STAT743 FOUNDATIONS OF STATISTICS

Fall 2019

Q. 1 a) $A=(A \bigcap B) \bigcup\left(A \bigcap B^{c}\right)$ and the sets on the right are mutually exclusive. Therefore by the third axiom we have $P(A)=P(A \bigcap B)+P\left(A \cap B^{c}\right)$. From the first axiom, we have that $P\left(A \cap B^{c}\right) \geqslant 0$ and so $P(A) \geqslant P(A \bigcap B)$.
[2 marks]
Similarly we can write $A \bigcup B=A \bigcup\left(B \cap A^{c}\right)$ where the two sets on the right are mutually exclusive and so $P(A \bigcup B)=P(A)+P\left(B \bigcap A^{c}\right)$. The first axiom gives us $P\left(B \bigcap A^{c}\right) \geqslant 0$ and so $P(A \bigcup B) \geqslant P(A)$. Also the first part of this question gives us $P\left(B \cap A^{c}\right) \leqslant P(B)$ and so we have $P(A \bigcup B) \leqslant P(A)+P(B)$.
[4 marks]
b) First we note that, for any two events, A and B we have

$$
A \bigcup B=A \bigcup\left(A^{c} \bigcap B\right)
$$

and that these two events on the right are mutually exclusive. so we have

$$
\mathrm{P}(A \bigcup B)=\mathrm{P}(A)+\mathrm{P}\left(A^{c} \bigcap B\right)
$$

Furthermore we have that

$$
B=(A \bigcap B) \bigcup\left(A^{c} \bigcap B\right)
$$

and the two events on the right are mutually exclusive so

$$
\mathrm{P}(B)=\mathrm{P}(A \bigcap B)+\mathrm{P}\left(A^{c} \bigcap B\right) \Rightarrow \mathrm{P}\left(A^{c} \bigcap B\right)=\mathrm{P}(B)-\mathrm{P}(A \bigcap B)
$$

and so, for any two events A and B we have

$$
\mathrm{P}(A \bigcup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \bigcap B)
$$

We can extend this to three events as follows

$$
\begin{aligned}
P(A \bigcup B \bigcup C)= & P((A \bigcup B) \bigcup C) \\
= & P(A \bigcup B)+P(C)-P((A \bigcup B) \bigcap C) \\
= & P(A)+P(B)-P(A \bigcap B)+P(C)-P((A \bigcap C) \bigcup(B \bigcap C)) \\
= & P(A)+P(B)+P(C)-P(A \bigcap B) \\
& -[P(A \bigcap C)+P(B \bigcap C)-P((A \bigcap C) \bigcap(B \bigcap C))]
\end{aligned}
$$

Finally we note that $(A \bigcap C) \bigcap(B \bigcap C)=A \bigcap B \bigcap C$ and hence

$$
P(A \bigcup B \bigcup C)=P(A)+P(B)+P(C)-P(A \bigcap B)-P(A \bigcap C)-P(B \bigcap C)+P(A \bigcap B \bigcap C)
$$

c) Casella and Berger 1.24

(i) Let E_{i} be the event that the game terminates (with a head) on the $i^{\text {th }}$ toss. Clearly the E_{i} is a sequence of mutually exclusive events and we have

$$
P\left(E_{i}\right)=P((i-1) \text { tails followed by } 1 \text { head })=\left(\frac{1}{2}\right)^{i}
$$

A wins the game if the first head lands on a odd-numbered toss so

$$
\begin{aligned}
P(\mathrm{~A} \text { wins }) & =P\left(E_{1} \bigcup E_{3} \bigcup E_{5} \bigcup \cdots\right) \\
& =P\left(E_{1}\right)+P\left(E_{3}\right)+P\left(E_{5}\right)+\cdots \\
& =\sum_{i=0}^{\infty} P\left(E_{2 i+1}\right) \\
& =\sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{2 i+1} \\
& =\sum_{i=0}^{\infty} \frac{1}{2}\left(\frac{1}{4}\right)^{i} \\
& =\frac{0.5}{1-0.25}=\frac{2}{3}
\end{aligned}
$$

