
STAT743 FOUNDATIONS OF STATISTICS (PART II)

Winter 2019

Assignment 4 Solutions

Q. 1 a) To show that XnYn
p−→0 we need to show that, for any δ > 0 and ε > 0 there exists N

such that

n > N ⇒ P (|XnYn| > ε) < δ

To do this we note that

P (|XnYn| > ε) = (|Xn||Yn| > ε)

6 P
(
|Xn| >

√
ε OR |Yn| >

√
ε
)

(since |Xn||Yn| > ε ⇒ |Xn| >
√
ε ∪ |Yn| >

√
ε)

6 P
(
|Xn| >

√
ε
)

+ P
(
|Yn| >

√
ε
)

(since P(A ∪ B) = P(A) + P(B)− P(A
⋂

B) 6 P(A) + P(B))

[4 marks]

Now Xn
p−→0 implies that there exists N1 such that

n > N1 ⇒ P
(
|Xn| >

√
ε
)
<

δ

2

And similarly Yn
p−→0 implies there exists N2 such that

n > N2 ⇒ P
(
|Yn| >

√
ε
)
<

δ

2

Therefore

n > max{N1, N2} ⇒ P (|XnYn| > ε) 6 P
(
|Xn| >

√
ε
)

+ P
(
|Yn| >

√
ε
)
< δ

and so XnYn
p−→0 as required. [4 marks]
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b) This proceeds in a similar way to the first part of the question. First we note that the

Triangle Inequality tells us |Xn + Yn − (X + Y )| < |Xn −X|+ |Yn − Y | and so

P (|Xn + Yn − (X + Y )| > ε)

6 P (|Xn −X|+ |Yn − Y | > ε)

6 P
(
|Xn −X| >

ε

2
∪ |Yn − Y | >

ε

2

)
(since |Xn −X|+ |Yn − Y | > ε ⇒ |Xn −X| > ε/2 ∪ |Yn − Y | > ε/2)

6 P
(
|Xn −X| >

ε

2

)
+ P

(
|Yn − Y | >

ε

2

)
(since P(A ∪ B) = P(A) + P(B)− P(A

⋂
B) 6 P(A) + P(B))

[4 marks]

Now Xn
p−→X implies that there exists N1 such that

n > N1 ⇒ P
(
|Xn −X| >

ε

2

)
<

δ

2

And similarly Yn
p−→Y implies there exists N2 such that

n > N2 ⇒ P
(
|Yn − Y | >

ε

2

)
<

δ

2

Therefore if we set N = max{N1, N2} we have that n > N implies

P (|Xn + Yn − (X + Y )| > ε) 6 P
(
|Xn −X| >

ε

2

)
+ P

(
|Yn − Y | >

ε

2

)
< δ

and so Xn + Yn
p−→X + Y as required. [4 marks]

c)

Zn =
√
n(Yn − µ)

d−→ Z ∼ normal(0, σ2)

Now for every fixed n and ε > 0 we have

P (|Yn − µ| < ε) = P
(
|Zn| <

√
nε
)

so that

P (|Yn − µ| < ε) = P
(
|Zn| <

√
nε
)

= P
(
−
√
nε < Zn <

√
nε
)

= Fn(
√
nε)− Fn(−

√
nε)

where Fn is the cumulative distribution function of Zn.
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Now for any N , because of monotonicity of the Fn, we have that

n > N ⇒ Fn
(√

nε
)
> Fn

(√
Nε
)

and Fn
(
−
√
nε
)
6 Fn

(
−
√
Nε
)

so that for n > N we have

P (|Yn − µ| < ε) > Fn

(√
Nε
)
− Fn

(
−
√
Nε
)

= 1− 2Φ
(
−
√
Nε
)

+ Fn

(√
Nε
)
− Φ

(√
Nε
)
− Fn

(
−
√
Nε
)

+ Φ
(
−
√
Nε
)

where Φ is the cdf of the normal(0, 1) and for any a > 0, Φ(a)−Φ(−a) < 1− 2Φ(−a).

