Convergence of Random Variables

* We will often wish to examine sequences of random variables.
* In some cases these sequences may converge to a limiting random variable in some sense.
* We have already seen this in the sense of convergence of moment generating functions implying convergence of cumulative distribution functions.
* This is one form of convergence of random variables.

Convergence in Distribution

Definition 7.1
Suppose that X_{1}, X_{2}, \ldots is a sequence of random variables. We say that this sequence converges in distribution to a random variable X if

$$
\lim _{n \rightarrow \infty} P\left(X_{n} \leqslant x\right)=P(X \leqslant x)
$$

at all points x at which $F_{X}(x)=P(X \leqslant x)$ is continuous.

We will denote this type of convergence by $X_{n} \xrightarrow{d} X$.

Examples of Convergence in Distribution

* If $X_{n} \sim \operatorname{Binomial}(n, p)$ then

$$
F_{Z_{n}}(z)=\mathrm{P}\left(\frac{X_{n}-n p}{\sqrt{n p(1-p)}} \leqslant z\right) \rightarrow \Phi(z) \quad \text { as } n \rightarrow \infty
$$

* Suppose $X_{n} \sim \operatorname{Binomial}(n, \lambda / n)$ then

$$
\mathrm{P}\left(X_{n}=x\right) \rightarrow \frac{\lambda^{n} \mathrm{e}^{-\lambda}}{x!}
$$

Hence $X_{n} \xrightarrow{d} X$ where $X \sim \operatorname{Poisson}(\lambda)$.

* Suppose $U_{i} \stackrel{i i d}{\sim} \operatorname{Uniform}(0,1)$ and $X_{n}=\max \left\{U_{1}, \ldots, U_{n}\right\}$ then

$$
\mathrm{P}\left(X_{n} \leqslant x\right) \rightarrow \begin{cases}0 & x<1 \\ 1 & x \geqslant 1\end{cases}
$$

In this sense we can say that $X_{n} \xrightarrow{d} 1$.

Central Limit Theorem

Theorem 7.1 (Central Limit Theorem)
Let X_{1}, X_{2}, \ldots be a sequence of iid random variables with $\mathrm{E}\left(X_{i}\right)=$ μ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty$. Define the sample mean $\bar{X}_{n}=$ $n^{-1} \sum_{1}^{n} X_{i}$ and let $F_{n}(x)$ denote the cdf of the random variable

$$
Z_{n}=\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma}
$$

Then for any $x \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} F_{n}(x)=\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-z^{2} / 2} d z
$$

Convergence in Distribution

* This is quite a weak form of convergence in general.
* $X_{n} \xrightarrow{d} X$ only means that the distribution functions converge but doesn't say anything about whether the random variables are close in any sense.
* Note that, a sequence of continuous cdf's can converge but the corresponding sequence of pdf's may not.

Convergence in Probability

Definition 7.2
A sequence of random variables, X_{1}, X_{2}, \ldots converges in probability to a random variable X if, for every $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right|<\varepsilon\right)=1
$$

We will generally write this as

$$
X_{n} \xrightarrow{p} X
$$

Some Mathematical Concepts

Definition 7.3
Suppose that $\left\{a_{n}\right\}$ is a sequence of real numbers. Define

$$
\begin{aligned}
b_{n} & =\sup \left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\} \\
c_{n} & =\inf \left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\}
\end{aligned}
$$

We define the Limit Superior (limsup) and Limit Inferior (liminf) of the sequence $\left\{a_{n}\right\}$ to be

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} b_{n} \\
\liminf _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} c_{n}
\end{aligned}
$$

The sequence $\left\{a_{n}\right\}$ converges to a limit if, and only if,

$$
\limsup _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n}
$$

Properties of Convergence in Probability

Theorem 7.2

Suppose that X_{1}, X_{2}, \ldots converges in probability to a random variable X and that h is a continuous function. Then

$$
h\left(X_{n}\right) \xrightarrow{p} h(X)
$$

Theorem 7.3
Suppose that X_{1}, X_{2}, \ldots and Y_{1}, Y_{2}, \ldots are two sequences of random variables such that $X_{n} \xrightarrow{p} X$ and $Y_{n} \xrightarrow{p} Y$. Then

1. $X_{n}+Y_{n} \xrightarrow{p} X+Y$.
2. $X_{n} Y_{n} \xrightarrow{p} X Y$.

Relationship between Convergence in Probability and Distribution

Theorem 7.4
If a sequence of random variables $\left\{X_{n}\right\}$ converges in probability to a random variable X then the sequence also converges in distribution to X.

In general the converse of this theorem is not true but it is true in one special case.

Theorem 7.5
If a sequence of random variables $\left\{X_{n}\right\}$ converges in distribution to a constant μ then random variable X then the sequence also converges in probability to μ.

