STAT743 FOUNDATIONS OF STATISTICS (PART II)

Winter 2019

Q. 1 a) Since the sample come from a normal population with variance σ^{2}, we know that $T=(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$ so

$$
\begin{aligned}
\mathrm{E}(c S) & =\frac{c \sigma}{\sqrt{n-1}} \mathrm{E}(\sqrt{T}) \\
& =\frac{c \sigma}{\sqrt{n-1}} \int_{0}^{\infty} \frac{\sqrt{t}}{\Gamma((n-1) / 2) 2^{(n-1) / 2}} t^{\frac{n-1}{2}-1} \mathrm{e}^{-\frac{t}{2}} d t \\
& =\frac{c \sigma \Gamma(n / 2) \sqrt{2}}{\Gamma((n-1) / 2) \sqrt{n-1}} \int_{0}^{\infty} \frac{1}{\Gamma(n / 2) 2^{n / 2}} t^{\frac{n}{2}-1} \mathrm{e}^{-\frac{t}{2}} d t \\
& =\frac{c \Gamma(n / 2) \sqrt{2}}{\Gamma((n-1) / 2) \sqrt{n-1}} \sigma
\end{aligned}
$$

Hence we should take

$$
c=\frac{\Gamma((n-1) / 2) \sqrt{n-1}}{\Gamma(n / 2) \sqrt{2}} .
$$

b) As suggested I will work with Y_{1}, \ldots, Y_{n} where $Y_{i}=X_{i}-\mu$. Note that

$$
\bar{Y}=\bar{X}-\mu \quad S_{Y}^{2}=S_{X}^{2}
$$

and $\mathrm{E}(\bar{Y})=0$ so

$$
\begin{aligned}
\operatorname{Cov}\left(\bar{X}, S_{X}^{2}\right) & =\operatorname{Cov}\left(\bar{Y}, S_{Y}^{2}\right) \\
& =\mathrm{E}\left(\bar{Y} S_{Y}^{2}\right) \\
& =\frac{1}{n-1} \mathrm{E}\left(\bar{Y}\left(\sum_{j=1}^{n} Y_{j}^{2}-n \bar{Y}^{2}\right)\right) \\
& =\frac{1}{n-1}\left\{\mathrm{E}\left(\bar{Y} \sum_{j=1}^{n} Y_{j}^{2}\right)-n \mathrm{E}\left(\bar{Y}^{3}\right)\right\}
\end{aligned}
$$

Now the first of these expectations is

$$
\begin{aligned}
\mathrm{E}\left(\bar{Y} \sum_{j=1}^{n} Y_{j}^{2}\right) & =\frac{1}{n} \mathrm{E}\left(\left(\sum_{i=1}^{n} Y_{i}\right)\left(\sum_{j=1}^{n} Y_{j}^{2}\right)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{E}\left(Y_{i} Y_{j}^{2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left(Y_{i}^{3}\right)+\frac{1}{n} \sum_{i=1}^{n} \sum_{j \neq i} \mathrm{E}\left(Y_{i}\right) \mathrm{E}\left(Y_{j}^{2}\right) \\
& \quad\left(\text { because } Y_{i} \text { and } Y_{j} \text { are independent for } i \neq j\right) \\
= & \left.\mathrm{E}\left(Y^{3}\right) \quad \quad \quad \text { because } \mathrm{E}\left(Y_{i}\right)=0\right)
\end{aligned}
$$

[4 marks]
The second we get similarly

$$
\begin{aligned}
\mathrm{E}\left(\bar{Y}^{3}\right) & =\frac{1}{n^{3}} \mathrm{E}\left(\left(\sum_{i=1}^{n} Y_{i}\right)\left(\sum_{j=1}^{n} Y_{j}\right)\left(\sum_{k=1}^{n} Y_{k}\right)\right) \\
& =\frac{1}{n^{3}} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \mathrm{E}\left(Y_{i} Y_{j} Y_{k}\right) \\
& =\frac{1}{n^{3}} \sum_{i=1}^{n} \mathrm{E}\left(Y_{i}^{3}\right)+\frac{3}{n^{3}} \sum_{i=1}^{n} \sum_{j \neq i} \mathrm{E}\left(Y_{i} Y_{j}^{2}\right)+\frac{1}{n^{3}} \sum_{i=1}^{n} \sum_{j \neq i} \sum_{k \notin\{i, j\}} \mathrm{E}\left(Y_{i} Y_{j} Y_{k}\right) \\
& =\frac{1}{n^{3}} \sum_{i=1}^{n} \mathrm{E}\left(Y_{i}^{3}\right)+\frac{3}{n^{3}} \sum_{i=1}^{n} \sum_{j \neq i} \mathrm{E}\left(Y_{i}\right) \mathrm{E}\left(Y_{j}^{2}\right)+\frac{1}{n^{3}} \sum_{i=1}^{n} \sum_{j \neq i} \sum_{k \notin\{i, j\}} \mathrm{E}\left(Y_{i}\right) \mathrm{E}\left(Y_{j}\right) \mathrm{E}\left(Y_{k}\right) \\
& =\frac{1}{n^{2}} \mathrm{E}\left(Y^{3}\right)
\end{aligned}
$$

