Since Y is a function of X1, . . ., Xn its sampling distribution

can, in theory, be found from f(x1, . . ., xn | θ).
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Sample Mean and Variance

Definition 6.3

If X1, . . ., Xn is a random sample then the sample mean is

X =
1

n

n∑
i=1

Xi

and the sample variance is

S2 =

∑n
i=1(Xi −X)2

n− 1
.

The positive square root, S, of the sample variance is called the
sample standard deviation.

∗ Observed values of X1, . . ., Xn are x1, . . ., xn

∗ Observed values of X and S2 are

x =
1

n

n∑
i=1

xi s2 =

∑n
i=1(xi − x)2

n− 1
.
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Linear Combinations

Theorem 6.1

Let X1, . . ., Xn be a sequence of random variables with finite

means and variances and let a1, . . . , an be real constants. Then

E

 n∑
i=1

aiXi

 =
n∑
i=1

aiE(Xi)

Var

 n∑
i=1

aiXi

 =
n∑
i=1

a2
i Var(Xi) +

∑
j 6=i

aiaj Cov(Xi, Xj)

=
n∑
i=1

a2
i Var(Xi) + 2

∑
i>j

aiaj Cov(Xi, Xj)
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Linear Combinations of Random Samples

Corollary 6.1.1

Let X1, . . ., Xn be a random sample from a distribution having

finite mean, µ and finite variance, σ2, and let a1, . . . , an be real

constants. Then

E

 n∑
i=1

aiXi

 = µ
n∑
i=1

ai

Var

 n∑
i=1

aiXi

 = σ2
n∑
i=1

a2
i
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Moments of Statistics

Lemma 6.1

Let X1, . . ., Xn be a random sample and let g be a function such

that Y = g(X1) has finite mean and variance. Then

E

 n∑
i=1

g(Xi)

 = nE
(
g(X1)

)

Var

 n∑
i=1

g(Xi)

 = nVar
(
g(X1)

)
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Convolutions

Theorem 6.2 (Bivariate Convolution)

If X and Y are independent random variables with pdfs fX and
fY respectively and Z = X + Y then the pdf of Z is

fZ(z) =
∫ ∞
−∞

fX(w)fY (z − w)dw.

Theorem 6.3 (General Convolution)

Let X1, . . ., Xn be a sequence of independent random variables
such that Xi has pdf fXi and let Z =

∑
Xi. Then the pdf of Z is

fZ(z) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

[
fX1(w1)

n−1∏
i=2

fXi(wi − wi−1)

fXn(z − wn−1)
]
dw1 · · · dwn−1.
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Sample Mean

Theorem 6.4

Let X1, . . ., Xn be a random sample from a population with mean
µ and finite variance σ2 and let X be the corresponding sample
mean. Then

E
(
X
)

= µ, and Var
(
X
)

=
σ2

n
.

Theorem 6.5

Let X1, . . ., Xn be a random sample from a population with mo-
ment generating function MX(t) then the sampling distribution
of the sample mean X has moment generating function

MX(t) =
[
MX

(
t

n

)]n
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Estimators and Estimates

∗ A statistic that is used to estimate a population quantity
(parameter) θ is called an estimator.

∗ The observed value of an estimator is called the estimate.

Definition 6.4

A statistic T (X1, . . ., Xn) is said to be an unbiased estimator of
the parameter θ if, and only if,

Eθ
(
T (X1, . . ., Xn)

)
= θ

for all possible values of θ.

Theorem 6.6

Let X1, . . ., Xn be a random sample from a population with finite
mean and variance µ and σ2. Then X is an unbiased estimator
of µ and S2 is an unbiased estimator of σ2.
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Samples from Exponential Family Distributions

Theorem 6.7

Suppose that X1, . . . , Xn is a random sample from a full (not

curved) exponential family with common pdf (or pmf)

f(x | θ) = h(x)c(θ) exp

 k∑
j=1

wj(θ)tj(x)


such that the set {w1(θ), . . . , wk(θ)} contains an open subset in

IRk

Define the statistics Tj =
∑n
i=1 ti(Xj) for j = 1, . . . , k then the

joint distribution of T = (T1, . . . , Tk) is k-dimensional exponential

family of the form

fT(t1, . . . , tk | θ) = h1(t1, . . . , tk)
[
c(θ)

]n
exp

 k∑
i=1

wi(θ)ti


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Normal Random Samples

Theorem 6.8

Let X1, . . ., Xn be a sample from a N(µ, σ2) population and let

X =
1

n

n∑
i=1

Xi and S2 =
1

n− 1

n∑
i=1

(Xi −X)2

be the sample mean and variance. Then

(i) X and S2 are independent.

(ii) X ∼ N(µ, σ2/n).

(iii) (n− 1)S2/σ2 ∼ χ2
n−1.
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Pivotal Quantities

Definition 6.5

Suppose X = (X1, . . ., Xn) is a sample from a population with
cdf depending on some parameters θ. A quantity R(X, θ) which
is a function of the data and the parameters is called a pivotal
quantity (or simply a pivot) if the sampling distribution of R
does not depend on the parameters θ.

∗ If X1, . . ., Xn are iid N(µ, σ2) then

Z =

√
n(X − µ)

σ
∼ N(0,1)

∗ We shall see that another pivot in this situation is

T =

√
n(X − µ)

S
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The Student’s t Distribution

Theorem 6.9

If Z and X are two independent random variables with Z ∼
N(0,1) and X ∼ χ2

ν then the random variable

T =
Z√
X/ν

has pdf given by

fT(t) =
Γ
(
ν+1

2

)
√
πνΓ

(
ν
2

) (
1 +

t2

ν

)−ν+1
2

for t ∈ IR.