For any ε > 0, δ > 0 we can choose an N0 such that Φ
(
−
√
N0ε

)
< δ/4 and since

Fn(x)→ Φ(x) at every x ∈ IR we can also find N > N0 such that

n > N ⇒
∣∣∣Fn (√Nε)− Φ

(√
Nε
)∣∣∣ < δ

4
and

∣∣∣Fn (−√Nε)− Φ
(
−
√
Nε
)∣∣∣ < δ

4

from which we see that

n > N ⇒ Fn

(√
Nε
)
− Φ

(√
Nε
)
> −δ

4
and Fn

(
−
√
Nε
)
− Φ

(
−
√
Nε
)
<
δ

4

Hence for such an N we have that

n > N ⇒ P (|Yn − µ| < ε) > 1− 2
δ

4
− δ

4
− δ

4
= 1− δ

Hence we have that for any ε > 0, δ > 0 we can find an N such that

P (|Yn − µ| < ε) > 1− δ

and so Yn
p−→µ as required. [9 marks]
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Q. 2 a) For any ε > 0, B > 0 we have

P
(
|XnYn| > ε

)
= P

(
|Xn||Yn| > ε

)
= P(|Xn||Yn| > ε, |Xn| 6 B

)
+ P(|Xn||Yn| > ε, |Xn| > B

)
6 P

(
|Yn| > ε/B

)
+ P(|Xn| > B

)
Take an arbitrary δ > 0 then, since Xn is bounded in probability we find N1 and B

such that

n > N1 ⇒ P
(
|Xn| > B

)
= 1− P

(
|Xn| 6 B) 6

δ

2

Also since Yn
p−→0 we can find N2 such that

n > N2 ⇒ P
(
|Yn| > ε

)
<

δ

2

Hence, for any fixed δ > 0, ε > 0, we can find N > max{N1, N2} such that

n > N ⇒ P
(
|XnYn| > ε

)
6 P

(
|Yn| > ε/B

)
+ P(|Xn| > B

)
< δ

and so XnYn
p−→0 as required. [8 marks]

b) Using two terms in the Taylors expansion we have

g(Yn)− g(θ) = g′(θ)(Yn − θ) +
g′′(θ)

2
(Yn − θ)2 +R2(Yn)

However, the statement of the Theorem tells us that g′(θ) = 0 so we have

g(Yn)− g(θ) =
g′′(θ)

2
(Yn − θ)2 +R2(Yn)

which we can rewrite as

n
(
g(Yn)− g(θ)

)
σ2

=

(√
n(Yn − θ)

σ

)2 [
g′′(θ)

2
+

R2(Yn)

(Yn − θ)2

]
Now Taylor’s Theorem tells us that

lim
y→θ

R2(y)

(y − θ)2
= 0

which means that for any ε > 0 there exists δ > 0 such that

|y − θ| < δ ⇒ |R2(y)|
(y − θ)2

< ε

Hence we have that

P

(
|R2(Yn)|
(Yn − θ)2

< ε

)
> P

(
|Yn − θ| < δ

)
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Since we showed in Question 1(c) above that Yn
p−→θ we can choose N such that

n > N ⇒ P

(
|R2(Yn)|
(Yn − θ)2

< ε

)
> P

(
|Yn − θ| < δ

)
> 1− δ

and so we have that

R2(Yn)

(Yn − θ)2
p−→ 0 ⇒ g′′(θ)

2
+

R2(Yn)

(Yn − θ)2
p−→ g′′(θ)

2

[8 marks]

Now let us consider the random variable

Zn =

√
n(Yn − θ)
σ2

d−→ Z ∼ N(0, 1)

and let Xn = Z2
n then we have that the cumulative distribution function of Xn is

FXn(x) = P (Xn 6 x)

= P
(
Z2
n 6 x

)
= P

(
−
√
x 6 Zn 6

√
x
)

= FZn

(√
x
)
− FZn

(
−
√
x
)

Hence, since FZn(z)→ Φ(z) as n→∞ for all z ∈ IR we have

lim
n→∞

FXn(x) = Φ
(√

x
)
− Φ

(
−
√
x
)

= P
(
Z2 < x

)
where Z2 is the square of a standard normal random variable and, from Example 2.1.9

in the text book, Z2 ∼ χ2
1 so we have that Xn

d−→X ∼ χ2
1. [5 marks]