[5 marks]
Hence we have

$$
\begin{aligned}
\operatorname{Cov}\left(\bar{X}, S_{X}^{2}\right) & =\frac{1}{n-1}\left\{\mathrm{E}\left(Y^{3}\right)-\frac{n}{n^{2}} \mathrm{E}\left(Y^{3}\right)\right\} \\
& =\frac{1}{n} \mathrm{E}\left(Y^{3}\right) \\
& =\frac{1}{n} \mathrm{E}\left((X-\mu)^{3}\right)
\end{aligned}
$$

Q. 2 a) Let $X_{1} \sim \chi_{p}^{2}$ and $X_{2} \sim \chi_{q}^{2}$ be independent random variables. Then their joint pdf is given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{\Gamma(p / 2) \Gamma(q / 2) 2^{(p+q) / 2}} x_{1}^{p / 2-1} x_{2}^{q / 2-1} \mathrm{e}^{-\left(x_{1}+x_{2}\right) / 2}
$$

Consider the transformation

$$
\begin{aligned}
u & =\frac{x_{1} / p}{x_{2} / q} \\
v & =\frac{x_{2}}{q}
\end{aligned} \Rightarrow \begin{aligned}
x_{1} & =p u v \\
x_{2} & =q v
\end{aligned}
$$

The Jacobian of this transformation is

$$
J=\left|\begin{array}{cc}
p v & p u \\
0 & q
\end{array}\right|=p q v
$$

and the support is

$$
\left.\begin{array}{c}
0<x_{1}<\infty \\
0<x_{2}<\infty
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
0<p u v<\infty \\
0<q v<\infty
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
0<u<\infty \\
0<v<\infty
\end{array}\right.
$$

Hence the joint density of (U, V) is

$$
\begin{aligned}
& f_{U, V}(u, v)=\frac{1}{\Gamma(p / 2) \Gamma(q / 2) 2^{(p+q) / 2}}(p u v)^{p / 2-1}(q v)^{q / 2-1} \mathrm{e}^{-(p u v+q v) / 2}|p q v| \\
& \begin{array}{l}
0<u<\infty \\
0<v<\infty
\end{array} \\
&=\frac{p^{p / 2} q^{q / 2}}{\Gamma(p / 2) \Gamma(q / 2) 2^{(p+q) / 2}} u^{p / 2-1} v^{(p+q) / 2-1} \exp \left\{-\frac{v(p u+q)}{2}\right\} \\
& 0<u<\infty \\
& 0<v<\infty
\end{aligned}
$$

We now integrate to get the marginal density for U

$$
\begin{aligned}
f_{U}(u) & =\int_{0}^{\infty} \frac{p^{p / 2} q^{q / 2}}{\Gamma(p / 2) \Gamma(q / 2) 2^{(p+q) / 2}} u^{p / 2-1} v^{(p+q) / 2-1} \exp \left\{-\frac{v(p u+q)}{2}\right\} d v \\
& =\frac{\Gamma((p+q) / 2)}{\Gamma(p / 2) \Gamma(q / 2)} \frac{p^{p / 2} q^{q / 2} u^{p / 2-1}}{(p u+q)^{(p+q) / 2}} \int_{0}^{\infty} \frac{\left(\frac{p u+q}{2}\right)^{(p+q) / 2}}{\Gamma\left(\frac{p+q}{2}\right)} v^{\frac{p+q}{2}-1} \exp \left\{-\left(\frac{p u+q}{2}\right) v\right\} d v \\
& =\frac{\Gamma((p+q) / 2)}{\Gamma(p / 2) \Gamma(q / 2)} \frac{p^{p / 2} q^{q / 2} u^{p / 2-1}}{(p u+q)^{(p+q) / 2}} \\
& =\frac{\Gamma((p+q) / 2)}{\Gamma(p / 2) \Gamma(q / 2)}\left(\frac{p}{q}\right)^{p / 2} \frac{u^{p / 2-1}}{\left(1+\frac{p}{q} u\right)^{(p+q) / 2}} \quad \text { for } 0<u<\infty
\end{aligned}
$$

