
STAT743 FOUNDATIONS OF STATISTICS

Fall 2019

Assignment 1 Solutions

Q. 1 a) A = (A
⋂
B)
⋃

(A
⋂
Bc) and the sets on the right are mutually exclusive. Therefore

by the third axiom we have P (A) = P (A
⋂
B) + P (A

⋂
Bc). From the first axiom, we

have that P (A
⋂
Bc) > 0 and so P (A) > P (A

⋂
B). [2 marks]

Similarly we can write A
⋃
B = A

⋃
(B
⋂
Ac) where the two sets on the right are

mutually exclusive and so P (A
⋃
B) = P (A) + P (B

⋂
Ac). The first axiom gives us

P (B
⋂
Ac) > 0 and so P (A

⋃
B) > P (A). Also the first part of this question gives us

P (B
⋂
Ac) 6 P (B) and so we have P (A

⋃
B) 6 P (A) + P (B). [4 marks]

b) First we note that, for any two events, A and B we have

A
⋃

B = A
⋃

(Ac
⋂

B)

and that these two events on the right are mutually exclusive. so we have

P(A
⋃

B) = P(A) + P(Ac
⋂

B)

Furthermore we have that

B = (A
⋂

B)
⋃

(Ac
⋂

B)

and the two events on the right are mutually exclusive so

P(B) = P(A
⋂

B) + P(Ac
⋂

B) ⇒ P(Ac
⋂

B) = P(B)− P(A
⋂

B)

and so, for any two events A and B we have

P(A
⋃

B) = P(A) + P(B)− P(A
⋂

B)

[4 marks]
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We can extend this to three events as follows

P (A
⋃

B
⋃

C) = P
(
(A
⋃

B)
⋃

C
)

= P (A
⋃

B) + P (C)− P
(
(A
⋃

B)
⋂

C
)

= P (A) + P (B)− P (A
⋂

B) + P (C)− P
(
(A
⋂

C)
⋃

(B
⋂

C)
)

= P (A) + P (B) + P (C)− P (A
⋂

B)

−
[
P (A

⋂
C) + P (B

⋂
C)− P

(
(A
⋂

C)
⋂

(B
⋂

C)
)]
.

Finally we note that (A
⋂
C)
⋂

(B
⋂
C) = A

⋂
B
⋂
C and hence

P (A
⋃

B
⋃

C) = P (A)+P (B)+P (C)−P (A
⋂

B)−P (A
⋂

C)−P (B
⋂

C)+P (A
⋂

B
⋂

C)

[5 marks]

c) Casella and Berger 1.24

(i) Let Ei be the event that the game terminates (with a head) on the ith toss. Clearly

the Ei is a sequence of mutually exclusive events and we have

P (Ei) = P ((i− 1) tails followed by 1 head) =

(
1

2

)i
A wins the game if the first head lands on a odd-numbered toss so

P (A wins) = P (E1

⋃
E3

⋃
E5

⋃
· · · )

= P (E1) + P (E3) + P (E5) + · · ·

=
∞∑
i=0

P (E2i+1)

=
∞∑
i=0

(
1

2

)2i+1

=
∞∑
i=0

1

2

(
1

4

)i
=

0.5

1− 0.25
=

2

3

[5 marks]

The final result comes from the result for geometric series that

S =
∞∑
i=0

ari =
a

1− r
provided |r| < 1
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(ii) The only thing that changes when p 6= 0.5 is that

P (Ei) = (1− p)i−1p

and so we get

P (A wins) =
∞∑
i=0

(1− P )2ip =
p

1− (1− p)2
=

1

2− p

[3 marks]

(iii) Since P (A wins) =
1

2− p
which is an increasing function of p for p ∈ [0, 1] we have

P (A wins) > lim
p↓0

1

2− p
=

1

2

[2 marks]
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Q. 2 a) First we must show that

dn

dtn
KX(t) = κn(X) +

∞∑
r=1

tr

r!
κr+n(X)

We will do this by induction. Consider n = 1

d

dt
KX(t) =

∞∑
r=1

d

dt

(
tr

r!

)
κr(X)

=
∞∑
r=1

tr−1

(r − 1)!
κr(X)

= κ1(X) +
∞∑
r=1

tr

r!
κr+1(X)

[3 marks]

Now suppose that

dn−1

dtn−1
KX(t) = κn−1(X) +

∞∑
r=1

tr

r!
κr+n−1(X)

Then

dn

dtn
KX(t) =

∞∑
r=1

d

dt

(
tr

r!

