Convergence of Random Variables

- * We will often wish to examine sequences of random variables.
- * In some cases these sequences may converge to a limiting random variable in some sense.
- * We have already seen this in the sense of convergence of moment generating functions implying convergence of cumulative distribution functions.
- * This is one form of convergence of random variables.

Convergence in Distribution

Definition 7.1

Suppose that X_1, X_2, \ldots is a sequence of random variables. We say that this sequence converges in distribution to a random variable X if

$$\lim_{n\to\infty} P(X_n \leqslant x) = P(X \leqslant x)$$

at all points x at which $F_X(x) = P(X \leq x)$ is continuous.

We will denote this type of convergence by $X_n \xrightarrow{d} X$.

Examples of Convergence in Distribution

* If $X_n \sim \text{Binomial}(n, p)$ then

$$F_{Z_n}(z) = \mathsf{P}\left(rac{X_n - np}{\sqrt{np(1-p)}} \leqslant z
ight) o \Phi(z) ext{ as } n o \infty$$

* Suppose $X_n \sim \text{Binomial}(n, \lambda/n)$ then

$$\mathsf{P}(X_n = x) \to \frac{\lambda^n \mathrm{e}^{-\lambda}}{x!}$$

Hence $X_n \stackrel{d}{\longrightarrow} X$ where $X \sim \mathsf{Poisson}(\lambda)$.

* Suppose $U_i \stackrel{iid}{\sim}$ Uniform(0,1) and $X_n = \max\{U_1, \ldots, U_n\}$ then

$$\mathsf{P}(X_n \leqslant x) \rightarrow \begin{cases} 0 & x < 1 \\ 1 & x \ge 1 \end{cases}$$

In this sense we can say that $X_n \xrightarrow{d} 1$.

Central Limit Theorem

Theorem 7.1 (Central Limit Theorem)

Let X_1, X_2, \ldots be a sequence of iid random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 < \infty$. Define the sample mean $\overline{X}_n = n^{-1} \sum_{i=1}^{n} X_i$ and let $F_n(x)$ denote the cdf of the random variable

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}$$

Then for any $x \in \mathbb{R}$,

$$\lim_{n \to \infty} F_n(x) = \Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

Convergence in Distribution

- * This is quite a weak form of convergence in general.
- * $X_n \xrightarrow{d} X$ only means that the distribution functions converge but doesn't say anything about whether the random variables are close in any sense.
- Note that, a sequence of continuous cdf's can converge but the corresponding sequence of pdf's may not.

Convergence in Probability

Definition 7.2

A sequence of random variables, X_1, X_2, \ldots converges in probability to a random variable X if, for every $\varepsilon > 0$

$$\lim_{n\to\infty} P(|X_n - X| < \varepsilon) = 1$$

We will generally write this as

$$X_n \xrightarrow{p} X$$

Some Mathematical Concepts

Definition 7.3

Suppose that $\{a_n\}$ is a sequence of real numbers. Define

$$b_n = \sup\{a_n, a_{n+1}, a_{n+2}, \ldots\}$$

 $c_n = \inf\{a_n, a_{n+1}, a_{n+2}, \ldots\}$

We define the Limit Superior (lim sup) and Limit Inferior (lim inf) of the sequence $\{a_n\}$ to be

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$
$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} c_n$$

The sequence $\{a_n\}$ converges to a limit if, and only if,

$$\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n = \lim_{n \to \infty} a_n$$

Properties of Convergence in Probability

Theorem 7.2

Suppose that X_1, X_2, \ldots converges in probability to a random variable X and that h is a continuous function. Then

$$h(X_n) \xrightarrow{p} h(X)$$

Theorem 7.3

Suppose that X_1, X_2, \ldots and Y_1, Y_2, \ldots are two sequences of random variables such that $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$. Then

1.
$$X_n + Y_n \xrightarrow{p} X + Y$$
.

2. $X_n Y_n \xrightarrow{p} XY$.

Relationship between Convergence in Probability and Distribution

Theorem 7.4

If a sequence of random variables $\{X_n\}$ converges in probability to a random variable X then the sequence also converges in distribution to X.

In general the converse of this theorem is not true but it is true in one special case.

Theorem 7.5

If a sequence of random variables $\{X_n\}$ converges in distribution to a constant μ then random variable X then the sequence also converges in probability to μ .