b) Let $Y \sim F_{p, q}$ then we can write

$$
Y \stackrel{d}{=} \frac{X_{1} / p}{X_{2} / q}
$$

where $X_{1} \sim \chi_{p}^{2}$ and $X_{2} \sim \chi_{q}^{2}$ are independent random variables so we have

$$
\begin{aligned}
\mathrm{E}(Y) & =\frac{q}{p} \mathrm{E}\left(X_{1}\right) \mathrm{E}\left(X_{2}^{-1}\right) \\
\mathrm{E}\left(Y^{2}\right) & =\frac{q^{2}}{p^{2}} \mathrm{E}\left(X_{1}^{2}\right) \mathrm{E}\left(X_{2}^{-2}\right)
\end{aligned}
$$

From the information on Page 623 we know that

$$
\mathrm{E}\left(X_{1}\right)=p \quad \mathrm{E}\left(X_{1}^{2}\right)=2 p+p^{2}
$$

so we only need to find the moments of the reciprocals of a chi-squared random variable.

$$
\begin{aligned}
\mathrm{E}\left(X_{2}^{-r}\right) & =\int_{0}^{\infty} \frac{1}{\Gamma(q / 2) 2^{q / 2}} x^{q / 2-r-1} \mathrm{e}^{-x / 2} d x \\
& =\frac{\Gamma\left(\frac{q-2 r}{2}\right)}{\Gamma\left(\frac{q}{2}\right) 2^{r}} \int_{0}^{\infty} \frac{1}{\Gamma\left(\frac{q-2 r}{2}\right) 2^{(q-2 r) / 2}} x^{(q-2 r) / 2-1} \mathrm{e}^{-x / 2} d x \\
& =\frac{\Gamma\left(\frac{q-2 r}{2}\right)}{\Gamma\left(\frac{q}{2}\right) 2^{r}} \quad \text { provided } r<\frac{q}{2}
\end{aligned}
$$

Hence we have

$$
\begin{array}{ll}
\mathrm{E}\left(X_{2}^{-1}\right)=\frac{\Gamma\left(\frac{q}{2}-1\right)}{2 \Gamma\left(\frac{q}{2}\right)}=\frac{1}{q-2} & \text { provided } q>2 \\
\mathrm{E}\left(X_{2}^{-2}\right)=\frac{\Gamma\left(\frac{q}{2}-2\right)}{4 \Gamma\left(\frac{q}{2}\right)}=\frac{1}{(q-2)(q-4)} & \text { provided } q>4
\end{array}
$$

Thus, the moments of the F distribution are

$$
\begin{aligned}
\mathrm{E}(Y) & =\frac{q}{p} \times p \times \frac{1}{q-2}=\frac{q}{q-2} & & \text { provided } q>2 \\
\mathrm{E}\left(Y^{2}\right) & =\frac{q^{2}}{p^{2}} \times\left(2 p-p^{2}\right) \times \frac{1}{(q-2)(q-4)} & & \\
& =\frac{q^{2}(p+2)}{p(q-2)(q-4)} & & \text { provided } q>4 \\
\operatorname{Var}(Y) & =\frac{q^{2}(p+2)}{p(q-2)(q-4)}-\frac{q^{2}}{(q-2)^{2}} & & \\
& =\frac{q^{2}}{q-2}\left[\frac{p+2}{p(q-4)}-\frac{1}{q-2}\right] & & \text { provided } q>4
\end{aligned}
$$