We can now apply Slutsky’s Theorem to

n
(
g(Yn)− g(θ)

)
σ2

= XnWn

where

Xn =
n(Yn − θ)2

σ2

d−→ X

Wn =
g′′(θ)

2
+

R2(Yn)

(Yn − θ)2
p−→ g′′(θ)

2

to see that

n
(
g(Yn)− θ

) d−→ σ2g′′(θ)

2
X where X ∼ χ2

1

[4 marks]
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Q. 3 a) (i) From Theorem 6.15 in my notes the cdf of X(n) is

P(X(n) 6 x) =
(
P(X1 6 x)

)n
=
(
1− e−x/µ

)n
For any Bε > 0 we have

P(X(n) 6 Bε) =
(
1− e−Bε/µ

)n
⇒ limn→∞ P(X(n) 6 Bε) = limn→∞

(
1− e−Bε/µ

)n
= 0

Hence we have that for any Bε > 0 we can find Nε such that

n > Nε ⇒ P(X(n) 6 Bε) 6 ε

and so we see that the sequence X(n) is not bounded in probability [6 marks]

(ii) For the above we know that, for any z ∈ IR

P(Zn 6 z) = P(X(n) − µ log 6 z)

= P(X(n) 6 z + µ log n)

=


(

1− exp

{
z

µ
− log(n)

})n
for z > −mu log n

0 for z < −µ log n

=


(

1− e−z/µ

n

)n
for z > −mu log n

0 for z < −µ log n

Hence for any z ∈ IR lim
n→∞

P(Zn 6 z) = exp
{
−e−z/µ

}
. [4 marks]

Now we need to show that this is a valid cumulative distribution function.

Let G(z) = exp{−ez/µ} the we see that

dG(z)

dz
=

1

µ
exp

{
− z
µ
− e−z/µ

}
> 0

Hence G(z) is monotone increasing.

Furthermore we have

lim
z→−∞

G(z) = lim
z→−∞

exp
{
−ez/µ

}
= exp

{
− lim

z→−∞
e−z/µ

}
= 0

lim
z→∞

G(z) = lim
z→∞

exp
{
−ez/µ

}
= exp

{
− lim

z→∞
e−z/µ

}
= exp{0} = 1
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Therefore G is indeed a valid cumulative distribution function and so there is a

random variable Z such that Zn
d−→Z. [4 marks]

Finally the probability density function of the limiting random variable Z is

fZ(x) =
dG(z)

dz
=

1

µ
exp

{
− z
µ
− e−z/µ

}
for z ∈ IR

[2 marks]

b) Casella & Berger 5.44

(i) Since X1, . . . , Xn are iid Bernoulli(p) random variables we have

E(Xi) = p Var(Xi) − p(1− p) <∞ i = 1, . . . , n

Hence the Central Limit Theorem applies and
√
n(Yn − p)√
p(1− p)

d−→ N(0, 1) ⇒
√
n(Yn − p)

d−→ N
(
0, p(1− p)

)
[3 marks]

(ii) We can define the function

g(x) = x(1− x) ⇒ g′(x) = 1− 2x

Hence g′(p) 6= 0 provided p 6= 0.5 and we can apply the first order delta method to

get

√
n
(
g(Yn)− g(p)

)
=

√
n
(
Yn(1− Yn)− p(1− p)

)
d−→ N

(
0,
(
g′(p)

)2
p(1− p)

)
d
= N

(
0, (1− 2p)2p(1− p)

)
[3 marks]

(iii) When p = 0.5 we have g′(p) = 0 and so the first order delta method is not applicable

but the second order delta method is applicable as long as g′′(0.5) exists and is not

0. In our case we have

g′′(p) = − 2 for any p ∈ (0, 1)

Hence we have

n
(
g(Yn)− g(0.5)

)
=

√
n
(
Yn(1− Yn)− 0.25

)
d−→ g′′(0.5)× 0.5× (1− 0.5)

