Monte Carlo Methods

X

It is quite common in statistics that we need to evaluate
complex integrals.

Such integrals are often quite difficult (or indeed impossible)
to evaluate in closed form.

Monte Carlo methods are a way of approximating the value
of an integral using large samples of random variables.

These samples of random variables are typically computer
generated.

8-1



Monte Carlo Integration
* Suppose that we need to evaluate
I = /h x) dx
y (z)
* Let f be a probability density function with support A.

* T hen we can write

[0 @yan = [ o5 do

f(z)
* Now if Y is a random variable with pdf f then we have
I = E[g(Y)]



Monte Carlo Integration

% Hence if we have Yi,...,Yn ¢ f, the Weak Law of Large
Numbers tells us that

1 N
N X ot I
N :
* We can therefore use I to approximate I very well for large

enough N.

* Furthermore we can use estimate the variability in I using
the sample variance of the random sample g(Y71),...,9(Yn)
divided by N.

* Since N is totally in our control we can choose N to be large
enough to make the variability as low as we desire.

8-3



Generating Uniform Random Variates

* Computers are unable to generate random numbers.

* The can, however, be used to generate pseudo-random num-
bers.

* These are sequences of numbers which are generated from a
deterministic algorithm but which behave like a sequence of
iid random variates.

8-4



Generating Uniform Random Variates

* Generally a computer uses an algorithm to generate a se-
quence of integers xg,x1,xo,... such that

z € {0,1,...,M —1}

* The generated values are then rescaled to be approximately
Uniform(0, 1)

U, = -t
M

* Many algorithms have been proposed. Most are of the form
ry = g(x¢_1)

* The function g is chosen so that the resulting sequence re-
sembles a random sequence.

8-5



Common Random Number Generators

Definition 8.1
A linear congruential generator on {0,1,...,M — 1} is a sequence
of integers defined by

;41 = (axy+b) mod M

Definition 8.2
For a given k x kK matrix I’ whose entries are all either O or 1, the
associated shift register generator is

xy4+1 = Taxy mod 2

where x; and x; 1 are binary representations of the correspond-
ing numbers.

8-6



Combination Generators

* Most modern generators use two or more parallel generators
and return a sum or product of the results modulo the largest

integer representable.

* One such generator is George Marsaglia’'s KISS (Keep It Sim-
ple, Stupid) generator which uses one linear congruential gen-
erator and two shift register generators, returning their sum
modulo 232.

* The current state of the art generator is generally believed
to be the Mersenne-Twister Generator and this is the default
in R.

* No test of uniformity or randomness has yet been found that
the sequence from this generator does not pass!

8-7



Reproducibility of Generated Random Numbers

* An important concept is that of a Random Seed.

* The seed specifies initial conditions for the algorithm which
generates the random variates.

* Since the algorithm is actually deterministic, setting the same
random seed will result in the same sequence of random vari-
ates.

* When using simulation to compare two or more methods,
we will often want to use to same random numbers for each
method to remove the simulation variability between meth-
ods and so give a better comparison.

8-8



Generating Non-Uniform Random Numbers

* Uniform random variates are rarely what we need for simula-
tion or Monte Carlo inference.

* They are, however, the building blocks for generating random
variates from any other distributions.

* Much of this is based on the following theorem

Theorem 8.1 (Probability Integral Transform)
Suppose that U ~ Uniform(0,1) and that F is a continuous cdf
with unique inverse F~1. Then the random variable

Yy = F1(U)
has a distribution with cdf F'.

8-9



Generating Discrete Random Variates

* T he method as described above requires that we have a con-
tinuous cdf.

* A similar technique can also be used to generate discrete
random variables.

* Suppose that p(y) is the probability mass function and the
support of the random variable is Y = {y:p(y) > 0}. Then
we can define the inverse cdf as

Fl(w) = minfyed: Fly) > u}

* Then if U ~ uniform(0,1), the random variable Y = F~1(u)
will be distributed with probability mass function p(y).

8-10



Special Methods

* In many cases, the inverse cdf is not available in closed form
and so this method cannot be used. We can often, however,
use algorithms based on transformations for such situations.

* Suppose that U; and U, are two independent Uniform(0, 1)
random variables then it is easy to show that

Y] = \/—2Iog Uisin(2nUs) and Y, = \/—2Iog Uq cos(2nUs)

are independent standard normal random variables.