[4 marks]
c) Suppose that $X \sim F_{p, q}$ and let

$$
Y=\frac{(p / q) X}{1+(p / q) X}
$$

The inverse of this transformation is

$$
x=\frac{q y}{p(1-y)} \quad \Rightarrow \quad \frac{d x}{d y}=\frac{q}{p(1-y)^{2}}
$$

and the support of the distribution is fond by

$$
0<x<\infty \quad \Rightarrow \quad 0<\frac{p X}{q}<1+\frac{p X}{q}<\infty \quad \Rightarrow \quad 0<\frac{(p / q) X}{1+(p / q) X}<1
$$

[3 marks]
Using the result of part (a) for the density of X and Theorem 22 in my notes, the density function for Y is

$$
\begin{aligned}
f_{Y}(y) & =f_{X}\left(\frac{q y}{p(1-y)}\right)\left|\frac{q}{p(1-y)^{2}}\right| \\
& =\frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)}\left(\frac{p}{q}\right)^{p / 2} \frac{\left(\frac{q y}{p(1-y)}\right)^{p / 2-1}}{\left(1+\frac{y}{1-y}\right)^{(p+q) / 2}}\left|\frac{q}{p(1-y)^{2}}\right| \\
& =\frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)} \frac{\left(\frac{y}{1-y}\right)^{p / 2-1}}{\left(\frac{1}{1-y}\right)^{(p+q) / 2}(1-y)^{2}} \\
& =\frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)} y^{p / 2-1}(1-y)^{q / 2-1}
\end{aligned}
$$

We now recognize this density as that of a Beta random variable with parameters $\alpha=p / 2$ and $\beta=q / 2$.
Q. 3 a) For convenience I will use X_{r} to denote a random variable having a χ_{r}^{2} distribution. Now suppose that X_{q} and X_{p-q} are independent Chi-squared random variables. Then we have, from textbook Lemma 5.3.2, that $X_{q}+X_{p-q} \sim \chi_{p}^{2}$. Hence, for any $a>0$ we have

$$
\begin{array}{rlrl}
\mathrm{P}\left(X_{p}>a\right) & =\mathrm{P}\left(X_{q}+X_{p-q}>a\right) & & \\
& =\mathrm{P}\left(X_{q}>a-X_{p-q}\right) & \\
& >\mathrm{P}\left(X_{q}>a \mid X_{p-q}>0\right) \mathrm{P}\left(X_{p-q}>0\right) & & \\
& =\mathrm{P}\left(X_{q}>a\right) \mathrm{P}\left(X_{p-q}>0\right) & & \text { independence of } X_{q} \text { and } X_{p-q} \\
& =\mathrm{P}\left(X_{q}>a\right) & & \text { since } \mathrm{P}\left(X_{p-q}>0\right)=1
\end{array}
$$

b) In parts (b) and (c) of this question I will let $\phi(\cdot)$ and $\Phi(\cdot)$ denote the probability density function and cumulative distribution function of the standard normal respectively.
Let $Y=\min \left(Z_{1}, Z_{2}\right)$. To show that Y does not have a standard normal distribution it is only necessary to show that

$$
\mathrm{P}(Y \leqslant a) \neq \Phi(a)
$$

for at least one $a \in \mathbb{R}$. It is easiest to take $a=0$ which I will do here.

$$
\begin{aligned}
\mathrm{P}(Y \leqslant 0) & =1-\mathrm{P}(Y>0) \\
& =1-\mathrm{P}\left(Z_{1}>0, Z_{2}>0\right) \\
& =1-\mathrm{P}\left(Z_{1}>0\right) \mathrm{P}\left(Z_{2}>0\right) \quad \text { by independence of } Z_{1} \text { and } Z_{2} \\
& =1-0.5 \times 0.5 \\
& =0.75 \\
& \neq \Phi(0)
\end{aligned}
$$

Hence Y is not standard normal.

Now consider the cumulative distribution function of Y^{2}.

