
STAT743 FOUNDATIONS OF STATISTICS (PART II)

Winter 2019

Assignment 3 Solutions

Q. 1 a) Since the sample come from a normal population with variance σ2, we know that

T = (n− 1)S2/σ2 ∼ χ2
n−1 so

E(cS) =
cσ√
n− 1

E
(√

T
)

=
cσ√
n− 1

∫ ∞
0

√
t

Γ((n− 1)/2)2(n−1)/2 t
n−1
2
−1e−

t
2 dt

=
cσΓ(n/2)

√
2

Γ((n− 1)/2)
√
n− 1

∫ ∞
0

1

Γ(n/2)2n/2
t
n
2
−1e−

t
2 dt

=
cΓ(n/2)

√
2

Γ((n− 1)/2)
√
n− 1

σ

Hence we should take

c =
Γ((n− 1)/2)

√
n− 1

Γ(n/2)
√

2
.

[10 marks]

b) As suggested I will work with Y1, . . . , Yn where Yi = Xi − µ. Note that

Y = X − µ S2
Y = S2

X

and E(Y ) = 0 so

Cov
(
X,S2

X

)
= Cov(Y , S2

Y )

= E
(
Y S2

Y

)
=

1

n− 1
E

(
Y

(
n∑
j=1

Y 2
j − nY

2

))

=
1

n− 1

{
E

(
Y

n∑
j=1

Y 2
j

)
− nE

(
Y

3
)}

[4 marks]
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Now the first of these expectations is

E

(
Y

n∑
j=1

Y 2
j

)
=

1

n
E

((
n∑
i=1

Yi

)(
n∑
j=1

Y 2
j

))

=
1

n

n∑
i=1

n∑
j=1

E
(
YiY

2
j

)

=
1

n

n∑
i=1

E
(
Y 3
i

)
+

1

n

n∑
i=1

∑
j 6=i

E (Yi) E
(
Y 2
j

)
(because Yi and Yj are independent for i 6= j)

= E
(
Y 3
)

(because E (Yi) = 0)

[4 marks]

The second we get similarly

E
(
Y

3
)

=
1

n3
E

((
n∑
i=1

Yi

)(
n∑
j=1

Yj

)(
n∑
k=1

Yk

))

=
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

E (YiYjYk)

=
1

n3

n∑
i=1

E
(
Y 3
i

)
+

3

n3

n∑
i=1

∑
j 6=i

E
(
YiY

2
j

)
+

1

n3

n∑
i=1

∑
j 6=i

∑
k/∈{i,j}

E (YiYjYk)

=
1

n3

n∑
i=1

E
(
Y 3
i

)
+

3

n3

n∑
i=1

∑
j 6=i

E (Yi) E
(
Y 2
j

)
+

1

n3

n∑
i=1

∑
j 6=i

∑
k/∈{i,j}

E (Yi) E (Yj) E (Yk)

=
1

n2
E
(
Y 3
)

[5 marks]

Hence we have

Cov
(
X,S2

X

)
=

1

n− 1

{
E
(
Y 3
)
− n

n2
E
(
Y 3
)}

=
1

n
E
(
Y 3
)

=
1

n
E
(
(X − µ)3

)
[2 marks]
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Q. 2 a) Let X1 ∼ χ2
p and X2 ∼ χ2

q be independent random variables. Then their joint pdf is

given by

fX1,X2
(x1, x2) =

1

Γ(p/2)Γ(q/2)2(p+q)/2
x
p/2−1
1 x

q/2−1
2 e−(x1+x2)/2

Consider the transformation

u =
x1/p

x2/q

v =
x2
q

⇒
x1 = puv

x2 = qv

The Jacobian of this transformation is

J =

∣∣∣∣∣∣
pv pu

0 q

∣∣∣∣∣∣ = pqv

and the support is

0 < x1 <∞

0 < x2 <∞

 ⇒

 0 < puv <∞

0 < qv <∞

 ⇒

 0 < u <∞,

0 < v <∞

[4 marks]

Hence the joint density of (U, V ) is

fU,V (u, v) =
1

Γ(p/2)Γ(q/2)2(p+q)/2
(puv)p/2−1(qv)q/2−1e−(puv+qv)/2|pqv|

0 < u <∞
0 < v <∞

=
pp/2qq/2

Γ(p/2)Γ(q/2)2(p+q)/2
up/2−1v(p+q)/2−1 exp

{
−v(pu+ q)

2

}
0 < u <∞
0 < v <∞

[2 marks]