The final result comes from the result for geometric series that

$$
S=\sum_{i=0}^{\infty} a r^{i}=\frac{a}{1-r} \quad \text { provided }|r|<1
$$

(ii) The only thing that changes when $p \neq 0.5$ is that

$$
P\left(E_{i}\right)=(1-p)^{i-1} p
$$

and so we get

$$
P(\mathrm{~A} \text { wins })=\sum_{i=0}^{\infty}(1-P)^{2 i} p=\frac{p}{1-(1-p)^{2}}=\frac{1}{2-p}
$$

[3 marks]
(iii) Since $P(\mathrm{~A}$ wins $)=\frac{1}{2-p}$ which is an increasing function of p for $p \in[0,1]$ we have

$$
P(\text { A wins }) \geqslant \lim _{p \downarrow 0} \frac{1}{2-p}=\frac{1}{2}
$$

Q. 2 a) First we must show that

$$
\frac{d^{n}}{d t^{n}} K_{X}(t)=\kappa_{n}(X)+\sum_{r=1}^{\infty} \frac{t^{r}}{r!} \kappa_{r+n}(X)
$$

We will do this by induction. Consider $n=1$

$$
\begin{aligned}
\frac{d}{d t} K_{X}(t) & =\sum_{r=1}^{\infty} \frac{d}{d t}\left(\frac{t^{r}}{r!}\right) \kappa_{r}(X) \\
& =\sum_{r=1}^{\infty} \frac{t^{r-1}}{(r-1)!} \kappa_{r}(X) \\
& =\kappa_{1}(X)+\sum_{r=1}^{\infty} \frac{t^{r}}{r!} \kappa_{r+1}(X)
\end{aligned}
$$

Now suppose that

$$
\frac{d^{n-1}}{d t^{n-1}} K_{X}(t)=\kappa_{n-1}(X)+\sum_{r=1}^{\infty} \frac{t^{r}}{r!} \kappa_{r+n-1}(X)
$$

Then

$$
\begin{aligned}
\frac{d^{n}}{d t^{n}} K_{X}(t) & =\sum_{r=1}^{\infty} \frac{d}{d t}\left(\frac{t^{r}}{r!}\right) \kappa_{r+n-1}(X) \\
& =\sum_{r=1}^{\infty} \frac{t^{r-1}}{(r-1)!} \kappa_{r+n-1}(X) \\
& =\kappa_{n}(X)+\sum_{r=1}^{\infty} \frac{t^{r}}{r!} \kappa_{r+n}(X)
\end{aligned}
$$

Hence our assertion is true and so setting $t=0$ we see that

$$
\left.\frac{d^{r}}{d t^{r}} K_{X}(t)\right|_{t=0}=\kappa_{r}(t)+\sum_{r=1}^{\infty} \frac{0^{r}}{r!} \kappa_{r+n}(X)=\kappa_{r}(t)
$$

b) It is easiest to use the original definition of $K_{X}(t)$ and the result of part a). To ease notation I will use $g^{\prime}(t), g^{\prime \prime}(t)$ and $g^{\prime \prime \prime}(t)$ to denote the first three derivatives of any function $g(t)$ with respect to t

The first three derivatives of $K_{X}(t)$ are

$$
\begin{aligned}
K_{X}^{\prime}(t) & =\frac{d}{d t} \log \left(M_{X}(t)\right) \\
& =\frac{M_{X}^{\prime}(t)}{M_{X}(t)} \\
K_{X}^{\prime \prime}(t) & =\frac{M_{X}^{\prime \prime}(t)}{M_{X}(t)}-\frac{\left(M_{X}^{\prime}(t)\right)^{2}}{\left(M_{X}(t)\right)^{2}} \\
& =\frac{M_{X}^{\prime \prime}(t)}{M_{X}(t)}-\left(K_{X}^{\prime}(t)\right)^{2} \\
K_{X}^{\prime \prime \prime}(t) & =\frac{M_{X}^{\prime \prime \prime}(t)}{M_{X}(t)}-\frac{M_{X}^{\prime}(t) M_{X}^{\prime \prime}(t)}{\left(M_{X}(t)\right)^{2}}-2 K_{X}^{\prime}(t) K_{X}^{\prime \prime}(t)
\end{aligned}
$$