$$
\begin{aligned}
F_{Y^{2}}(y) & =\mathrm{P}\left(Y^{2} \leqslant y\right) \\
& =\mathrm{P}(-\sqrt{y} \leqslant Y \leqslant \sqrt{y}) \\
& =\mathrm{P}(Y \leqslant \sqrt{y})-\mathrm{P}(Y<-\sqrt{y}) \\
& =(1-\mathrm{P}(Y>\sqrt{y}))-(1-\mathrm{P}(Y \geqslant-\sqrt{y})) \\
& =\mathrm{P}(Y \geqslant-\sqrt{y})-\mathrm{P}(Y>\sqrt{y}) \\
& =\mathrm{P}\left(Z_{1} \geqslant-\sqrt{y}, Z_{2} \geqslant-\sqrt{y}\right)-\mathrm{P}\left(Z_{1}>-\sqrt{y}, Z_{2}>-\sqrt{y}\right) \\
& =\mathrm{P}\left(Z_{1} \geqslant-\sqrt{y}\right) \mathrm{P}\left(Z_{2} \geqslant-\sqrt{y}\right)-\mathrm{P}\left(Z_{1}>-\sqrt{y}\right) \mathrm{P}\left(Z_{2}>-\sqrt{y}\right) \\
& =(1-\Phi(-\sqrt{y}))^{2}-(1-\Phi(\sqrt{y}))^{2} \\
& =(\Phi(\sqrt{y}))^{2}-(1-\Phi(\sqrt{y}))^{2} \quad \text { by symmetry of the standard normal } \\
& =2 \Phi(\sqrt{y})-1
\end{aligned}
$$

[6 marks]
Hence the probability density function of Y^{2} is

$$
\begin{aligned}
f_{Y^{2}}(y)=\frac{d}{d y} F_{Y^{2}}(y) & =\frac{d}{d y}(2 \Phi(\sqrt{y})-1) \\
& =2 \phi(\sqrt{y}) \frac{1}{2 \sqrt{y}} \\
& =\frac{1}{\sqrt{2 \pi y}} e^{-y / 2} \\
& =\frac{1}{\Gamma(0.5) 2^{0.5}} y^{0.5-1} \mathrm{e}^{-y / 2}
\end{aligned}
$$

which we recognize as the pdf of the gamma $(\alpha=0.5, \beta=2)$ distribution and that is the χ_{1}^{2} distribution so we have that $Y^{2} \sim \chi_{1}^{2}$.
[4 marks]
c) If we now define $Y=\min \left(Z_{1}, \ldots, Z_{n}\right)$ where $Z 1, \ldots, Z_{n}$ are independent standard normal random variables then by the same process as in part (b) we have that the cdf of Y^{2} is

$$
\begin{aligned}
F_{Y^{2}}(y) & =\mathrm{P}(-\sqrt{y} \leqslant Y \leqslant \sqrt{y}) \\
& =\mathrm{P}(Y \geqslant-\sqrt{y})-\mathrm{P}(Y>\sqrt{y}) \\
& =\mathrm{P}\left(Z_{i} \geqslant-\sqrt{y}, i=1, \ldots, n\right)-\mathrm{P}\left(Z_{i}>-\sqrt{y}, i=1, \ldots, n\right) \\
& =\mathrm{P}\left(Z_{1} \geqslant-\sqrt{y}\right) \mathrm{P}\left(Z_{2} \geqslant-\sqrt{y}\right)-\mathrm{P}\left(Z_{1}>-\sqrt{y}\right) \mathrm{P}\left(Z_{2}>-\sqrt{y}\right) \\
& =(\Phi(\sqrt{y}))^{n}-(1-\Phi(\sqrt{y}))^{n} \\
& \neq 2 \Phi(\sqrt{y})-1 \quad \text { unless } n=2
\end{aligned}
$$

Since we saw in part (b) that the cdf of the χ_{1}^{2} distribution is $2 \Phi(\sqrt{y})-1$, we see that Y^{2} does not have a χ_{1}^{2} distribution if $n>2$.
[6 marks]
Q. 4 a) First note that

$$
\begin{aligned}
\mathrm{P}\left(X_{(n)} \leqslant v\right) & =\mathrm{P}\left(X_{(1)} \leqslant u, X_{(n)} \leqslant v\right)+\mathrm{P}\left(X_{(1)}>u, X_{(n)} \leqslant v\right) \\
& =F_{X_{(1)}, X_{(n)}}(u, v)+\mathrm{P}\left(X_{(1)}>u, X_{(n)} \leqslant v\right)
\end{aligned}
$$

[2 marks]
Now we have

$$
\mathrm{P}\left(X_{(n)} \leqslant v\right)=\mathrm{P}\left(X_{i} \leqslant v, i=1, \ldots, n\right)=\prod_{i=1}^{n} \mathrm{P}\left(X_{i} \leqslant v\right)=\left(F_{X}(v)\right)^{n}
$$