We now integrate to get the marginal density for U

fU(u) =

∫ ∞
0

pp/2qq/2

Γ(p/2)Γ(q/2)2(p+q)/2
up/2−1v(p+q)/2−1 exp{−v(pu+ q)

2
} dv

=
Γ((p+ q)/2)

Γ(p/2)Γ(q/2)

pp/2qq/2up/2−1

(pu+ q)(p+q)/2

∫ ∞
0

(
pu+q
2

)(p+q)/2
Γ
(
p+q
2

) v
p+q
2
−1 exp

{
−
(
pu+ q

2

)
v

}
dv

=
Γ((p+ q)/2)

Γ(p/2)Γ(q/2)

pp/2qq/2up/2−1

(pu+ q)(p+q)/2

=
Γ((p+ q)/2)

Γ(p/2)Γ(q/2)

(
p

q

)p/2
up/2−1(

1 + p
q
u
)(p+q)/2 for 0 < u <∞

[4 marks]
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b) Let Y ∼ Fp,q then we can write

Y
d
=
X1/p

X2/q

where X1 ∼ χ2
p and X2 ∼ χ2

q are independent random variables so we have

E(Y ) =
q

p
E (X1) E

(
X−12

)
E
(
Y 2
)

=
q2

p2
E
(
X2

1

)
E
(
X−22

)
From the information on Page 623 we know that

E (X1) = p E
(
X2

1

)
= 2p+ p2

so we only need to find the moments of the reciprocals of a chi-squared random variable.

E
(
X−r2

)
=

∫ ∞
0

1

Γ(q/2)2q/2
xq/2−r−1e−x/2 dx

=
Γ
(
q−2r
2

)
Γ
(
q
2

)
2r

∫ ∞
0

1

Γ
(
q−2r
2

)
2(q−2r)/2

x(q−2r)/2−1e−x/2 dx

=
Γ
(
q−2r
2

)
Γ
(
q
2

)
2r

provided r <
q

2

Hence we have

E
(
X−12

)
=

Γ
(
q
2
− 1
)

2Γ
(
q
2

) =
1

q − 2
provided q > 2

E
(
X−22

)
=

Γ
(
q
2
− 2
)

4Γ
(
q
2

) =
1

(q − 2)(q − 4)
provided q > 4

[5 marks]

Thus, the moments of the F distribution are

E (Y ) =
q

p
× p× 1

q − 2
=

q

q − 2
provided q > 2

E (Y 2) =
q2

p2
× (2p− p2)× 1

(q − 2)(q − 4)

=
q2(p+ 2)

p(q − 2)(q − 4)
provided q > 4

Var (Y ) =
q2(p+ 2)

p(q − 2)(q − 4)
− q2

(q − 2)2

=
q2

q − 2

[
p+ 2

p(q − 4)
− 1

q − 2

]
=

2q2(p+ q − 2)

p(q − 2)2(q − 4)
provided q > 4

[4 marks]
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c) Suppose that X ∼ Fp,q and let

Y =
(p/q)X

1 + (p/q)X

The inverse of this transformation is

x =
qy

p(1− y)
⇒ dx

dy
=

q

p(1− y)2

and the support of the distribution is fond by

0 < x <∞ ⇒ 0 <
pX

q
< 1 +

pX

q
<∞∞ ⇒ 0 <

(p/q)X

1 + (p/q)X
< 1

[3 marks]

Using the result of part (a) for the density of X and Theorem 22 in my notes, the

density function for Y is

fY (y) = fX

(
qy

p(1− y)

) ∣∣∣∣ q

p(1− y)2

∣∣∣∣
=

Γ
(
p+q
2

)
Γ
(
p
2

)
Γ
(
q
2

) (p
q

)p/2 (
qy

p(1−y)

)p/2−1
(

1 + y
1−y

)(p+q)/2 ∣∣∣∣ q

p(1− y)2

∣∣∣∣

=
Γ
(
p+q
2

)
Γ
(
p
2

)
Γ
(
q
2

)
(

y
1−y

)p/2−1
(

1
1−y

)(p+q)/2
(1− y)2

=
Γ
(
p+q
2

)
Γ
(
p
2

)
Γ
(
q
2

)yp/2−1(1− y)q/2−1

We now recognize this density as that of a Beta random variable with parameters

α = p/2 and β = q/2.

[3 marks]
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Q. 3 a) For convenience I will use Xr to denote a random variable having a χ2
r distribution.

