STAT743 FOUNDATIONS OF STATISTICS

Fall 2019

Assignment 1 Solutions

Q.1

a)

b)

A= (ANB)UAN B and the sets on the right are mutually exclusive. Therefore
by the third axiom we have P(A) = P(A(\B) + P(A() B°). From the first axiom, we
have that P(A( B¢) > 0 and so P(A) > P(AN B). [2 marks]
Similarly we can write A|JB = A|J(B[)A®) where the two sets on the right are
mutually exclusive and so P(A|JB) = P(A) + P(B[)A°). The first axiom gives us
P(B(A° >0 and so P(AUB) > P(A). Also the first part of this question gives us
P(B[( A°) < P(B) and so we have P(A|JB) < P(A) + P(B). [4 marks]

First we note that, for any two events, A and B we have

AlJB = A4 B)

and that these two events on the right are mutually exclusive. so we have
P(A JB) = P(A)+P(A°(B)

Furthermore we have that

B = (A(B)JA(B)
and the two events on the right are mutually exclusive so

P(B) = P(A[B)+P(A°(\B) = P(A°(]B) = P(B)-P(A[)B)
and so, for any two events A and B we have
P(A|JB) = P(A)+P(B) - P(A[)B)

[4 marks]



We can extend this to three events as follows
rAlJBlJo) = p(AlUBJO)

= P(A|JB)+P(C)-P((AlB) ﬂ

— P(A)+ P(B) PAﬂB )+ P(C)-P(AN o) UrBN0o)
(A) +P(B) + P(C) — AﬂB
—[P(AﬂC)JrP(BﬂC)—P((AﬂC)ﬂ(BﬂC’))}.

Finally we note that (A(C)(B(C) = A B()C and hence

P(A| JB|JC) = P(A)+P(B)+P(C)~P(A(B)-P(A[ | C)—P(B[|C)+P(A[ B[ C)

[5 marks]

= P

c) Casella and Berger 1.24

(i) Let E; be the event that the game terminates (with a head) on the i*® toss. Clearly

the E; is a sequence of mutually exclusive events and we have
. . 1’
P(E;) = P((i — 1) tails followed by 1 head) = (5)

A wins the game if the first head lands on a odd-numbered toss so

P(A wins) = P(E1UE3UE5U"')
= P(E1) + P(E3) + P(E5) + -+

- ZP(E2i+1)
7=0
[e%e) 1 2i+1
- 3 (3)
1=0
S
- La9\4
1=0
B 05 2
0 1-025 3

[5 marks]

The final result comes from the result for geometric series that

S = Zari = 1L—r provided |r| <1



(ii)) The only thing that changes when p # 0.5 is that
P(E)=(1-p)'p

and so we get

. = : p 1
P(A wins) = g (1—P)*p= =
i=0 1_(1_p)2 2_p

[3 marks]

1
(iii) Since P(A wins) = - which is an increasing function of p for p € [0, 1] we have
-D
1

1
P(A wins) > l;glﬂ =3

[2 marks]



Q. 2

a) First we must show that

dTL

— K (
dtn

We will do this by induction.

d
— K (t
T
Now suppose that
dn—l
dtr 1
Then
dn

_Kfn

+ Z "ir+n

Consider n =1

- ij%(t—,) e (X)
_ f;(:i) e (X)

o0 T‘

= E "ir—&—l

1

Hence our assertion is true and so setting ¢t = 0 we see that

d'r’

— K (t
dtr (®)

[3 marks]
[o.¢] tT
(t) = k1 (X) + ; ﬁ’fr-l-n—l(X)
= d [t
Z % <F) KT—I—n—l(X)
r=1 ’
i tr—l
= "'ir-i-n—l(X)
— (r—1)!
o t,r
= Kn(X) + Z F’fr—l-n(X)
r=1
[3 marks]
o0 OT
= t)+ Z F/{,,Jrn(X) = k(1)
t=0 r=1 '
[1 mark]

b) It is easiest to use the original definition of K (t) and the result of part a). To ease

notation I will use ¢'(t), ¢”(t) and ¢”'(t) to denote the first three derivatives of any

function ¢(t) with respect to ¢



The first three derivatives of K (t) are

K (t) = %log(M (1))
ML
M (t)
o = VD (M(1)"
Kx(t) - (t) ( ())2
O ME®)
mepy o ME(@)  ML(O)ML()
B0 = 3 (M (1))

— 2K (K (?)