[4 marks]
Now recall that $M_{X}(0)=1$ and that derivatives of $M_{X}(t)$ evaluated at $t=0$ give the moments of X we have

$$
\begin{aligned}
K_{X}^{\prime}(0) & =\frac{M_{X}^{\prime}(0)}{M_{X}(0)}=\mu \\
K_{X}^{\prime \prime}(0) & =\frac{M_{X}^{\prime \prime}(0)}{M_{X}(0)}-\left(K_{X}^{\prime}(0)\right)^{2} \\
& =\mathrm{E}\left(X^{2}\right)-(\mu)^{2} \\
& =\mathrm{E}\left(X^{2}-2 \mu X+\mu^{2}\right) \\
& =\mathrm{E}\left((X-\mu)^{2}\right) \\
& =\mu_{2} \\
K_{X}^{\prime \prime \prime}(0) & =\frac{M_{X}^{\prime \prime \prime}(0)}{M_{X}(0)}-\frac{M_{X}^{\prime}(0) M_{X}^{\prime \prime}(0)}{\left(M_{X}(0)\right)^{2}}-2 K_{X}^{\prime}(0) K_{X}^{\prime \prime}(0) \\
& =\mathrm{E}\left(X^{3}\right)-\mathrm{E}(X) \mathrm{E}\left(X^{2}\right)-2 \mu \mu_{2} \\
& =\mathrm{E}\left(X^{3}\right)-\mathrm{E}(X) \mathrm{E}\left(X^{2}\right)-2 \mu\left(\mathrm{E}\left(X^{2}\right)-\mu^{2}\right) \\
& =\mathrm{E}\left(X^{3}\right)-3 \mu \mathrm{E}\left(X^{2}\right)+2 \mu^{3} \\
& =\mathrm{E}\left(X^{3}-3 \mu X^{2}+3 \mu^{2} X-\mu^{3}\right) \\
& =\mathrm{E}\left((X-\mu)^{3}\right) \\
& =\mu_{3}
\end{aligned}
$$

c) If $X \sim \operatorname{normal}\left(\mu, \sigma^{2}\right)$ then we know from the textbook (Page 625) that

$$
M_{X}=\exp \left\{\mu t+\frac{1}{2} t^{2} \sigma^{2}\right\}
$$

and so the cumulant generating function is

$$
K_{X}(t)=\mu t+\frac{1}{2} t^{2} \sigma^{2}
$$

[1 mark]
From this we see that the derivatives of the cumulant generating function are

$$
\frac{d^{r}}{d t^{r}} K_{X}(t)= \begin{cases}\mu+t \sigma^{2} & r=1 \\ \sigma^{2} & r=2 \\ 0 & r=3,4, \ldots\end{cases}
$$

[2 marks]
Hence we see that

$$
\kappa_{r}(X)= \begin{cases}\mu & r=1 \\ \sigma^{2} & r=2 \\ 0 & r=3,4, \ldots\end{cases}
$$

[1 mark]
d) By Theorem 4.5 in my notes (Theorem 4.2.12 in the textbook) we know that

$$
M_{X+Y}(t)=M_{X}(t) M_{Y}(t)
$$

because X and Y are independent random variables.
Hence we have

$$
\begin{aligned}
\kappa_{r}(X+Y) & =\left.\frac{d^{r}}{d t^{r}} K_{X+Y}(t)\right|_{t=0} \\
& =\left.\frac{d^{r}}{d t^{r}} \log \left\{M_{X+Y}(t)\right\}\right|_{t=0} \\
& =\left.\frac{d^{r}}{d t^{r}} \log \left\{M_{X}(t) M_{Y}(t)\right\}\right|_{t=0} \\
& =\left.\frac{d^{r}}{d t^{r}}\left\{K_{X}(t)+K_{Y}(t)\right\}\right|_{t=0} \\
& =\left.\frac{d^{r}}{d t^{r}} K_{X}(t)\right|_{t=0}+\left.\frac{d^{r}}{d t^{r}} K_{Y}(t)\right|_{t=0} \\
& =\kappa_{r}(X)+\kappa_{r}(Y)
\end{aligned}
$$