)
κr+n−1(X)

=
∞∑
r=1

tr−1

(r − 1)!
κr+n−1(X)

= κn(X) +
∞∑
r=1

tr

r!
κr+n(X)

[3 marks]

Hence our assertion is true and so setting t = 0 we see that

dr

dtr
KX(t)

∣∣∣∣
t=0

= κr(t) +
∞∑
r=1

0r

r!
κr+n(X) = κr(t)

[1 mark]

b) It is easiest to use the original definition of KX(t) and the result of part a). To ease

notation I will use g′(t), g′′(t) and g′′′(t) to denote the first three derivatives of any

function g(t) with respect to t

4



The first three derivatives of KX(t) are

K ′X(t) =
d

dt
log
(
MX(t)

)
=

M ′
X(t)

MX(t)

K ′′X(t) =
M ′′

X(t)

MX(t)
−
(
M ′

X(t)
)2

(MX(t))2

=
M ′′

X(t)

MX(t)
− (K ′X(t))

2

K ′′′X (t) =
M ′′′

X (t)

MX(t)
− M ′

X(t)M ′′
X(t)(

MX(t)
)2 − 2K ′X(t)K ′′X(t)

[4 marks]

Now recall that MX(0) = 1 and that derivatives of MX(t) evaluated at t = 0 give the

moments of X we have

K ′X(0) =
M ′

X(0)

MX(0)
= µ

K ′′X(0) =
M ′′

X(0)

MX(0)
− (K ′X(0))

2

= E(X2)− (µ)2

= E
(
X2 − 2µX + µ2

)
= E

(
(X − µ)2

)
= µ2

K ′′′X (0) =
M ′′′

X (0)

MX(0)
− M ′

X(0)M ′′
X(0)

(MX(0))2
− 2K ′X(0)K ′′X(0)

= E(X3)− E(X) E(X2)− 2µµ2

= E(X3)− E(X) E(X2)− 2µ
(
E(X2)− µ2

)
= E(X3)− 3µE(X2) + 2µ3

= E
(
X3 − 3µX2 + 3µ2X − µ3

)
= E

(
(X − µ)3

)
= µ3

[6 marks]

5



c) If X ∼ normal(µ, σ2) then we know from the textbook (Page 625) that

MX = exp

{
µt+

1

2
t2σ2

}
and so the cumulant generating function is

KX(t) = µt+
1

2
t2σ2

[1 mark]

From this we see that the derivatives of the cumulant generating function are

dr

dtr
KX(t) =


µ+ tσ2 r = 1

σ2 r = 2

0 r = 3, 4, . . .

[2 marks]

Hence we see that

κr(X) =


µ r = 1

σ2 r = 2

0 r = 3, 4, . . .

[1 mark]

d) By Theorem 4.5 in my notes (Theorem 4.2.12 in the textbook) we know that

MX+Y (t) = MX(t)MY (t)

because X and Y are independent random variables.

Hence we have

κr(X + Y ) =
dr

dtr
KX+Y (t)

∣∣∣∣
t=0

=
dr

dtr
log{MX+Y (t)}

∣∣∣∣
t=0

=
dr

dtr
log{MX(t)MY (t)}

∣∣∣∣
t=0

=
dr

dtr
{KX(t) +KY (t)}

∣∣∣∣
t=0

=
dr

dtr
KX(t)

∣∣∣∣
t=0

+
dr

dtr
KY (t)

∣∣∣∣
t=0

= κr(X) + κr(Y )

[4 marks]
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Q. 3 a)

MY (t) = E
(
etY
)

=
∞∑
y=0

ety
(
y + r − 1

r − 1

)
pr(1− p)y

=
∞∑
y=0

(
y + r − 1

r − 1

)
pr
(
(1− p)et

)y
=

(
p

1− (1− p)et

)r ∞∑
y=0

(
y + r − 1

r − 1

)(
1− (1− p)et

)r (
(1− p)et

)y
The summand in the above expression is the negative binomial pmf with parameters r

and 1− (1− p)et provided that 0 < 1− (1− p)et < 1. and so for, provided this is true,

the infinite sum equals 1. [6 marks]

Now

0 < 1−(1−p)et < 1 ⇐⇒ 0 < (1−p)et < 1 ⇐⇒ log(1−p)+t < 0 ⇐⇒ t < − log(1−p)

and we note that, since 1− p < 1, − log(1− p) > 0.