[4 marks]

Now recall that My (0) = 1 and that derivatives of My(t) evaluated at ¢ = 0 give the

moments of X we have

K (0)K(0)

R O
KU = 37 - A0
= B(XY) - ()
= E(X?—2uX + %)
= E((X —p)?)
= M2
) MO MOMI0)
KX(O) - MX(O) (MX(O))2
— B(X) — B(X) BX) 2
— E(XY) ~ B(X) B(X?) - 20 (B(X?)

E(X?) = 3uBE(X?) +2u®

E (X° = 3uX? + 3p°X — %)
E((X - p)?)

J25]

—12)

[6 marks]



c) If X ~ normal(y,o?) then we know from the textbook (Page 625) that

1
My = exp {,ut + 575202}

and so the cumulant generating function is

1
Ki(t) = ut + 515202

[1 mark]

From this we see that the derivatives of the cumulant generating function are

Hence we see that

o p+ter  r=1
Y k) =4 o -
7 + (1) o r=2
0 r=3,4,...
[2 marks]
" r=1
ke(X)=2 o2 r=2
0 r=3,4,
[1 mark]

d) By Theorem 4.5 in my notes (Theorem 4.2.12 in the textbook) we know that

MX+Y(t) = MX(t)MY(t)

because X and Y are independent random variables.

Hence we have

Ke(X +Y)

d'f‘
%KX+Y(Z€> -0
dT‘
——log{Mx.v(t)}
dtr ey —o
%log{Mx(t)My(t)}
t=0
d’l‘
@{Kx(t) + K, (t)}
t=0
d?" r
K (t) + — K, (t)
dtr =0 A" ) t=0

i (X) + Ry (Y)

[4 marks]



Q.3

a)

b)

Y T

The summand in the above expression is the negative binomial pmf with parameters r
and 1 — (1 — p)e’ provided that 0 < 1 — (1 —p)e’ < 1. and so for, provided this is true,

the infinite sum equals 1. [6 marks]

Now
0<1—(1-plef <1 <= 0<(1-pe'<1l <= log(l-p)+t <0 <= t< —log(1-p)

and we note that, since 1 —p < 1, —log(1 — p) > 0.

Hence,
M, (t) = (ﬁ) fort < —log(1—p)
[2 marks]
My(t) = p" (1= (1=pe)"
= My(t) = ' (1-(1—p)e') " (1 -p)e
= MJ(t) = r(r+1)p (1—(1—p)) " (1-p)e*
trp’ (1= (1= p)e’) " (1= p)e!
[2 marks]
Hence we can get the moments
BY) = M(0) = m(1— (1= )1 — ) =
[2 marks]



E(Y?) = M}(0)

= Var(Y)

Hr+ V(L= (1= p)) 721 - pp? + T

p
r(r+1)(1 —p)? L rd=p)
P p

2D (1) +1)
r(1—p)(L+7r—pr)

p2
r(L=p)(L+r—pr) (r1-p)\

P - ( p >
—T(lp; P) (1 +r—pr—r(l- p))
r(1—p)

p2
[4 marks]

c) To show that the distribution of Z = pY converges as p — 0 all we need to verify

is convergence of moment generating functions because of Theorem 2.11 in my notes

(Theorem 2.3.12 in the textbook).

The moment generating function of Z is

M,(t)

= E (etz)

E (etpy)

Hence taking limits as p — 0 we have

lim M, (t)

p—0

[3 marks]
()
p—0 \ 1 — (1 —p)ert
S ——
=01 — (1 —p)er
— 1 1 '
— oot — t(1 —p)ert
= (1-t)7"
[3 marks]



Now if X ~ gamma(c, 3) then

*° 1
Mx(t) = A eml_‘(—l'a_le_z/’gdl'

a) [
_ = 1 a—1_—(1/8-t)x d
/o L(a)B° !
— ; Y A (1/5 — t)a a—1_—(1/—t)x
<5(1/6 - t>) / My ° e

Now for ¢t < 1/, the integrand is the pdf of a gamma random variable with parameters
a and (1/8 —t)~! and so integrates to 1. Thus the moment generating function of a

gamma random variable is
My (t) = (1= pt)™

Comparing this to the limit of moment generating functions found above we see that
the limit is a moment generating function of a gamma random variable with param-
eters « = r and § = 1. Since the moment generating functions converge, so do the
cumulative distribution functions and so we can say that Z converges in distribution to

a gamma(a = r, f = 1) random variable as p — 0. [3 marks]



Q. 4 a) Suppose that Y has a log-normal distribution then from the definition we see that we
can write
Y = e¢® where X ~ Normal(y,o?)