* This is known as the Box-Muller Algorithm.

8-11



Accept/Reject Algorithm

* A more general techniqgue which is useful when the inverse
cdf method cannot be applied is called the Accept/Reject
Algorithm.

* This method relies on generating a different random variable
V which has the same support as the required variable Y.

* We also require that the ratio of densities is bounded by a
known constant

. fr(y)
M= "y fv(y)

< o0

8-12



Accept/Reject Algorithm

1. Calculate M = supy, fy(y)/fv(y).

2. Generate V ~ fy and independently U ~ Uniform(0, 1).

3. If
fr(V)
M fy (V)
then set Y = V. Otherwise discard U and V and return to
step 2.

U <

8-13



Markov Chain Monte Carlo Methods

* Many of the methods described so far are not very useful for
generating multivariate random variates.

* Markov Chain Monte Carlo methods are now widely used in
these settings.

* The methods work on the idea of constructing a Markov
chain which has a stationary distribution equal to the distri-
bution of interest.

* Under certain conditions, the distribution of the elements in
such a chain will converge to this stationary distribution.

8-14



Markov Chain Monte Carlo Methods

*k

T hese algorithms start with some initial value for the random
variable of interest.

They then run a carefully constructed Markov chain starting
from that initial value for a sufficiently long time.

It is not always easy to know how long the chains should be
run but various diagnostics have been proposed.

Any observations in the chain after this burn-in period may
be considered as (at least approximately) distributed with the
stationary distribution.

8-15



Metropolis—Hastings Algorithm

* First introduced in statistical physics in 1954 by Metropolis
et al. Statistical properties shown by Hastings in 1970.

* It is basically a Markov chain version of the accept/reject
algorithm.

* Random variates are generated from some candidate distri-
bution conditional on the current state of the chain and then
either the new state is accepted or rejected in which case the
chain stays where it is.

8-16



Metropolis—Hastings Algorithm

Suppose we wish to sample Y ~ fy.

First initialize the chain with some value Y (9).

Then for t = 1,2,... we generate Y &) py
1. Generate V() ~ fyy(v | Y1),
2. Calculate the acceptance probability

o fy (V(t)) friy (y(t—l) | V(t))
pro= mn {fy (Y(t—l)) % fory (v(t) | y(t—1))’ 1}

3. Generate U; ~ Uniform(0,1) and set

y (t=1) it U > pt

8-17



Independence Metropolis—Hastings Algorithm

* It is often convenient to generate V() from the same distri-
bution at every iteration.

* In this case we have fyy(v | y({=1)Y) = f,(v) and so the
acceptance probability becomes

(A (VO) (YD)
X , 1
fr (YED) T p (V) }

£ (VO) g (D)
X , 1
L (VO) Ty (YD) }

min -

Pt

= min«

8-18



Random Walk Metropolis—Hastings Algorithm

* Another special case is where fyy(v|y) = fz(v—y) where
fz is a distribution symmetric about O.

% We generate Z() ~ f, and set V(1) = y(=1) 4 7z(@)
* In stochastic processes this is called a random walk.

* The acceptance probability for the Metropolis—Hastings al-
gorithm then becomes

Iy (V(t)>

pt = min{fy (Y(t—l))’l}

8-19



Gibbs Sampler

* The Gibbs Sampler (Geman & Geman, 1984) is designed to
generate observations from a complex multivariate distribu-
tion.

* The Markov chain is constructed by considering the univari-
ate conditional distributions.

* Suppose that the random vector of interestisY = (Y7,...,Yy)
and that we can generate observations from the full condi-
tional distributions

WYy =yy) = Fyp,WIYy=vy)  G=1...d

where Y_; = (Yl,...,yj_l,YjJrl,...,Yd).

8-20



Gibbs Sampler
Initialise the chain to some value Y(0) = (Yl(o), .. ,Yd(o)>.

Fort=1,2,...
1 Generate Y;"” from f (yl R .,Yf‘l)).

2 Generate Yi” from f5 (y2 B2 2L ,Yd(t_l)).
i (t) A (t) (t) (t—1) (t—1)
J GenerateYj from f]<yJ|Y ""7Yj—17Yj—|—17"'7Yd )

d Generate Yd(t) from fy (yd R ,Yd(t_)l).

Then we set Y{) = (Yl(t), .. .,Yd(t)).

8-21