2
χ2

1

d
= −0.25χ2

1
[3 marks]
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Q. 4 a) The probability mass function of the Binomial(n = 4, p = 1/3) distribution can be

written as
x 0 1 2 3 4

f(x)
1

81

8

81

24

81

32

81

16

81

The cumulative distribution function is then

F (x) =



0 x < 0

1

81
0 6 x < 1

9

81
1 6 x < 2

33

81
2 6 x < 3

65

81
3 6 x < 4

1 x > 4

Hence an algorithm to generate such random variables is

1. Generate U ∼ Uniform(0, 1).

2. If U <
1

81
then return X = 0

Else if
1

81
< U <

9

81
then return X = 1

Else if
9

81
< U <

33

81
then return X = 2

Else if
33

81
< U <

65

81
then return X = 3

Else return X = 4 [6 marks]

it was not required but a more second step in this algorithm is

If U <
32

81
then return X = 3

Else if
32

81
< U <

56

81
then return X = 2

Else if
56

81
< U <

72

81
then return X = 4

Else if
72

81
< U <

80

81
then return X = 1

Else return X = 0
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b) (i) Even though the cdf of the logistic is given in the textbook, you were required to

derive it as stated in the question.

The cdf is given by

F (x) =

∫ x

−∞

e−y

(1 + e−y)2
dy

Now consider the change of variables

u = 1 + e−y ⇒ du = − e−ydy

and the limits transform to

y → −∞ ⇒ u→∞ y = x ⇒ u = 1 + e−x

Hence we get

F (x) =

∫ 1+e−x

∞
− 1

u2
du

=

∫ ∞
1+e−x

u−2 du

= −1

u

∣∣∣∣∞
1+e−x

=
1

1 + e−x

[2 marks]

The inverse of this cumulative distribution can be found by setting u = F (x) and

solving for x. This gives

u =
1

1 + e−x
⇒ 1 + e−x =

1

u

⇒ e−x =
1− u
u

⇒ x = log(u)− log(1− u)

[2 marks]

Hence the algorithm to generate standard logistic random variables is

1. Generate U ∼ Uniform(0, 1).

2. Return X = log(U)− log(1− U). [2 marks]
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(ii) Suppose that Z ∼ logistic(0, 1) then consider the location scale transformation

X = µ+ βZ. The cdf of X is then

FX(x) = P(X 6 x) = P

(
Z 6

x− µ
β

)
=

(
1 + exp

{
x− µ
β

})−1
and so the pdf of X is

fX(x) =
dF (x)

dx
=

1

β

exp{−(x− µ)/β}
(1 + exp{−(x− µ)/β})2

which from Page 624 in the textbook is the pdf of the logistic(µ, β) distribution.

[2 marks]

Hence the algorithm to generate general logistic random variables is

1. Generate U ∼ Uniform(0, 1).

2. Return X = µ+ β
(

log(U)− log(1− U)
)
. [2 marks]

c) Casella and Berger 5.50

Suppose that U1 and U2 are independent Unif[0, 1] random variables and

X1 = cos(2πU1)
√
−2 logU2 X2 = sin(2πU1)

√
−2 logU2

then we have that

X2
1 +X2

2 = −2 logU2 ⇒ U2 = exp

{
−1

2
(X2

1 +X2
2 )

}
X2

X1

= tan(2πU2) ⇒ U2 =
1

2π
tan−1

(
X2

X1

)
[3 marks]

The Jacobian of the transformation (U1, U2)→ (X1, X2) is

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣

−x2/x21
1

2π

(
1 +

x22
x21

) 1/x21
1

2π

(
1 +

x22
x21

)

−x1 exp

{
−1

2
(x21 + x22)

}
−x2 exp

{
−1

2
(x21 + x22)

}

∣∣∣∣∣∣∣∣∣∣∣∣
=

1

2π
exp

{
−1

2
(x21 + x22)

}
[2 marks]
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Now note that
√
−2 logU2 ∈ (0,∞) and in each case this is multiplied by something

which lies in the interval [−1, 1] so X1 and X2 can both take on any real values.

[2 marks]

Hence we have

fX1,X2
(x1, x2) =

1

2π
exp

{
−1

2
(x21 + x22)

}
(x1, x2) ∈ IR2

=

(
1√
2π

e−x
2
1/2

)(
1√
2π

e−x
2
2/2

)
(x1, x2) ∈ IR2

So X1 and X2 are independent N(0, 1) random variables. [2 marks]
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