
Monte Carlo Methods

∗ It is quite common in statistics that we need to evaluate

complex integrals.

∗ Such integrals are often quite difficult (or indeed impossible)

to evaluate in closed form.

∗ Monte Carlo methods are a way of approximating the value

of an integral using large samples of random variables.

∗ These samples of random variables are typically computer

generated.

8-1

Monte Carlo Integration

∗ Suppose that we need to evaluate

I =
∫
A
h(x) dx

∗ Let f be a probability density function with support A.

∗ Then we can write

I =
∫
A

h(x)

f(x)
f(x) dx =

∫
A
g(x)f(x) dx

∗ Now if Y is a random variable with pdf f then we have

I = E[g(Y)].

8-2

Monte Carlo Integration

∗ Hence if we have Y1, . . . , YN
iid∼ f , the Weak Law of Large

Numbers tells us that

Î =
1

N

N∑
i=1

g(Yi)
p−→ I.

∗ We can therefore use Î to approximate I very well for large

enough N .

∗ Furthermore we can use estimate the variability in Î using

the sample variance of the random sample g(Y1), . . . , g(YN)

divided by N .

∗ Since N is totally in our control we can choose N to be large

enough to make the variability as low as we desire.

8-3

Generating Uniform Random Variates

∗ Computers are unable to generate random numbers.

∗ The can, however, be used to generate pseudo-random num-

bers.

∗ These are sequences of numbers which are generated from a

deterministic algorithm but which behave like a sequence of

iid random variates.

8-4

Generating Uniform Random Variates

∗ Generally a computer uses an algorithm to generate a se-

quence of integers x0, x1, x2, . . . such that

xt ∈ {0,1, . . . ,M − 1}

∗ The generated values are then rescaled to be approximately

Uniform(0,1)

Ut =
xt

M

∗ Many algorithms have been proposed. Most are of the form

xt = g(xt−1)

∗ The function g is chosen so that the resulting sequence re-

sembles a random sequence.

8-5

Common Random Number Generators

Definition 8.1

A linear congruential generator on {0,1, . . . ,M −1} is a sequence

of integers defined by

xt+1 = (axt + b) mod M

Definition 8.2

For a given k×k matrix T whose entries are all either 0 or 1, the

associated shift register generator is

xt+1 = Txt mod 2

where xt and xt+1 are binary representations of the correspond-

ing numbers.

8-6

Combination Generators

∗ Most modern generators use two or more parallel generators

and return a sum or product of the results modulo the largest

integer representable.

∗ One such generator is George Marsaglia’s KISS (Keep It Sim-

ple, Stupid) generator which uses one linear congruential gen-

erator and two shift register generators, returning their sum

modulo 232.

∗ The current state of the art generator is generally believed

to be the Mersenne-Twister Generator and this is the default

in R.

∗ No test of uniformity or randomness has yet been found that

the sequence from this generator does not pass!

8-7

Reproducibility of Generated Random Numbers

∗ An important concept is that of a Random Seed.

∗ The seed specifies initial conditions for the algorithm which

generates the random variates.

∗ Since the algorithm is actually deterministic, setting the same

random seed will result in the same sequence of random vari-

ates.

∗ When using simulation to compare two or more methods,

we will often want to use to same random numbers for each

method to remove the simulation variability between meth-

ods and so give a better comparison.

8-8

Generating Non-Uniform Random Numbers

∗ Uniform random variates are rarely what we need for simula-

tion or Monte Carlo inference.

∗ They are, however, the building blocks for generating random

variates from any other distributions.

∗ Much of this is based on the following theorem

Theorem 8.1 (Probability Integral Transform)

Suppose that U ∼ Uniform(0,1) and that F is a continuous cdf

with unique inverse F−1. Then the random variable

Y = F−1(U)

has a distribution with cdf F .

8-9

Generating Discrete Random Variates

∗ The method as described above requires that we have a con-

tinuous cdf.

∗ A similar technique can also be used to generate discrete

random variables.

∗ Suppose that p(y) is the probability mass function and the

support of the random variable is Y = {y : p(y) > 0}. Then

we can define the inverse cdf as

F−1(u) = min{y ∈ Y : F (y) > u}

∗ Then if U ∼ uniform(0,1), the random variable Y = F−1(u)

will be distributed with probability mass function p(y).

8-10

Special Methods

∗ In many cases, the inverse cdf is not available in closed form

and so this method cannot be used. We can often, however,

use algorithms based on transformations for such situations.

∗ Suppose that U1 and U2 are two independent Uniform(0,1)

random variables then it is easy to show that

Y1 =
√
−2 logU1 sin(2πU2) and Y2 =

√
−2 logU1 cos(2πU2)

are independent standard normal random variables.

∗ This is known as the Box-Muller Algorithm.

8-11

Accept/Reject Algorithm

∗ A more general technique which is useful when the inverse

cdf method cannot be applied is called the Accept/Reject

Algorithm.