Now suppose that Xq and Xp−q are independent Chi-squared random variables. Then

we have, from textbook Lemma 5.3.2, that Xq +Xp−q ∼ χ2
p.

Hence, for any a > 0 we have

P(Xp > a) = P(Xq +Xp−q > a)

= P(Xq > a−Xp−q)

> P(Xq > a | Xp−q > 0)P(Xp−q > 0)

= P(Xq > a)P(Xp−q > 0) independence of Xq and Xp−q

= P(Xq > a) since P(Xp−q > 0) = 1

[5 marks]

b) In parts (b) and (c) of this question I will let φ(·) and Φ(·) denote the probability density

function and cumulative distribution function of the standard normal respectively.

Let Y = min(Z1, Z2). To show that Y does not have a standard normal distribution it

is only necessary to show that

P(Y 6 a) 6= Φ(a)

for at least one a ∈ IR. It is easiest to take a = 0 which I will do here.

P(Y 6 0) = 1− P(Y > 0)

= 1− P(Z1 > 0, Z2 > 0)

= 1− P(Z1 > 0)P(Z2 > 0) by independence of Z1 and Z2

= 1− 0.5× 0.5

= 0.75

6= Φ(0)

Hence Y is not standard normal. [4 marks]
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Now consider the cumulative distribution function of Y 2.

FY 2(y) = P(Y 2 6 y)

= P(−√y 6 Y 6
√
y)

= P(Y 6
√
y) − P(Y < −√y)

=
(
1− P(Y >

√
y)
)
−
(
1− P(Y > −√y)

)
= P(Y > −√y)− P(Y >

√
y)

= P(Z1 > −√y, Z2 > −√y)− P(Z1 > −√y, Z2 > −√y)

= P(Z1 > −√y)P(Z2 > −√y)− P(Z1 > −√y)P(Z2 > −√y)

=
(
1− Φ(−√y)

)2 − (1− Φ(
√
y)
)2

=
(
Φ(
√
y)
)2 − (1− Φ(

√
y)
)2

by symmetry of the standard normal

= 2Φ(
√
y)− 1

[6 marks]

Hence the probability density function of Y 2 is

fY 2(y) =
d

dy
FY 2(y) =

d

dy

(
2Φ(
√
y)− 1

)
= 2φ(

√
y)

1

2
√
y

=
1√
2πy

e−y/2

=
1

Γ(0.5)20.5
y0.5−1e−y/2

which we recognize as the pdf of the gamma(α = 0.5, β = 2) distribution and that is

the χ2
1 distribution so we have that Y 2 ∼ χ2

1. [4 marks]

c) If we now define Y = min(Z1, . . . , Zn) where Z1, . . . , Zn are independent standard

normal random variables then by the same process as in part (b) we have that the cdf

of Y 2 is

FY 2(y) = P(−√y 6 Y 6
√
y)

= P(Y > −√y)− P(Y >
√
y)

= P(Zi > −√y, i = 1, . . . , n)− P(Zi > −√y, i = 1, . . . , n)

= P(Z1 > −√y)P(Z2 > −√y)− P(Z1 > −√y)P(Z2 > −√y)

=
(
Φ(
√
y)
)n − (1− Φ(

√
y)
)n

6= 2Φ(
√
y)− 1 unless n = 2

Since we saw in part (b) that the cdf of the χ2
1 distribution is 2Φ(

√
y)− 1, we see that

Y 2 does not have a χ2
1 distribution if n > 2. [6 marks]
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Q. 4 a) First note that

P
(
X(n) 6 v

)
= P

(
X(1) 6 u,X(n) 6 v

)
+ P

(
X(1) > u,X(n) 6 v

)
= FX(1),X(n)

(u, v) + P
(
X(1) > u,X(n) 6 v

)
[2 marks]

Now we have

P
(
X(n) 6 v

)
= P (Xi 6 v, i = 1, . . . , n) =

n∏
i=1

P(Xi 6 v) = (FX(v))n

Furthermore we see that

P
(
X(1) > u,X(n) 6 v

)
= P (u < Xi 6 v, i = 1, . . . , n)

=
n∏
i=1

P (u < Xi 6 v) (by independence of X1, . . . , Xn)

= (FX(v)− FX(u))n

provided u < v and the probability is 0 otherwise. [2 marks]

Hence the joint cdf of X(1) and X(n) is

FX(1),X(n)
(u, v) =

 (FX(v))n − (FX(v)− FX(u))n if u < v

(FX(v))n if u > v

[2 marks]

We can get the joint pdf by taking derivatives of this to get

fX(1),X(n)
(u, v) =

∂2

∂u∂v
FX(1),X(n)