Furthermore we see that

$$
\begin{aligned}
\mathrm{P}\left(X_{(1)}>u, X_{(n)} \leqslant v\right) & =\mathrm{P}\left(u<X_{i} \leqslant v, i=1, \ldots, n\right) \\
& \left.=\prod_{i=1}^{n} \mathrm{P}\left(u<X_{i} \leqslant v\right) \quad \text { (by independence of } X_{1}, \ldots, X_{n}\right) \\
& =\left(F_{X}(v)-F_{X}(u)\right)^{n}
\end{aligned}
$$

provided $u<v$ and the probability is 0 otherwise.
Hence the joint cdf of $X_{(1)}$ and $X_{(n)}$ is

$$
F_{X_{(1)}, X_{(n)}}(u, v)= \begin{cases}\left(F_{X}(v)\right)^{n}-\left(F_{X}(v)-F_{X}(u)\right)^{n} & \text { if } u<v \\ \left(F_{X}(v)\right)^{n} & \text { if } u \geqslant v\end{cases}
$$

[2 marks]
We can get the joint pdf by taking derivatives of this to get

$$
\begin{aligned}
f_{X_{(1)}, X_{(n)}}(u, v) & =\frac{\partial^{2}}{\partial u \partial v} F_{X_{(1)}, X_{(n)}}(u, v) \\
& = \begin{cases}\frac{\partial}{\partial v}\left\{n f_{X}(u)\left(F_{X}(v)-F_{X}(u)\right)^{n-1}\right\} & \text { if } u<v \\
0 & \text { if } u \geqslant v\end{cases} \\
& = \begin{cases}n(n-1) f_{X}(u) f_{X}(v)\left(F_{X}(v)-F_{X}(u)\right)^{n-2} & \text { if } u<v \\
0 & \text { if } u \geqslant v\end{cases}
\end{aligned}
$$

b) For the exponential (θ) I will use the form in your textbook but either standard parameterization is acceptable. Then from the result of in part (a) we have that the joint density of $\left(X_{(1)}, X_{(n)}\right)$ is

$$
\begin{aligned}
f_{X_{(1)}, X_{(n)}}\left(x_{1}, x_{n}\right) & =n(n-1)\left(\frac{1}{\theta} \mathrm{e}^{-x / \theta}\right)\left(\frac{1}{\theta} \mathrm{e}^{-x / \theta}\right)\left(\mathrm{e}^{-x_{1} / \theta}-\mathrm{e}^{-x_{n} / \theta}\right)^{n-2} \\
& =\frac{n(n-1)}{\theta^{2}} \mathrm{e}^{-\left(x_{1}+x_{n}\right) / \theta}\left(\mathrm{e}^{-x_{1} / \theta}-\mathrm{e}^{-x_{n} / \theta}\right)^{n-2} \quad \text { for } 0<x_{1}<x_{n}<\infty
\end{aligned}
$$

Now let us consider the transformation $W=X_{(n)}-X_{(1)}$ and $U=X_{(1)}$

$$
\begin{aligned}
& w=x_{n}-x_{1} \\
& u=x_{1}
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& x_{1}=u \\
& x_{n}=u+w
\end{aligned} \quad \Rightarrow \quad J=\left|\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right|=1
$$

The support of the transformation is found from

$$
0<x_{1}<x_{n}<\infty \Rightarrow 0<u<u+w<\infty \Rightarrow\left\{\begin{array}{l}
0<u<\infty \\
0<w<\infty
\end{array}\right.
$$

Hence the joint density of (U, W) for $u>0$ and $w>0$ is

$$
\begin{aligned}
f_{w, U}(w, u) & =f_{X_{(1)}, X_{(n)}}(u, u+w) \\
& =\frac{n(n-1)}{\theta^{2}} \mathrm{e}^{-(2 u+w) / \theta}\left(\mathrm{e}^{-u / \theta}-\mathrm{e}^{-(u+w) / \theta}\right)^{n-2} \times|1| \\
& =\frac{n(n-1)}{\theta^{2}} \mathrm{e}^{-2 u / \theta} \mathrm{e}^{-w / \theta} \mathrm{e}^{-(n-2) u / \theta}\left(1-\mathrm{e}^{-w / \theta}\right)^{n-2} \\
& =\left(\frac{n}{\theta} \mathrm{e}^{-n u / \theta}\right)\left(\frac{n-1}{\theta} \mathrm{e}^{-w / \theta}\left(1-\mathrm{e}^{-w / \theta}\right)^{n-2}\right)
\end{aligned}
$$