Q. 3 a)

$$
\begin{aligned}
M_{Y}(t) & =\mathrm{E}\left(\mathrm{e}^{t Y}\right) \\
& =\sum_{y=0}^{\infty} \mathrm{e}^{t y}\binom{y+r-1}{r-1} p^{r}(1-p)^{y} \\
& =\sum_{y=0}^{\infty}\binom{y+r-1}{r-1} p^{r}\left((1-p) \mathrm{e}^{t}\right)^{y} \\
& =\left(\frac{p}{1-(1-p) \mathrm{e}^{t}}\right)^{r} \sum_{y=0}^{\infty}\binom{y+r-1}{r-1}\left(1-(1-p) \mathrm{e}^{t}\right)^{r}\left((1-p) \mathrm{e}^{t}\right)^{y}
\end{aligned}
$$

The summand in the above expression is the negative binomial pmf with parameters r and $1-(1-p) \mathrm{e}^{t}$ provided that $0<1-(1-p) \mathrm{e}^{t}<1$. and so for, provided this is true, the infinite sum equals 1 .
[6 marks]
Now
$0<1-(1-p) \mathrm{e}^{t}<1 \Longleftrightarrow 0<(1-p) \mathrm{e}^{t}<1 \Longleftrightarrow \log (1-p)+t<0 \Longleftrightarrow t<-\log (1-p)$
and we note that, since $1-p<1,-\log (1-p)>0$.
Hence,

$$
M_{Y}(t)=\left(\frac{p}{1-(1-p) \mathrm{e}^{t}}\right)^{r} \quad \text { for } t<-\log (1-p)
$$

[2 marks]
b)

$$
\begin{aligned}
M_{Y}(t)= & p^{r}\left(1-(1-p) \mathrm{e}^{t}\right)^{-r} \\
\Rightarrow M_{Y}^{\prime}(t)= & r p^{r}\left(1-(1-p) \mathrm{e}^{t}\right)^{-r-1}(1-p) \mathrm{e}^{t} \\
\Rightarrow M_{Y}^{\prime \prime}(t)= & r(r+1) p^{r}\left(1-(1-p) \mathrm{e}^{t}\right)^{-r-2}(1-p)^{2} \mathrm{e}^{2 t} \\
& +r p^{r}\left(1-(1-p) \mathrm{e}^{t}\right)^{-r-1}(1-p) \mathrm{e}^{t}
\end{aligned}
$$

[2 marks]
Hence we can get the moments

$$
E(Y)=M_{Y}^{\prime}(0)=r p^{r}(1-(1-p))^{-r-1}(1-p)=\frac{r(1-p)}{p}
$$

$$
\begin{aligned}
E\left(Y^{2}\right)=M_{Y}^{\prime \prime}(0) & =r(r+1) p^{r}(1-(1-p))^{-r-2}(1-p)^{2}+\frac{r(1-p)}{p} \\
& =\frac{r(r+1)(1-p)^{2}}{p^{2}}+\frac{r(1-p)}{p} \\
& =\frac{r(1-p)}{p^{2}}((r+1)(1-p)+p) \\
& =\frac{r(1-p)(1+r-p r)}{p^{2}} \\
\Rightarrow \operatorname{Var}(Y) & =\frac{r(1-p)(1+r-p r)}{p^{2}}-\left(\frac{r(1-p)}{p}\right)^{2} \\
& =\frac{r(1-p)}{p^{2}}(1+r-p r-r(1-p)) \\
& =\frac{r(1-p)}{p^{2}}
\end{aligned}
$$

c) To show that the distribution of $Z=p Y$ converges as $p \rightarrow 0$ all we need to verify is convergence of moment generating functions because of Theorem 2.11 in my notes (Theorem 2.3.12 in the textbook).
The moment generating function of Z is

$$
\begin{aligned}
M_{Z}(t) & =\mathrm{E}\left(\mathrm{e}^{t Z}\right) \\
& =\mathrm{E}\left(\mathrm{e}^{t p Y}\right) \\
& =M_{Y}(t p) \\
& =\left(\frac{p}{1-(1-p) \mathrm{e}^{p t}}\right)^{r}
\end{aligned}
$$