The distribution with this pdf is called the Student’s t distribution

with ν degrees of freedom.
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Properties of the tν Distribution

∗ E(T r) exists if, and only if, r < ν.

∗ E(T ) = 0 for ν > 1.

∗ Var(T ) = ν
ν−2 for ν > 2.

∗ Suppose that X ∼ t1 then

fX(x) =
1

π(1 + x2)
−∞ < x <∞.

This is called the standard Cauchy distribution.
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Connection between T and Normal Distributions

Theorem 6.10

Suppose that T1, T2, . . . is a sequence of random variables such

that Tν ∼ tν and Z ∼ N(0,1). Then

P(Tν 6 x) → P(Z 6 x) as ν →∞ for any x ∈ IR

Theorem 6.11

Suppose that X1, . . ., Xn is a random sample from a Normal(µ, σ2)

population and that X and S2 are the sample mean and sample

variance. Then

T =

√
n(X − µ)

S
∼ tn−1
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Two-Sample Inference

Theorem 6.12

Suppose that X1, . . . , Xn and Y1, . . . , Ym are independent random
samples from normal populations with parameters (µX, σ2) and
(µY , σ2) respectively. Let X and Y be the sample means and S2

X

and S2
Y be the sample variances. Define the pooled variance

estimate

S2
p =

(n− 1)S2
X + (m− 1)S2

Y

n+m− 2

Then

(i) (n+m− 2)S2
p

σ2
∼ χ2

n+m−2

(ii)
T =

(X − Y )− (µX − µY )

Sp
√

1
n + 1

m

∼ tn+m−2
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Snedecor’s F Distribution

Definition 6.6

A random variable Y is said to have and F distribution with
p numerator degrees of freedom and q denominator degrees of
freedom if, and only if, its pdf is given by

fY (y) =
Γ
(
p+q

2

)
Γ
(
p
2

)
Γ
(
q
2

) (p
q

)p/2
y(p/2)−1

[1 + (p/q)y](p+q)/2
for 0 < y <∞.

Theorem 6.13

Suppose that X1 has a Chi-squared(p) distribution, X2 has a Chi-
squared(q) distribution and X1 and X2 are independent. Then
the random variable

Y =
X1/p

X2/q

has an F distribution with p and q degrees of freedom.
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Comparison of 2 Normal Variances

Theorem 6.14

Suppose that X1, . . . , Xn and Y1, . . . , Ym are independent random

samples from normal populations with parameters (µX, σ2
X) and

(µY , σ2
Y ) respectively. Let S2

X and S2
Y be the sample variances.

Then

S2
X/σ

2
X

S2
Y /σ

2
Y

∼ Fn−1,m−1
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Order Statistics

Definition 6.7

Let X1, . . ., Xn be a random sample then the order statistics of
the sample are denoted X(r), r = 1, . . . , n where

X(1) 6 X(2) 6 · · · 6 X(n).

Theorem 6.15

Let X1, . . ., Xn be a random sample from a distribution with cdf
FX. Then the cdf of the sample maximum, X(n), is

FX(n)
(x) = [FX(x)]n .

and that for the minimum, X(1), is

FX(1)
(x) = 1− [1− FX(x)]n .
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Distribution of Order Statistics (Discrete)

Theorem 6.16

Let X1, . . ., Xn be a random sample from a discrete distribution
on the values x1 < x2 < · · · . Let the common probability mass
function of the random variables be P(X = xi) = pi with corre-
sponding cdf

P(X 6 xi) = Pi =
i∑

k=1

pk

and let us define P0 = 0.

If X(r) is the rthorder statistic of the sample then

P(X(r) 6 xi) =
n∑

k=r

(n
k

)
P ki (1− Pi)n−k

and P(X(r) = xi) =
n∑

k=r

(n
k

)[
P ki (1− Pi)n−k − P ki−1(1− Pi−1)n−k

]
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Distribution of Order Statistics (Continuous)

Theorem 6.17

Let X1, . . ., Xn be a random sample from a continuous distribution

with pdf fX and cdf FX(x) and let X(r) be the rth order statistic.

Then the pdf of X(r) is

fX(r)
(x) =

n!

(r − 1)!(n− r)!
fX(x) [FX(x)]r−1 [1− FX(x)]n−r .
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Joint Distribution of Two Order Statistics (Continuous)

Theorem 6.18

Let X1, . . ., Xn be a random sample from a continuous distribution

with pdf fX and cdf FX(x) and let X(r) and X(s) be two order

statistics with r < s. Then the joint pdf of X(r) and X(s) is

fX(r),X(s)
(u, v) =

n!

(r − 1)!(s− r − 1)!(n− s)!
fX(u)fX(v)

× [FX(u)]r−1 [FX(v)− FX(u)]s−r−1 [1− FX(v)]n−s

for −∞ < u < v <∞.
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Joint Distribution of All Order Statistics (Continuous)

Theorem 6.19

Let X1, . . ., Xn be a random sample from a continuous distribution

with pdf fX and let X(1), . . . X(n) be the order statistics. Then the

joint pdf of all of the order statistics is

fX(1),...X(n)
(x1, . . . , xn) = n!fX(x1) · · · fX(xn)

for −∞ < x1 < · · · < xn <∞.

6-24


