
Convergence of Random Variables

∗ We will often wish to examine sequences of random variables.

∗ In some cases these sequences may converge to a limiting

random variable in some sense.

∗ We have already seen this in the sense of convergence of

moment generating functions implying convergence of cu-

mulative distribution functions.

∗ This is one form of convergence of random variables.
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Convergence in Distribution

Definition 7.1

Suppose that X1, X2, . . . is a sequence of random variables. We

say that this sequence converges in distribution to a random

variable X if

lim
n→∞P (Xn 6 x) = P (X 6 x)

at all points x at which FX(x) = P (X 6 x) is continuous.

We will denote this type of convergence by Xn
d−→ X.
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Examples of Convergence in Distribution

∗ If Xn ∼ Binomial(n, p) then

FZn(z) = P

 Xn − np√
np(1− p)

6 z

 → Φ(z) as n→∞

∗ Suppose Xn ∼ Binomial(n, λ/n) then

P(Xn = x) →
λne−λ

x!

Hence Xn
d−→ X where X ∼ Poisson(λ).

∗ Suppose Ui
iid∼ Uniform(0,1) and Xn = max{U1, . . . , Un} then

P(Xn 6 x) →
{

0 x < 1
1 x > 1

In this sense we can say that Xn
d−→ 1.
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Central Limit Theorem

Theorem 7.1 (Central Limit Theorem)

Let X1, X2, . . . be a sequence of iid random variables with E(Xi) =

µ and Var(Xi) = σ2 < ∞. Define the sample mean Xn =

n−1∑n
1Xi and let Fn(x) denote the cdf of the random variable

Zn =

√
n(Xn − µ)

σ

Then for any x ∈ IR,

lim
n→∞Fn(x) = Φ(x) =

∫ x
−∞

1√
2π

e−z
2/2 dz
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Convergence in Distribution

∗ This is quite a weak form of convergence in general.

∗ Xn
d−→ X only means that the distribution functions converge

but doesn’t say anything about whether the random variables

are close in any sense.

∗ Note that, a sequence of continuous cdf’s can converge but

the corresponding sequence of pdf’s may not.
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Convergence in Probability

Definition 7.2

A sequence of random variables, X1, X2, . . . converges in proba-

bility to a random variable X if, for every ε > 0

lim
n→∞P (|Xn −X| < ε) = 1

We will generally write this as

Xn
p−→ X
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Some Mathematical Concepts

Definition 7.3

Suppose that {an} is a sequence of real numbers. Define

bn = sup{an, an+1, an+2, . . .}

cn = inf{an, an+1, an+2, . . .}

We define the Limit Superior (lim sup) and Limit Inferior (lim inf)

of the sequence {an} to be

lim sup
n→∞

an = lim
n→∞ bn

lim inf
n→∞ an = lim

n→∞ cn

The sequence {an} converges to a limit if, and only if,

lim sup
n→∞

an = lim inf
n→∞ an = lim

n→∞ an
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Properties of Convergence in Probability

Theorem 7.2

Suppose that X1, X2, . . . converges in probability to a random

variable X and that h is a continuous function. Then

h(Xn)
p−→ h(X)

Theorem 7.3

Suppose that X1, X2, . . . and Y1, Y2, . . . are two sequences of ran-

dom variables such that Xn
p−→ X and Yn

p−→ Y . Then

1. Xn + Yn
p−→ X + Y .

2. XnYn
p−→ XY .
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Relationship between Convergence in Probability
and Distribution

Theorem 7.4

If a sequence of random variables {Xn} converges in probability

to a random variable X then the sequence also converges in

distribution to X.

In general the converse of this theorem is not true but it is true

in one special case.

Theorem 7.5

If a sequence of random variables {Xn} converges in distribution

to a constant µ then random variable X then the sequence also

converges in probability to µ.
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Weak Law of Large Numbers

Theorem 7.6 (Weak Law of Large Numbers)

Let X1, X2, . . . be iid random variables with E(Xi) = µ and

Var(Xi) = σ2 < ∞. Define the sample mean Xn = n−1∑n
1Xi.

Then the sequence of random variables X1, X2, . . . converges in

probability to the constant µ. That is for every ε > 0

lim
n→∞P (|Xn − µ| < ε) = 1
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Slutsky’s Theorem

Theorem 7.7 (Slutsky’s Theorem)

If Xn
d−→ X and Yn

p−→ a where a is a constant then

1. Xn + Yn
d−→ X + a.

2. XnYn
d−→ aX.
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Almost Sure Convergence

Definition 7.4

A sequence of random variables X1, X2, . . . converges almost

surely to a random variable X if, for every ε > 0,

P ( lim
n→∞ |Xn −X| < ε) = 1

Theorem 7.8

If a sequence of random variables X1, X2, . . . converges almost

surely to a random variable X, the sequence also converges in

probability to X.

Theorem 7.9

Suppose that the sequence X1, X2, . . . converges in probability to

a random variable X then there exists a subsequence of X1, X2, . . .

which converges almost surely to X.
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Strong Law of Large Numbers

Theorem 7.10 (Strong Law of Large Numbers)

Let X1, X2, . . . be iid random variables with finite mean E(Xi) = µ

and finite variance Var(Xi) = σ2. Define the sample mean Xn =

n−1∑n
1Xi. Then the sequence of random variables X1, X2, . . .

converges almost surely to the constant µ. That is for every

ε > 0

P ( lim
n→∞ |Xn − µ| < ε) = 1

∗ In fact the requirement for finite variance is a stronger con-

dition than required. Both Laws of Large Numbers are true

even when only the mean is finite.
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Bounded in Probability

Definition 7.5

Suppose that X1, X2, . . . is a sequence of random variables. We

say that the sequence is bounded in probability if for all ε > 0,

there exists a constant Bε and an integer Nε such that

n > Nε ⇒ P
(
|Xn| 6 Bε

)
> 1− ε.

Theorem 7.11

Suppose that X1, X2, . . . is a sequence of random variables and

that there is a random variable X such that Xn
d−→ X then

{Xn} is bounded in probability.

Theorem 7.12

Suppose that the sequence of random variables {Xn} is bounded

in probability and Yn
p−→ 0 then XnYn

p−→ 0.
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Op and op Notation

Definition 7.6

Suppose that {Xn} is a sequence of random variables and {an}
is a sequence of constants. Then we say that

Xn = op(an) ⇐⇒
Xn

an

p−→ 0

We say that

Xn = Op(an) ⇐⇒
Xn

an
is bounded in probability

We can also replace the constants {an} by a sequence of random
variables {Yn}.

Theorem 7.13

Suppose that {Yn} is a sequence of random variables which are
bounded in probability and that {Xn} is another sequence of
random variables such that Xn = op(Yn).Then Xn

p−→ 0.
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Delta Method

Theorem 7.14 (Delta Method)

Let Y1, Y2, . . . be a sequence of random variables such that
√
n(Yn−

θ) converges in distribution to a normal(0, σ2) random variable.

Suppose that g is a function such that g′(θ) exists and is not 0,

then
√
n
(
g(Yn)− g(θ)

)
d−→ normal

(
0,
(
g′(θ)σ

)2
)

Theorem 7.15 (Second Order Delta Method)

Let Y1, Y2, . . . be a sequence of random variables such that
√
n(Yn−

θ) converges in distribution to a normal(0, σ2) random variable.

Suppose that g is a function such that g′(θ) = 0 and g′′(θ) exists

and is not 0, then

n
(
g(Yn)− g(θ)

)
d−→

g′′(θ)σ2

2
χ2

1
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