Hence taking limits as $p \rightarrow 0$ we have

$$
\begin{aligned}
\lim _{p \rightarrow 0} M_{Z}(t) & =\lim _{p \rightarrow 0}\left(\frac{p}{1-(1-p) \mathrm{e}^{p t}}\right)^{r} \\
& =\left(\lim _{p \rightarrow 0} \frac{p}{1-(1-p) \mathrm{e}^{p t}}\right)^{r} \\
& =\left(\lim _{p \rightarrow 0} \frac{1}{\mathrm{e}^{p t}-t(1-p) \mathrm{e}^{p t}}\right)^{r} \\
& =(1-t)^{-r}
\end{aligned}
$$

Now if $X \sim \operatorname{gamma}(\alpha, \beta)$ then

$$
\begin{aligned}
M_{X}(t) & =\int_{0}^{\infty} \mathrm{e}^{t x} \frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} \mathrm{e}^{-x / \beta} d x \\
& =\int_{0}^{\infty} \frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} \mathrm{e}^{-(1 / \beta-t) x} d x \\
& =\left(\frac{1}{\beta(1 / \beta-t)}\right)^{\alpha} \int_{0}^{\infty} \frac{(1 / \beta-t)^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-(1 / \beta-t) x} d x
\end{aligned}
$$

Now for $t<1 / \beta$, the integrand is the pdf of a gamma random variable with parameters α and $(1 / \beta-t)^{-1}$ and so integrates to 1 . Thus the moment generating function of a gamma random variable is

$$
M_{X}(t)=(1-\beta t)^{-\alpha}
$$

Comparing this to the limit of moment generating functions found above we see that the limit is a moment generating function of a gamma random variable with parameters $\alpha=r$ and $\beta=1$. Since the moment generating functions converge, so do the cumulative distribution functions and so we can say that Z converges in distribution to a gamma $(\alpha=r, \beta=1)$ random variable as $p \rightarrow 0$. [3 marks]
Q. 4 a) Suppose that Y has a log-normal distribution then from the definition we see that we can write

$$
Y=\mathrm{e}^{X} \quad \text { where } \quad X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

The easy way to get the moments of Y is from the moment generating function of X because

$$
\mathrm{E}\left(Y^{r}\right)=\mathrm{E}\left(\mathrm{e}^{r X}\right)=M_{X}(r)=\exp \left\{r \mu+\frac{1}{2} r^{2} \sigma^{2}\right\}
$$

[2 marks]
Hence we have

$$
\begin{aligned}
\mathrm{E}(Y) & =\exp \left\{\mu+\frac{\sigma^{2}}{2}\right\} \\
\mathrm{E}\left(Y^{2}\right) & =\exp \left\{2 \mu+2 \sigma^{2}\right\} \\
\operatorname{Var}(Y) & =\exp \left\{2 \mu+2 \sigma^{2}\right\}-\exp \left\{2\left(\mu+\frac{\sigma^{2}}{2}\right)\right\}=\mathrm{e}^{2 \mu}\left(\mathrm{e}^{2 \sigma^{2}}-\mathrm{e}^{\sigma^{2}}\right)
\end{aligned}
$$

[3 marks]
b) For convenience, I will assume that X is a continuous random variable although that is not necessary and the proof is identical in the discrete case.