Hence,

MY (t) =

(
p

1− (1− p)et

)r
for t < − log(1− p)

[2 marks]

b)

MY (t) = pr
(
1− (1− p)et

)−r
⇒ M ′

Y (t) = rpr
(
1− (1− p)et

)−r−1
(1− p)et

⇒ M ′′
Y (t) = r(r + 1)pr

(
1− (1− p)et

)−r−2
(1− p)2e2t

+rpr
(
1− (1− p)et

)−r−1
(1− p)et

[2 marks]

Hence we can get the moments

E(Y ) = M ′
Y (0) = rpr(1− (1− p))−r−1(1− p) =

r(1− p)
p

[2 marks]
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E(Y 2) = M ′′
Y (0) = r(r + 1)pr(1− (1− p))−r−2(1− p)2 +

r(1− p)
p

=
r(r + 1)(1− p)2

p2
+
r(1− p)

p

=
r(1− p)
p2

(
(r + 1)(1− p) + p

)
=

r(1− p)(1 + r − pr)
p2

⇒ Var(Y ) =
r(1− p)(1 + r − pr)

p2
−
(
r(1− p)

p

)2

=
r(1− p)
p2

(
1 + r − pr − r(1− p)

)
=

r(1− p)
p2

[4 marks]

c) To show that the distribution of Z = pY converges as p → 0 all we need to verify

is convergence of moment generating functions because of Theorem 2.11 in my notes

(Theorem 2.3.12 in the textbook).

The moment generating function of Z is

MZ(t) = E
(
etZ
)

= E
(
etpY

)
= MY (tp)

=

(
p

1− (1− p)ept

)r
[3 marks]

Hence taking limits as p→ 0 we have

lim
p→0

MZ(t) = lim
p→0

(
p

1− (1− p)ept

)r
=

(
lim
p→0

p

1− (1− p)ept

)r
=

(
lim
p→0

1

ept − t(1− p)ept

)r
= (1− t)−r

[3 marks]
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Now if X ∼ gamma(α, β) then

MX(t) =

∫ ∞
0

etx
1

Γ(α)βα
xα−1e−x/β dx

=

∫ ∞
0

1

Γ(α)βα
xα−1e−(1/β−t)x dx

=

(
1

β(1/β − t)

)α ∫ ∞
0

(1/β − t)α

Γ(α)
xα−1e−(1/β−t)x dx

Now for t < 1/β, the integrand is the pdf of a gamma random variable with parameters

α and (1/β − t)−1 and so integrates to 1. Thus the moment generating function of a

gamma random variable is

MX(t) = (1− βt)−α

Comparing this to the limit of moment generating functions found above we see that

the limit is a moment generating function of a gamma random variable with param-

eters α = r and β = 1. Since the moment generating functions converge, so do the

cumulative distribution functions and so we can say that Z converges in distribution to

a gamma(α = r, β = 1) random variable as p→ 0. [3 marks]
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Q. 4 a) Suppose that Y has a log-normal distribution then from the definition we see that we

can write

Y = eX where X ∼ Normal(µ, σ2)

The easy way to get the moments of Y is from the moment generating function of X

because

E
(
Y r
)

= E
(
erX
)

= MX(r) = exp

{
rµ+

1

2
r2σ2

}
[2 marks]

Hence we have

E(Y ) = exp

{
µ+

σ2

2

}
E(Y 2) = exp

{
2µ+ 2σ2

}
Var(Y ) = exp

{
2µ+ 2σ2

}
− exp

{
2

(
µ+

σ2

2

)}
= e2µ

(
e2σ

2 − eσ
2
)

[3 marks]

b) For convenience, I will assume that X is a continuous random variable although that

is not necessary and the proof is identical in the discrete case.

