STAT743 FOUNDATIONS OF STATISTICS (PART II)
 Winter 2019

Q. 1 a) To show that $X_{n} Y_{n} \xrightarrow{p} 0$ we need to show that, for any $\delta>0$ and $\varepsilon>0$ there exists N such that

$$
n>N \Rightarrow \mathrm{P}\left(\left|X_{n} Y_{n}\right|>\varepsilon\right)<\delta
$$

To do this we note that

$$
\begin{aligned}
\mathrm{P}\left(\left|X_{n} Y_{n}\right|>\varepsilon\right)= & \left(\left|X_{n}\right|\left|Y_{n}\right|>\varepsilon\right) \\
\leqslant & \mathrm{P}\left(\left|X_{n}\right|>\sqrt{\varepsilon} \text { OR }\left|Y_{n}\right|>\sqrt{\varepsilon}\right) \\
& \quad\left(\text { since }\left|X_{n}\right|\left|Y_{n}\right|>\varepsilon \Rightarrow\left|X_{n}\right|>\sqrt{\varepsilon} \cup\left|Y_{n}\right|>\sqrt{\varepsilon}\right) \\
\leqslant & \mathrm{P}\left(\left|X_{n}\right|>\sqrt{\varepsilon}\right)+\mathrm{P}\left(\left|Y_{n}\right|>\sqrt{\varepsilon}\right)
\end{aligned}
$$

$$
(\text { since } \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \bigcap B) \leqslant \mathrm{P}(A)+\mathrm{P}(B))
$$

[4 marks]
Now $X_{n} \xrightarrow{p} 0$ implies that there exists N_{1} such that

$$
n>N_{1} \quad \Rightarrow \quad \mathrm{P}\left(\left|X_{n}\right|>\sqrt{\varepsilon}\right)<\frac{\delta}{2}
$$

And similarly $Y_{n} \xrightarrow{p} 0$ implies there exists N_{2} such that

$$
n>N_{2} \quad \Rightarrow \quad \mathrm{P}\left(\left|Y_{n}\right|>\sqrt{\varepsilon}\right)<\frac{\delta}{2}
$$

Therefore

$$
n>\max \left\{N_{1}, N_{2}\right\} \quad \Rightarrow \quad \mathrm{P}\left(\left|X_{n} Y_{n}\right|>\varepsilon\right) \leqslant \mathrm{P}\left(\left|X_{n}\right|>\sqrt{\varepsilon}\right)+\mathrm{P}\left(\left|Y_{n}\right|>\sqrt{\varepsilon}\right)<\delta
$$

and so $X_{n} Y_{n} \xrightarrow{p} 0$ as required.
b) This proceeds in a similar way to the first part of the question. First we note that the Triangle Inequality tells us $\left|X_{n}+Y_{n}-(X+Y)\right|<\left|X_{n}-X\right|+\left|Y_{n}-Y\right|$ and so

$$
\begin{aligned}
& \mathrm{P}\left(\left|X_{n}+Y_{n}-(X+Y)\right|>\varepsilon\right) \\
& \leqslant \\
& \leqslant \mathrm{P}\left(\left|X_{n}-X\right|+\left|Y_{n}-Y\right|>\varepsilon\right) \\
& \leqslant \mathrm{P}\left(\left|X_{n}-X\right|>\frac{\varepsilon}{2} \cup\left|Y_{n}-Y\right|>\frac{\varepsilon}{2}\right) \\
& \quad \quad \quad\left(\text { since }\left|X_{n}-X\right|+\left|Y_{n}-Y\right|>\varepsilon \Rightarrow\left|X_{n}-X\right|>\varepsilon / 2 \cup\left|Y_{n}-Y\right|>\varepsilon / 2\right) \\
& \leqslant \\
& \\
& \quad \mathrm{P}\left(\left|X_{n}-X\right|>\frac{\varepsilon}{2}\right)+\mathrm{P}\left(\left|Y_{n}-Y\right|>\frac{\varepsilon}{2}\right) \\
& \quad \quad(\text { since } \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \bigcap B) \leqslant \mathrm{P}(A)+\mathrm{P}(B))
\end{aligned}
$$

[4 marks]
Now $X_{n} \xrightarrow{p} X$ implies that there exists N_{1} such that

$$
n>N_{1} \quad \Rightarrow \quad \mathrm{P}\left(\left|X_{n}-X\right|>\frac{\varepsilon}{2}\right)<\frac{\delta}{2}
$$

And similarly $Y_{n} \xrightarrow{p} Y$ implies there exists N_{2} such that

$$
n>N_{2} \Rightarrow \mathrm{P}\left(\left|Y_{n}-Y\right|>\frac{\varepsilon}{2}\right)<\frac{\delta}{2}
$$