(u, v)

=


∂

∂v

{
nfX(u)

(
FX(v)− FX(u)

)n−1}
if u < v

0 if u > v

=

 n(n− 1)fX(u)fX(v)
(
FX(v)− FX(u)

)n−2
if u < v

0 if u > v

[2 marks]
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b) For the exponential(θ) I will use the form in your textbook but either standard param-

eterization is acceptable. Then from the result of in part (a) we have that the joint

density of (X(1), X(n)) is

fX(1),X(n)
(x1, xn) = n(n− 1)

(
1

θ
e−x/θ

)(
1

θ
e−x/θ

)(
e−x1/θ − e−xn/θ

)n−2
=

n(n− 1)

θ2
e−(x1+xn)/θ

(
e−x1/θ − e−xn/θ

)n−2
for 0 < x1 < xn <∞

[2 marks]

Now let us consider the transformation W = X(n) −X(1) and U = X(1)

w = xn − x1

u = x1
⇒

x1 = u

xn = u+ w
⇒ J =

∣∣∣∣∣∣
1 0

1 1

∣∣∣∣∣∣ = 1

The support of the transformation is found from

0 < x1 < xn <∞ ⇒ 0 < u < u+ w <∞ ⇒

 0 < u <∞

0 < w <∞

[2 marks]

Hence the joint density of (U,W ) for u > 0 and w > 0 is

fW,U(w, u) = fX(1),X(n)
(u, u+ w)

=
n(n− 1)

θ2
e−(2u+w)/θ

(
e−u/θ − e−(u+w)/θ

)n−2 × |1|
=

n(n− 1)

θ2
e−2u/θe−w/θe−(n−2)u/θ

(
1− e−w/θ

)n−2
=

(n
θ

e−nu/θ
)(n− 1

θ
e−w/θ

(
1− e−w/θ

)n−2)
[2 marks]

Since the joint density factors into separate functions of u and w for all (u,w) ∈ IR2 we

see that W = X(n) −X(1) and U = X(1) are independent random variables. [1 mark]
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From the second part of Theorem 6.15 we know that the marginal density of X(1) is

fX(1)
(u) = nfX(u)

[
1−FX(u)

]n−1
= n

(
1

θ
e−u/θ

)(
e−u/θ

)n−1
=

n

θ
e−nu/θ for u > 0

[1 mark]

From this and the independence of W and U we get

fW (w) =
fW,U(w, u)

fU(u)
=

n− 1

θ
e−w/θ

(
1− e−w/θ

)n−2
for w > 0

[1 mark]

c) Casella and Berger 5.24

From the first part of the question we have

fX(1),X(n)
(x1, xn) = n(n−1)

1

θ2

(xn
θ
− x1

θ

)n−2
=
n(n− 1)(xn − x1)n−2

θn
for 0 < u < v < θ

[1 mark]

Now we consider the bivariate transformation W = X(1)/X(n), U = X(n) from which

we get

w =
x1
xn

u = xn
⇒

x1 = uw

xn = u
⇒ J =

∣∣∣∣∣∣
w u

1 0

∣∣∣∣∣∣ = − u

The support of the distribution is found from

0 < x1 < xn < θ ⇒ 0 < uw < u < θ ⇒

 0 < u < θ

0 < w < 1

[2 marks]

Hence the joint density of (U,W ) is

fU,W (u,w) = fX(1),X(n)
(uw, u)|J |

=
n(n− 1)(u− uw)n−2

θn
| − u| for 0 < uw < u < θ

=
n(n− 1)

θn
un−1(1− w)n−2 for 0 < u < θ, 0 < w < 1

[2 marks]

Since this joint density factors into a function of u alone and a function of w alone, the

random variables U = X(n) and W = X(1)/X(n) are independent. [1 mark]
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From Theorem 6.18 we have that the cdf of Xn is

FX(n)
(x) =

(x
θ

)n
for 0 < x < θ

and so the density of the maximum is

fX(n)
(x) =

nxn−1

θn
for 0 < x < θ

From the independence of X(n) and X(1)/X(n) we then have that the density of W =

X(1)/X(n) is

fW (w) =
fW,X(1)

(w, x)

fX(1)
(x)

=

(
n(n−1)
θn

xn−1(1− w)n−2
)

(
nxn−1

θn

)
= (n− 1)(1− w)n−2 0 < w < 1

So we see that W = X(1)/X(n) ∼ beta(1, n− 1). [2 marks]
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