∗ This method relies on generating a different random variable

V which has the same support as the required variable Y .

∗ We also require that the ratio of densities is bounded by a

known constant

M = sup
y

fY (y)

fV (y)
< ∞

8-12

Accept/Reject Algorithm

1. Calculate M = supy fY (y)/fV (y).

2. Generate V ∼ fV and independently U ∼ Uniform(0,1).

3. If

U <
fY (V)

MfV (V)

then set Y = V . Otherwise discard U and V and return to

step 2.

8-13

Markov Chain Monte Carlo Methods

∗ Many of the methods described so far are not very useful for

generating multivariate random variates.

∗ Markov Chain Monte Carlo methods are now widely used in

these settings.

∗ The methods work on the idea of constructing a Markov

chain which has a stationary distribution equal to the distri-

bution of interest.

∗ Under certain conditions, the distribution of the elements in

such a chain will converge to this stationary distribution.

8-14

Markov Chain Monte Carlo Methods

∗ These algorithms start with some initial value for the random

variable of interest.

∗ They then run a carefully constructed Markov chain starting

from that initial value for a sufficiently long time.

∗ It is not always easy to know how long the chains should be

run but various diagnostics have been proposed.

∗ Any observations in the chain after this burn-in period may

be considered as (at least approximately) distributed with the

stationary distribution.

8-15

Metropolis–Hastings Algorithm

∗ First introduced in statistical physics in 1954 by Metropolis

et al. Statistical properties shown by Hastings in 1970.

∗ It is basically a Markov chain version of the accept/reject

algorithm.

∗ Random variates are generated from some candidate distri-

bution conditional on the current state of the chain and then

either the new state is accepted or rejected in which case the

chain stays where it is.

8-16

Metropolis–Hastings Algorithm

Suppose we wish to sample Y ∼ fY .

First initialize the chain with some value Y (0).

Then for t = 1,2, . . . we generate Y (t) by

1. Generate V (t) ∼ fV |Y (v | Y (t−1)).

2. Calculate the acceptance probability

ρt = min

 fY
(
V (t)

)
fY
(
Y (t−1)

) × fV |Y
(
Y (t−1) | V (t)

)
fV |Y

(
V (t) | Y (t−1)

),1


3. Generate Ut ∼ Uniform(0,1) and set

Y (t) =

 V (t) if Ut 6 ρt

Y (t−1) if Ut > ρt

8-17

Independence Metropolis–Hastings Algorithm

∗ It is often convenient to generate V (t) from the same distri-

bution at every iteration.

∗ In this case we have fV |Y (v | Y (t−1)) = fV (v) and so the

acceptance probability becomes

ρt = min

 fY
(
V (t)

)
fY
(
Y (t−1)

) × fV
(
Y (t−1)

)
fV
(
V (t)

) , 1


= min

fY
(
V (t)

)
fV
(
V (t)

) × fV
(
Y (t−1)

)
fY
(
Y (t−1)

), 1



8-18

Random Walk Metropolis–Hastings Algorithm

∗ Another special case is where fV |Y (v | y) = fZ(v − y) where

fZ is a distribution symmetric about 0.

∗ We generate Z(t) ∼ fZ and set V (t) = Y (t−1) + Z(t).

∗ In stochastic processes this is called a random walk.

∗ The acceptance probability for the Metropolis–Hastings al-

gorithm then becomes

ρt = min

 fY
(
V (t)

)
fY
(
Y (t−1)

),1


8-19

Gibbs Sampler

∗ The Gibbs Sampler (Geman & Geman, 1984) is designed to

generate observations from a complex multivariate distribu-

tion.

∗ The Markov chain is constructed by considering the univari-

ate conditional distributions.

∗ Suppose that the random vector of interest is Y = (Y1, . . . , Yd)

and that we can generate observations from the full condi-

tional distributions

fj
(
y | Y−j = y−j

)
= fyj|y−j

(
y | Y−j = y−j

)
j = 1, . . . , d

where Y−j =
(
Y1, . . . , Yj−1, Yj+1, . . . , Yd

)
.

8-20

Gibbs Sampler

Initialise the chain to some value Y (0) =
(
Y

(0)
1 , . . . , Y

(0)
d

)
.

For t = 1,2, . . .

1 Generate Y (t)
1 from f1

(
y1 | Y

(t−1)
2 , . . . , Y (t−1)

d

)
.

2 Generate Y (t)
2 from f2

(
y2 | Y

(t)
1 , Y (t−1)

3 , . . . , Y (t−1)
d

)
.

...

j Generate Y (t)
j from fj

(
yj | Y

(t)
1 , . . . , Y (t)

j−1, Y
(t−1)
j+1 , . . . , Y (t−1)

d

)
.

...

d Generate Y (t)
d from fd

(
yd | Y

(t)
1 , . . . , Y (t)

d−1

)
.

Then we set Y (t) =
(
Y

(t)
1 , . . . , Y

(t)
d

)
.

8-21