Since the joint density factors into separate functions of u and w for all $(u, w) \in \mathbb{R}^{2}$ we see that $W=X_{(n)}-X_{(1)}$ and $U=X_{(1)}$ are independent random variables. [1 mark]

From the second part of Theorem 6.15 we know that the marginal density of $X_{(1)}$ is

$$
\begin{aligned}
f_{X_{(1)}}(u)=n f_{X}(u)\left[1-F_{X}(u)\right]^{n-1}=n\left(\frac{1}{\theta} \mathrm{e}^{-u / \theta}\right)\left(\mathrm{e}^{-u / \theta}\right)^{n-1}=\frac{n}{\theta} \mathrm{e}^{-n u / \theta} \quad \text { for } u>0
\end{aligned}
$$

From this and the independence of W and U we get

$$
f_{W}(w)=\frac{f_{W, U}(w, u)}{f_{U}(u)}=\frac{n-1}{\theta} \mathrm{e}^{-w / \theta}\left(1-\mathrm{e}^{-w / \theta}\right)^{n-2} \quad \text { for } w>0
$$

[1 mark]

c) Casella and Berger 5.24

From the first part of the question we have
$f_{X_{(1)}, X_{(n)}}\left(x_{1}, x_{n}\right)=n(n-1) \frac{1}{\theta^{2}}\left(\frac{x_{n}}{\theta}-\frac{x_{1}}{\theta}\right)^{n-2}=\frac{n(n-1)\left(x_{n}-x_{1}\right)^{n-2}}{\theta^{n}} \quad$ for $0<u<v<\theta$
[1 mark]
Now we consider the bivariate transformation $W=X_{(1)} / X_{(n)}, U=X_{(n)}$ from which we get

$$
\begin{aligned}
w & =\frac{x_{1}}{x_{n}} \\
u & =x_{n}
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& x_{1}=u w \\
& x_{n}=u
\end{aligned} \quad \Rightarrow \quad J=\left|\begin{array}{ll}
w & u \\
1 & 0
\end{array}\right|=-u
$$

The support of the distribution is found from

$$
0<x_{1}<x_{n}<\theta \Rightarrow 0<u w<u<\theta \Rightarrow\left\{\begin{array}{l}
0<u<\theta \\
0<w<1
\end{array}\right.
$$

[2 marks]
Hence the joint density of (U, W) is

$$
\begin{aligned}
f_{U, W}(u, w) & =f_{X_{(1)}, X_{(n)}}(u w, u)|J| \\
& =\frac{n(n-1)(u-u w)^{n-2}}{\theta^{n}}|-u| \quad \text { for } 0<u w<u<\theta \\
& =\frac{n(n-1)}{\theta^{n}} u^{n-1}(1-w)^{n-2} \quad \text { for } 0<u<\theta, 0<w<1
\end{aligned}
$$

Since this joint density factors into a function of u alone and a function of w alone, the random variables $U=X_{(n)}$ and $W=X_{(1)} / X_{(n)}$ are independent.
[1 mark]

From Theorem 6.18 we have that the cdf of X_{n} is

$$
F_{X_{(n)}}(x)=\left(\frac{x}{\theta}\right)^{n} \quad \text { for } 0<x<\theta
$$

and so the density of the maximum is

$$
f_{X_{(n)}}(x)=\frac{n x^{n-1}}{\theta^{n}} \quad \text { for } 0<x<\theta
$$

From the independence of $X_{(n)}$ and $X_{(1)} / X_{(n)}$ we then have that the density of $W=$ $X_{(1)} / X_{(n)}$ is

$$
\begin{aligned}
f_{W}(w) & =\frac{f_{W, X_{(1)}}(w, x)}{f_{X_{(1)}}(x)} \\
& =\frac{\left(\frac{n(n-1)}{\theta^{n}} x^{n-1}(1-w)^{n-2}\right)}{\left(\frac{n x^{n-1}}{\theta^{n}}\right)} \\
& =(n-1)(1-w)^{n-2} \quad 0<w<1
\end{aligned}
$$

So we see that $W=X_{(1)} / X_{(n)} \sim \operatorname{beta}(1, n-1)$.
[2 marks]