The easy way to get the moments of Y is from the moment generating function of X

because

E(Y") = B(e¥) = My(r) = exp {ru+%r202}

[2 marks]

Hence we have

E(Y) = exp {u+ %2}

E(Y?) = exp {Q/L + 202}
2

Var(Y) = exp{2u+20°} —exp {2 (u + %) } = <eg"2 — e”2>

[3 marks]
b) For convenience, I will assume that X is a continuous random variable although that
is not necessary and the proof is identical in the discrete case.
First we note that, as for all pdfs,

/_oo h(z)c*(n) exp {Z mti(g;)} dr = 1

Since this is a constant for all i its partial derivatives must be 0 and so we have
g [~ .
E h(z)c*(n) exp {Z mti(x)} de =0
Nj J-—x

For the exponential family we can always interchange integration and differentiation

and so let us do this (also using the chain rule inside the integrand) to get
00 o . o0 .
/ h(z) (8_77-0 (n)) exp {Z nim)} dr+ / t;(x)h(z)c*(n) exp {Z niti(x)} dr =0
—0o0 ] —0o0

[3 marks]

The second term in the sum on the left of the above expression is E (¢;(X)) by definition

of expectation so we have

B(600) = = [ ) (e ) e {E nto)} da

[e.e]

[1 mark]

10



Now recall that

0 C*(Tl)
9 o, B B
—logc*(n) = —"2L—— = —*(n)=c"(n)—logc*
677]‘ g (77) C*(n) 3%‘ ("7) (n)anj g (77)

Applying this in the above integrand we have

B =~ [ 1) (5o toscm) e { Y nn()} do

a oo
= — [ —1logc* h(x)c* iti d
( o8¢ ) [~ e { St} do
0
= ——logc*(n
on; )
since the integrand is now that of the original pdf. [4 marks]

To prove the second part we only need to show that

0
an; E (t;(X)) = Var (;(X))
0 o [ .
gy B6) = g [ t@h)e myesp {3 nta)} dr
= /_ tij(z)h(z) %C*(n)) exp {Z T}iti(x)} dx

= (%bg c*(’n)) h ti(z)h(x)c*(n) exp {Z mti(x)} dx + E[t5(X)]
E

Where the first expectation is a consequence of the result proved above and the other

two are from the definition of expectation. [3 marks]

Hence we have

0 2
o E (t;(X)) = = [E(t;(X))]” + E(£3(X)) = Var(t;(X))
J
[1 mark]
The other part of the result is simply that following from our first result
0 0 0 o?
—E(t;(X)) = =— (| —=—logc" = ——=logc"
o (t;(X)) o ( oy 1o (n)) o2 18 (n)
[1 mark]

11



c) I will do the Poisson first as it is a little easier. In that case we have the probability

mass function

| ) = NeM(zref{0,1,2,..}) _ J(xe{o,l,Q,...})e_Ae%logA

z! z!

Hence we can take the natural parameter n = log A and corresponding t;(z) = z.

[2 marks]

Clearly we have
I(x €{0,1,2,...})
x!
so all that is left is to find ¢*(n). We note that n = log A so we have A = € and since

h(z) =

c(A\) = e we get
c¢'(n) = exp{—e’}
[2 marks]

And so we can write f(z |n) = h(x)c*(n)exp{t(x)n} as required

For the normal we can proceed in a similar way except that there is now a vector
parameter § = (i, 0?). We can write the density function as

flme?) = — exp{—M}

2mo 202

S S SO
\ ro 202 g2 202

- () (25 ) et -5 ()

Hence we get the natural parameters

7 1
= 3 2 = 3
with corresponding t,(z) = z, to(x) = —22/2. [2 marks]
Outside of the exponent we have h(z) = 1/v/27 and
e_u2/20-2
0) —
o) =

We can express this in terms of the natural parameters by

C*(771,772) = Q/y]2e_77%/772

Hence we can write the normal pdf in the canonical exponential family form

f(x | m,m2) = h(z)c"(n1,n2) exp {t1 (@) + ta(w)n2}

[2 marks]

12