Weak Law of Large Numbers

Theorem 7.6 (Weak Law of Large Numbers)
Let X_{1}, X_{2}, \ldots be iid random variables with $\mathrm{E}\left(X_{i}\right)=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty$. Define the sample mean $\bar{X}_{n}=n^{-1} \sum_{1}^{n} X_{i}$. Then the sequence of random variables $\bar{X}_{1}, \bar{X}_{2}, \ldots$ converges in probability to the constant μ. That is for every $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|<\varepsilon\right)=1
$$

Slutsky's Theorem

Theorem 7.7 (Slutsky's Theorem)
If $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{p} a$ where a is a constant then

1. $X_{n}+Y_{n} \xrightarrow{d} X+a$.
2. $X_{n} Y_{n} \xrightarrow{d} a X$.

Almost Sure Convergence

Definition 7.4
A sequence of random variables X_{1}, X_{2}, \ldots converges almost surely to a random variable X if, for every $\varepsilon>0$,

$$
P\left(\lim _{n \rightarrow \infty}\left|X_{n}-X\right|<\varepsilon\right)=1
$$

Theorem 7.8
If a sequence of random variables X_{1}, X_{2}, \ldots converges almost surely to a random variable X, the sequence also converges in probability to X.

Theorem 7.9
Suppose that the sequence X_{1}, X_{2}, \ldots converges in probability to a random variable X then there exists a subsequence of X_{1}, X_{2}, \ldots which converges almost surely to X.

Strong Law of Large Numbers

Theorem 7.10 (Strong Law of Large Numbers)
Let X_{1}, X_{2}, \ldots be iid random variables with finite mean $\mathrm{E}\left(X_{i}\right)=\mu$ and finite variance $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. Define the sample mean $\bar{X}_{n}=$ $n^{-1} \sum_{1}^{n} X_{i}$. Then the sequence of random variables $\bar{X}_{1}, \bar{X}_{2}, \ldots$ converges almost surely to the constant μ. That is for every $\varepsilon>0$

$$
P\left(\lim _{n \rightarrow \infty}\left|\bar{X}_{n}-\mu\right|<\varepsilon\right)=1
$$

* In fact the requirement for finite variance is a stronger condition than required. Both Laws of Large Numbers are true even when only the mean is finite.

Bounded in Probability

Definition 7.5

Suppose that X_{1}, X_{2}, \ldots is a sequence of random variables. We say that the sequence is bounded in probability if for all $\varepsilon>0$, there exists a constant B_{ε} and an integer N_{ε} such that

$$
n \geqslant N_{\varepsilon} \quad \Rightarrow \quad \mathrm{P}\left(\left|X_{n}\right| \leqslant B_{\varepsilon}\right) \geqslant 1-\varepsilon
$$

Theorem 7.11

Suppose that X_{1}, X_{2}, \ldots is a sequence of random variables and that there is a random variable X such that $X_{n} \xrightarrow{d} X$ then $\left\{X_{n}\right\}$ is bounded in probability.

Theorem 7.12
Suppose that the sequence of random variables $\left\{X_{n}\right\}$ is bounded in probability and $Y_{n} \xrightarrow{p} 0$ then $X_{n} Y_{n} \xrightarrow{p} 0$.

O_{p} and o_{p} Notation

Definition 7.6

Suppose that $\left\{X_{n}\right\}$ is a sequence of random variables and $\left\{a_{n}\right\}$ is a sequence of constants. Then we say that

$$
X_{n}=o_{p}\left(a_{n}\right) \quad \Longleftrightarrow \quad \frac{X_{n}}{a_{n}} \xrightarrow{p} 0
$$

We say that

$$
X_{n}=O_{p}\left(a_{n}\right) \quad \Longleftrightarrow \frac{X_{n}}{a_{n}} \text { is bounded in probability }
$$

We can also replace the constants $\left\{a_{n}\right\}$ by a sequence of random variables $\left\{Y_{n}\right\}$.

Theorem 7.13
Suppose that $\left\{Y_{n}\right\}$ is a sequence of random variables which are bounded in probability and that $\left\{X_{n}\right\}$ is another sequence of random variables such that $X_{n}=o_{p}\left(Y_{n}\right)$. Then $X_{n} \xrightarrow{p} 0$.

Delta Method

Theorem 7.14 (Delta Method)

Let Y_{1}, Y_{2}, \ldots be a sequence of random variables such that $\sqrt{n}\left(Y_{n}-\right.$ θ) converges in distribution to a normal($0, \sigma^{2}$) random variable. Suppose that g is a function such that $g^{\prime}(\theta)$ exists and is not 0 , then

$$
\sqrt{n}\left(g\left(Y_{n}\right)-g(\theta)\right) \xrightarrow{d} \text { normal }\left(0,\left(g^{\prime}(\theta) \sigma\right)^{2}\right)
$$

Theorem 7.15 (Second Order Delta Method)

Let Y_{1}, Y_{2}, \ldots be a sequence of random variables such that $\sqrt{n}\left(Y_{n}-\right.$ θ) converges in distribution to a normal($0, \sigma^{2}$) random variable. Suppose that g is a function such that $g^{\prime}(\theta)=0$ and $g^{\prime \prime}(\theta)$ exists and is not 0 , then

$$
n\left(g\left(Y_{n}\right)-g(\theta)\right) \xrightarrow{d} \frac{g^{\prime \prime}(\theta) \sigma^{2}}{2} \chi_{1}^{2}
$$