First we note that, as for all pdfs,

$$
\int_{-\infty}^{\infty} h(x) c^{*}(\boldsymbol{\eta}) \exp \left\{\sum \eta_{i} t_{i}(x)\right\} d x=1
$$

Since this is a constant for all $\boldsymbol{\eta}$ its partial derivatives must be 0 and so we have

$$
\frac{\partial}{\partial \eta_{j}} \int_{-\infty}^{\infty} h(x) c^{*}(\boldsymbol{\eta}) \exp \left\{\sum \eta_{i} t_{i}(x)\right\} d x=0
$$

For the exponential family we can always interchange integration and differentiation and so let us do this (also using the chain rule inside the integrand) to get

$$
\int_{-\infty}^{\infty} h(x)\left(\frac{\partial}{\partial \eta_{j}} c^{*}(\boldsymbol{\eta})\right) \exp \left\{\sum \eta_{i} t_{i}(x)\right\} d x+\int_{-\infty}^{\infty} t_{j}(x) h(x) c^{*}(\boldsymbol{\eta}) \exp \left\{\sum \eta_{i} t_{i}(x)\right\} d x=0
$$

[3 marks]
The second term in the sum on the left of the above expression is $\mathrm{E}\left(t_{j}(X)\right)$ by definition of expectation so we have

$$
\mathrm{E}\left(t_{j}(X)\right)=-\int_{-\infty}^{\infty} h(x)\left(\frac{\partial}{\partial \eta_{j}} c^{*}(\boldsymbol{\eta})\right) \exp \left\{\sum \eta_{i} t_{i}(x)\right\} d x
$$

Now recall that

$$
\frac{\partial}{\partial \eta_{j}} \log c^{*}(\boldsymbol{\eta})=\frac{\frac{\partial}{\partial \eta_{j}} c^{*}(\boldsymbol{\eta})}{c^{*}(\boldsymbol{\eta})} \Rightarrow \frac{\partial}{\partial \eta_{j}} c^{*}(\boldsymbol{\eta})=c^{*}(\boldsymbol{\eta}) \frac{\partial}{\partial \eta_{j}} \log c^{*}(\boldsymbol{\eta})
$$

Applying this in the above integrand we have

$$
\begin{aligned}
\mathrm{E}\left(t_{j}(X)\right) & =-\int_{-\infty}^{\infty} h(x)\left(\frac{\partial}{\partial \eta_{j}} \log c^{*}(\boldsymbol{\eta})\right) c^{*}(\boldsymbol{\eta}) \exp \left\{\sum \eta_{i} t_{i}(x)\right\} d x \\
& =-\left(\frac{\partial}{\partial \eta_{j}} \log c^{*}(\boldsymbol{\eta})\right) \int_{-\infty}^{\infty} h(x) c^{*}(\boldsymbol{\eta}) \exp \left\{\sum \eta_{i} t_{i}(x)\right\} d x \\
& =-\frac{\partial}{\partial \eta_{j}} \log c^{*}(\boldsymbol{\eta})
\end{aligned}
$$

since the integrand is now that of the original pdf.
[4 marks]
To prove the second part we only need to show that

$$
\begin{aligned}
& \frac{\partial}{\partial \eta_{j}} \mathrm{E}\left(t_{j}(X)\right)=\operatorname{Var}\left(t_{j}(X)\right) \\
& \frac{\partial}{\partial \eta_{j}} \mathrm{E}\left(t_{j}(X)\right)= \frac{\partial}{\partial \eta_{j}} \int_{-\infty}^{\infty} t_{j}(x) h(x) c^{*}(\boldsymbol{\eta}) \exp \left\{\sum \eta_{i} t_{i}(x)\right\} d x \\
&= \int_{-\infty}^{\infty} t_{j}(x) h(x)\left(\frac{\partial}{\partial \eta_{j}} c^{*}(\boldsymbol{\eta})\right) \exp \left\{\sum \eta_{i} t_{i}(x)\right\} d x \\
&+\int_{-\infty}^{\infty} t_{j}^{2}(x) h(x) c^{*}(\boldsymbol{\eta}) \exp \left\{\sum \eta_{i} t_{i}(x)\right\} d x \\
&=\left(\frac{\partial}{\partial \eta_{j}} \log c^{*}(\boldsymbol{\eta})\right) \int_{-\infty}^{\infty} t_{j}(x) h(x) c^{*}(\boldsymbol{\eta}) \exp \left\{\sum \eta_{i} t_{i}(x)\right\} d x+E\left[t_{j}^{2}(X)\right] \\
&= {\left[-\mathrm{E}\left(t_{j}(X)\right)\right] \mathrm{E}\left(t_{j}(X)\right)+E\left(t_{j}^{2}(X)\right) }
\end{aligned}
$$

