Convergence of Random Variables

X

X

We will often wish to examine sequences of random variables.

In some cases these sequences may converge to a limiting
random variable in some sense.

We have already seen this in the sense of convergence of
moment generating functions implying convergence of cu-

mulative distribution functions.

This is one form of convergence of random variables.
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Convergence in Distribution

Definition 7.1
Suppose that X1, X»,... is a sequence of random variables. \We
say that this sequence converges in distribution to a random

variable X if
lim P(Xp<z) = P(X <2)
at all points x at which Fx(x) = P(X < z) is continuous.

We will denote this type of convergence by Xy i> X.
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Examples of Convergence in Distribution

* If X, ~ Binomial(n,p) then

X, —
Fz.(z) = P n_ TP <z| — P(z) asn—
Jnp(1 = p)
* Suppose X, ~ Binomial(n,A/n) then
Ale—A
xX.

Hence X, - X where X ~ Poisson()\).

* Suppose U; iud Uniform(0,1) and X,, = max{U,...,Un} then

0O =z<1

In this sense we can say that X, -%s 1.



Central Limit Theorem

Theorem 7.1 (Central Limit Theorem)
Let X1, X»,... be asequence ofiid random variables with E(X)

n and Var(X;) = 02 < oo. Define the sample mean X, =
n—1 > 1 X; and let Fn(x) denote the cdf of the random variable
=
o

Then for any x € IR,

lim Fp(x) = (x) = /x Le_”ﬂ/2 dz

n—oo



Convergence in Distribution

* This is quite a weak form of convergence in general.

* Xnp i> X only means that the distribution functions converge

but doesn’t say anything about whether the random variables
are close in any sense.

* Note that, a sequence of continuous cdf’s can converge but
the corresponding sequence of pdf’'s may not.
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Convergence in Probability

Definition 7.2

A sequence of random variables, X1, Xo,... converges in proba-
bility to a random variable X if, for every € > 0

im P(|Xn— X|<e)=1

n—oo

We will generally write this as

X, -2 X
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Some Mathematical Concepts

Definition 7.3
Suppose that {an} is a sequence of real numbers. Define

bn = sup{an,tp41,ap42,.--}

cn = inflan,ap41,0,40,...}

We define the Limit Superior (limsup) and Limit Inferior (liminf)
of the sequence {an} to be

limsupa, = |im by
n— o0 n—00

liminfa, = I|lim ¢
n—oo n—oo

The sequence {an} converges to a limit if, and only Iif,

limsupa, = |liminfa, = Iim «a
n—)oop n n—oo n n—oo n
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Properties of Convergence in Probability

Theorem 7.2
Suppose that X1, X»>,... converges in probability to a random
variable X and that h is a continuous function. Then

h(Xp) - h(X)

Theorem 7.3
Suppose that X1, X»>,... and Y71,Y>,... are two sequences of ran-

dom variables such that X, i> X and Yy, i> Y. Then
1. X,+Y, & X+V.

2. X,,Y, X XVY.
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Relationship between Convergence in Probability
and Distribution

Theorem 7.4
If a sequence of random variables { Xy} converges in probability

to a random variable X then the sequence also converges in
distribution to X.

In general the converse of this theorem is not true but it is true
in one special case.

Theorem 7.5

If a sequence of random variables {X,} converges in distribution
to a constant u then random variable X then the sequence also
converges in probability to pu.
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Weak Law of Large Numbers

Theorem 7.6 (Weak Law of Large Numbers)
Let Xq1,Xo,... be iid random variables with E(X;) = n and
Var(X;) = 02 < co. Define the sample mean X, = n= 17 X;.
Then the sequence of random variables X1,X»,... converges in
probability to the constant n. That is for every € > 0O

im P(| Xn—pul<e)=1

n—oo
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Slutsky’s Theorem

Theorem 7.7 (Slutsky’s Theorem)
If X, i> X and Yy, i> a where a is a constant then

1. X, +Y, % X+a.

2. X,Y, % aX.
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Almost Sure Convergence

Definition 7.4
A sequence of random variables X1, X»>,... converges almost
surely to a random variable X if, for every € > 0O,
P(nll_>mOO Xn—X|<e) =1
Theorem 7.8
If a sequence of random variables X1, X>,... converges almost

surely to a random variable X, the sequence also converges in
probability to X.

Theorem 7.9

Suppose that the sequence X1, Xo,... converges in probability to
a random variable X then there exists a subsequence of X1, Xo, ...
which converges almost surely to X.
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Strong Law of Large Numbers

Theorem 7.10 (Strong Law of Large Numbers)

Let X1, Xo,... beiid random variables with finite mean E(X;) = u
and finite variance Var(X;) = o2. Define the sample mean X,, =
n~1Y7 X;. Then the sequence of random variables X1, X, ...
converges almost surely to the constant n. That is for every
e>0

P(lim | X, —pul<e)=1

n—oo

* In fact the requirement for finite variance is a stronger con-
dition than required. Both Laws of Large Numbers are true
even when only the mean is finite.
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Bounded in Probability

Definition 7.5

Suppose that X1, X»,... is a sequence of random variables. \We
say that the sequence is bounded in probability if for all € > 0O,
there exists a constant B: and an integer N such that

n > Ne = P(|Xn|<Be)>1-c¢

Theorem 7.11

Suppose that X1, Xo,... IS a sequence of random variables and

that there is a random variable X such that X, i> X then

{Xn} is bounded in probability.

Theorem 7.12

Suppose that the sequence of random variables { X} is bounded

in probability and Y, -£» 0 then X,Y, -2+ O.
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Op and op Notation

Definition 7.6

Suppose that {X,} is a sequence of random variables and {an}
IS a sequence of constants. Then we say that

X
an

We say that

X
Xn = Op(an) < == is bounded in probability
an

We can also replace the constants {an} by a sequence of random
variables {Yn}.

Theorem 7.13

Suppose that {Y,} is a sequence of random variables which are
bounded in probability and that {X,} is another sequence of

random variables such that X, = op(Yn). Then X, L, 0.
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Delta Method

Theorem 7.14 (Delta Method)

LetYq,Y>,... be asequence of random variables such that \/n(Y,—
0) converges in distribution to a normal(0,c?) random variable.
Suppose that g is a function such that ¢'(0) exists and is not 0O,
then

Vi(g(¥n) —g()) - ”Orma/(o’ (g/(6)0>2)

Theorem 7.15 (Second Order Delta Method)
LetYq,Yo,... be asequence of random variables such that \/n(Y,—
0) converges in distribution to a normal(0,c2) random variable.
Suppose that g is a function such that ¢’(0) = 0 and ¢"(0) exists
and is not 0, then

d 9”(9)02 2

n(9(Yn) =9(0)) = X3
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