Weak Law of Large Numbers

Theorem 7.6 (Weak Law of Large Numbers)

Let X_1, X_2, \ldots be iid random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 < \infty$. Define the sample mean $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$. Then the sequence of random variables $\overline{X}_1, \overline{X}_2, \ldots$ converges in probability to the constant μ . That is for every $\varepsilon > 0$

$$\lim_{n\to\infty} P(|\overline{X}_n - \mu| < \varepsilon) = 1$$

Slutsky's Theorem

Theorem 7.7 (Slutsky's Theorem) If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} a$ where a is a constant then

1.
$$X_n + Y_n \xrightarrow{d} X + a$$
.

2.
$$X_n Y_n \xrightarrow{d} a X$$
.

Almost Sure Convergence

Definition 7.4

A sequence of random variables X_1, X_2, \ldots converges almost surely to a random variable X if, for every $\varepsilon > 0$,

$$P(\lim_{n\to\infty}|X_n-X|<\varepsilon) = 1$$

Theorem 7.8

If a sequence of random variables X_1, X_2, \ldots converges almost surely to a random variable X, the sequence also converges in probability to X.

Theorem 7.9

Suppose that the sequence X_1, X_2, \ldots converges in probability to a random variable X then there exists a subsequence of X_1, X_2, \ldots which converges almost surely to X.

Strong Law of Large Numbers

Theorem 7.10 (Strong Law of Large Numbers)

Let X_1, X_2, \ldots be iid random variables with finite mean $E(X_i) = \mu$ and finite variance $Var(X_i) = \sigma^2$. Define the sample mean $\overline{X}_n = n^{-1} \sum_{i=1}^{n} X_i$. Then the sequence of random variables $\overline{X}_1, \overline{X}_2, \ldots$ converges almost surely to the constant μ . That is for every $\varepsilon > 0$

$$P(\lim_{n\to\infty}|\overline{X}_n-\mu|<\varepsilon)=1$$

* In fact the requirement for finite variance is a stronger condition than required. Both Laws of Large Numbers are true even when only the mean is finite.

Bounded in Probability

Definition 7.5

Suppose that $X_1, X_2, ...$ is a sequence of random variables. We say that the sequence is bounded in probability if for all $\varepsilon > 0$, there exists a constant B_{ε} and an integer N_{ε} such that

$$n \geq N_{\varepsilon} \Rightarrow \mathsf{P}(|X_n| \leq B_{\varepsilon}) \geq 1 - \varepsilon.$$

Theorem 7.11

Suppose that $X_1, X_2, ...$ is a sequence of random variables and that there is a random variable X such that $X_n \xrightarrow{d} X$ then $\{X_n\}$ is bounded in probability.

Theorem 7.12

Suppose that the sequence of random variables $\{X_n\}$ is bounded in probability and $Y_n \xrightarrow{p} 0$ then $X_n Y_n \xrightarrow{p} 0$.

O_p and o_p Notation

Definition 7.6

Suppose that $\{X_n\}$ is a sequence of random variables and $\{a_n\}$ is a sequence of constants. Then we say that

$$X_n = o_p(a_n) \quad \iff \quad \frac{X_n}{a_n} \stackrel{p}{\longrightarrow} \quad 0$$

We say that

$$X_n = O_p(a_n) \iff \frac{X_n}{a_n}$$
 is bounded in probability

We can also replace the constants $\{a_n\}$ by a sequence of random variables $\{Y_n\}$.

Theorem 7.13

Suppose that $\{Y_n\}$ is a sequence of random variables which are bounded in probability and that $\{X_n\}$ is another sequence of random variables such that $X_n = o_p(Y_n)$. Then $X_n \xrightarrow{p} 0$.

Delta Method

Theorem 7.14 (Delta Method)

Let $Y_1, Y_2, ...$ be a sequence of random variables such that $\sqrt{n}(Y_n - \theta)$ converges in distribution to a normal $(0, \sigma^2)$ random variable. Suppose that g is a function such that $g'(\theta)$ exists and is not 0, then

$$\sqrt{n}(g(Y_n) - g(\theta)) \xrightarrow{d} normal(0, (g'(\theta)\sigma)^2)$$

Theorem 7.15 (Second Order Delta Method)

Let $Y_1, Y_2, ...$ be a sequence of random variables such that $\sqrt{n}(Y_n - \theta)$ converges in distribution to a normal $(0, \sigma^2)$ random variable. Suppose that g is a function such that $g'(\theta) = 0$ and $g''(\theta)$ exists and is not 0, then

$$n(g(Y_n) - g(\theta)) \xrightarrow{d} \frac{g''(\theta)\sigma^2}{2}\chi_1^2$$

7-16