Where the first expectation is a consequence of the result proved above and the other two are from the definition of expectation.
[3 marks]
Hence we have

$$
\frac{\partial}{\partial \eta_{j}} \mathrm{E}\left(t_{j}(X)\right)=-\left[\mathrm{E}\left(t_{j}(X)\right)\right]^{2}+E\left(t_{j}^{2}(X)\right)=\operatorname{Var}\left(t_{j}(X)\right)
$$

[1 mark]
The other part of the result is simply that following from our first result

$$
\frac{\partial}{\partial \eta_{j}} \mathrm{E}\left(t_{j}(X)\right)=\frac{\partial}{\partial \eta_{j}}\left(-\frac{\partial}{\partial \eta_{j}} \log c^{*}(\boldsymbol{\eta})\right)=-\frac{\partial^{2}}{\partial \eta_{j}^{2}} \log c^{*}(\boldsymbol{\eta})
$$

c) I will do the Poisson first as it is a little easier. In that case we have the probability mass function

$$
f(x \mid \lambda)=\frac{\lambda^{x} \mathrm{e}^{-\lambda} I(x \in\{0,1,2, \ldots\})}{x!}=\frac{I(x \in\{0,1,2, \ldots\})}{x!} \mathrm{e}^{-\lambda} \mathrm{e}^{x \log \lambda}
$$

Hence we can take the natural parameter $\eta=\log \lambda$ and corresponding $t_{1}(x)=x$.
[2 marks]
Clearly we have

$$
h(x)=\frac{I(x \in\{0,1,2, \ldots\})}{x!}
$$

so all that is left is to find $c^{*}(\eta)$. We note that $\eta=\log \lambda$ so we have $\lambda=\mathrm{e}^{\eta}$ and since $c(\lambda)=\mathrm{e}^{-\lambda}$ we get

$$
c^{*}(\eta)=\exp \left\{-\mathrm{e}^{\eta}\right\}
$$

[2 marks]
And so we can write $f(x \mid \eta)=h(x) c^{*}(\eta) \exp \{t(x) \eta\}$ as required

For the normal we can proceed in a similar way except that there is now a vector parameter $\theta=\left(\mu, \sigma^{2}\right)$. We can write the density function as

$$
\begin{aligned}
f\left(x \mid \mu, \sigma^{2}\right) & =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\} \\
& =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{x^{2}}{2 \sigma^{2}}+\frac{\mu x}{\sigma^{2}}-\frac{\mu^{2}}{2 \sigma^{2}}\right\} \\
& =\left(\frac{1}{\sqrt{2 \pi}}\right)\left(\frac{\mathrm{e}^{-\mu^{2} / 2 \sigma^{2}}}{\sigma}\right) \exp \left\{x \frac{\mu}{\sigma^{2}}-\frac{x^{2}}{2}\left(\frac{1}{\sigma^{2}}\right)\right\}
\end{aligned}
$$

Hence we get the natural parameters

$$
\eta_{1}=\frac{\mu}{\sigma^{2}} \quad \eta_{2}=\frac{1}{\sigma^{2}}
$$

with corresponding $t_{1}(x)=x, t_{2}(x)=-x^{2} / 2$.
Outside of the exponent we have $h(x)=1 / \sqrt{2 \pi}$ and

$$
c(\theta)=\frac{\mathrm{e}^{-\mu^{2} / 2 \sigma^{2}}}{\sigma}
$$

We can express this in terms of the natural parameters by

$$
c^{*}\left(\eta_{1}, \eta_{2}\right)=\sqrt{\eta_{2} \mathrm{e}^{-\eta_{1}^{2} / \eta_{2}}}
$$

Hence we can write the normal pdf in the canonical exponential family form

$$
f\left(x \mid \eta_{1}, \eta_{2}\right)=h(x) c^{*}\left(\eta_{1}, \eta_{2}\right) \exp \left\{t_{1}(x) \eta_{1}+t_{2}(x) \eta_{2}\right\}
$$