First we note that, as for all pdfs,∫ ∞
−∞

h(x)c∗(η) exp
{∑

ηiti(x)
}
dx = 1

Since this is a constant for all η its partial derivatives must be 0 and so we have

∂

∂ηj

∫ ∞
−∞

h(x)c∗(η) exp
{∑

ηiti(x)
}
dx = 0

For the exponential family we can always interchange integration and differentiation

and so let us do this (also using the chain rule inside the integrand) to get∫ ∞
−∞

h(x)

(
∂

∂ηj
c∗(η)

)
exp

{∑
ηiti(x)

}
dx+

∫ ∞
−∞

tj(x)h(x)c∗(η) exp
{∑

ηiti(x)
}
dx = 0

[3 marks]

The second term in the sum on the left of the above expression is E
(
tj(X)

)
by definition

of expectation so we have

E
(
tj(X)

)
= −

∫ ∞
−∞

h(x)

(
∂

∂ηj
c∗(η)

)
exp

{∑
ηiti(x)

}
dx

[1 mark]
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Now recall that

∂

∂ηj
log c∗(η) =

∂

∂ηj
c∗(η)

c∗(η)
⇒ ∂

∂ηj
c∗(η) = c∗(η)

∂

∂ηj
log c∗(η)

Applying this in the above integrand we have

E
(
tj(X)

)
= −

∫ ∞
−∞

h(x)

(
∂

∂ηj
log c∗(η)

)
c∗(η) exp

{∑
ηiti(x)

}
dx

= −
(
∂

∂ηj
log c∗(η)

)∫ ∞
−∞

h(x)c∗(η) exp
{∑

ηiti(x)
}
dx

= − ∂

∂ηj
log c∗(η)

since the integrand is now that of the original pdf. [4 marks]

To prove the second part we only need to show that

∂

∂ηj
E
(
tj(X)

)
= Var

(
tj(X)

)
∂

∂ηj
E
(
tj(X)

)
=

∂

∂ηj

∫ ∞
−∞

tj(x)h(x)c∗(η) exp
{∑

ηiti(x)
}
dx

=

∫ ∞
−∞

tj(x)h(x)

(
∂

∂ηj
c∗(η)

)
exp

{∑
ηiti(x)

}
dx

+

∫ ∞
−∞

t2j(x)h(x)c∗(η) exp
{∑

ηiti(x)
}
dx

=

(
∂

∂ηj
log c∗(η)

)∫ ∞
−∞

tj(x)h(x)c∗(η) exp
{∑

ηiti(x)
}
dx+ E[t2j(X)]

=
[
−E

(
tj(X)

)]
E
(
tj(X)

)
+ E

(
t2j(X)

)
Where the first expectation is a consequence of the result proved above and the other

two are from the definition of expectation. [3 marks]

Hence we have

∂

∂ηj
E
(
tj(X)

)
= −

[
E
(
tj(X)

)]2
+ E

(
t2j(X)

)
= Var(tj(X))

[1 mark]

The other part of the result is simply that following from our first result

∂

∂ηj
E
(
tj(X)

)
=

∂

∂ηj

(
− ∂

∂ηj
log c∗(η)

)
= − ∂2

∂η2j
log c∗(η)

[1 mark]
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c) I will do the Poisson first as it is a little easier. In that case we have the probability

mass function

f(x | λ) =
λxe−λI(x ∈ {0, 1, 2, . . .})

x!
=

I(x ∈ {0, 1, 2, . . .})
x!

e−λex log λ

Hence we can take the natural parameter η = log λ and corresponding t1(x) = x.

[2 marks]

Clearly we have

h(x) =
I(x ∈ {0, 1, 2, . . .})

x!
so all that is left is to find c∗(η). We note that η = log λ so we have λ = eη and since

c(λ) = e−λ we get

c∗(η) = exp {−eη}

[2 marks]

And so we can write f(x | η) = h(x)c∗(η) exp {t(x)η} as required

For the normal we can proceed in a similar way except that there is now a vector

parameter θ = (µ, σ2). We can write the density function as

f(x | µ, σ2) =
1√
2πσ

exp

{
−(x− µ)2

2σ2

}

=
1√
2πσ

exp

{
− x2

2σ2
+
µx

σ2
− µ2

2σ2

}

=

(
1√
2π

)(
e−µ

2/2σ2

σ

)
exp

{
x
µ

σ2
− x2

2

(
1

σ2

)}
Hence we get the natural parameters

η1 =
µ

σ2
η2 =

1

σ2

with corresponding t1(x) = x, t2(x) = −x2/2. [2 marks]

Outside of the exponent we have h(x) = 1/
√

2π and

c(θ) =
e−µ

2/2σ2

σ

We can express this in terms of the natural parameters by

c∗(η1, η2) =

√
η2e−η

2
1/η2

[2 marks]

Hence we can write the normal pdf in the canonical exponential family form

f(x | η1, η2) = h(x)c∗(η1, η2) exp {t1(x)η1 + t2(x)η2}
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