Therefore if we set $N=\max \left\{N_{1}, N_{2}\right\}$ we have that $n>N$ implies

$$
\mathrm{P}\left(\left|X_{n}+Y_{n}-(X+Y)\right|>\varepsilon\right) \leqslant \mathrm{P}\left(\left|X_{n}-X\right|>\frac{\varepsilon}{2}\right)+\mathrm{P}\left(\left|Y_{n}-Y\right|>\frac{\varepsilon}{2}\right)<\delta
$$

and so $X_{n}+Y_{n} \xrightarrow{p} X+Y$ as required.
c)

$$
Z_{n}=\sqrt{n}\left(Y_{n}-\mu\right) \xrightarrow{d} Z \sim \operatorname{normal}\left(0, \sigma^{2}\right)
$$

Now for every fixed n and $\varepsilon>0$ we have

$$
\mathrm{P}\left(\left|Y_{n}-\mu\right|<\varepsilon\right)=\mathrm{P}\left(\left|Z_{n}\right|<\sqrt{n} \varepsilon\right)
$$

so that

$$
\begin{aligned}
\mathrm{P}\left(\left|Y_{n}-\mu\right|<\varepsilon\right) & =\mathrm{P}\left(\left|Z_{n}\right|<\sqrt{n} \varepsilon\right) \\
& =\mathrm{P}\left(-\sqrt{n} \varepsilon<Z_{n}<\sqrt{n} \varepsilon\right) \\
& =F_{n}(\sqrt{n} \varepsilon)-F_{n}(-\sqrt{n} \varepsilon)
\end{aligned}
$$

where F_{n} is the cumulative distribution function of Z_{n}.

Now for any N, because of monotonicity of the F_{n}, we have that

$$
n>N \quad \Rightarrow \quad F_{n}(\sqrt{n} \varepsilon) \geqslant F_{n}(\sqrt{N} \varepsilon) \quad \text { and } \quad F_{n}(-\sqrt{n} \varepsilon) \leqslant F_{n}(-\sqrt{N} \varepsilon)
$$

so that for $n>N$ we have

$$
\begin{aligned}
\mathrm{P}\left(\left|Y_{n}-\mu\right|<\varepsilon\right) & \geqslant F_{n}(\sqrt{N} \varepsilon)-F_{n}(-\sqrt{N} \varepsilon) \\
& =1-2 \Phi(-\sqrt{N} \varepsilon)+F_{n}(\sqrt{N} \varepsilon)-\Phi(\sqrt{N} \varepsilon)-F_{n}(-\sqrt{N} \varepsilon)+\Phi(-\sqrt{N} \varepsilon)
\end{aligned}
$$

where Φ is the cdf of the normal $(0,1)$ and for any $a>0, \Phi(a)-\Phi(-a)<1-2 \Phi(-a)$. For any $\varepsilon>0, \delta>0$ we can choose an N_{0} such that $\Phi\left(-\sqrt{N_{0}} \varepsilon\right)<\delta / 4$ and since $F_{n}(x) \rightarrow \Phi(x)$ at every $x \in \mathbb{R}$ we can also find $N>N_{0}$ such that
$n>N \Rightarrow\left|F_{n}(\sqrt{N} \varepsilon)-\Phi(\sqrt{N} \varepsilon)\right|<\frac{\delta}{4} \quad$ and $\quad\left|F_{n}(-\sqrt{N} \varepsilon)-\Phi(-\sqrt{N} \varepsilon)\right|<\frac{\delta}{4}$
from which we see that

$$
n>N \Rightarrow F_{n}(\sqrt{N} \varepsilon)-\Phi(\sqrt{N} \varepsilon)>-\frac{\delta}{4} \quad \text { and } \quad F_{n}(-\sqrt{N} \varepsilon)-\Phi(-\sqrt{N} \varepsilon)<\frac{\delta}{4}
$$

Hence for such an N we have that

$$
n>N \Rightarrow \mathrm{P}\left(\left|Y_{n}-\mu\right|<\varepsilon\right)>1-2 \frac{\delta}{4}-\frac{\delta}{4}-\frac{\delta}{4}=1-\delta
$$

Hence we have that for any $\varepsilon>0, \delta>0$ we can find an N such that

$$
\mathrm{P}\left(\left|Y_{n}-\mu\right|<\varepsilon\right)>1-\delta
$$

and so $Y_{n} \xrightarrow{p} \mu$ as required.
Q. 2 a) For any $\varepsilon>0, B>0$ we have

$$
\begin{aligned}
\mathrm{P}\left(\left|X_{n} Y_{n}\right|>\varepsilon\right) & =\mathrm{P}\left(\left|X_{n}\right|\left|Y_{n}\right|>\varepsilon\right) \\
& =\mathrm{P}\left(\left|X_{n}\right|\left|Y_{n}\right|>\varepsilon,\left|X_{n}\right| \leqslant B\right)+\mathrm{P}\left(\left|X_{n}\right|\left|Y_{n}\right|>\varepsilon,\left|X_{n}\right|>B\right) \\
& \leqslant \mathrm{P}\left(\left|Y_{n}\right|>\varepsilon / B\right)+\mathrm{P}\left(\left|X_{n}\right|>B\right)
\end{aligned}
$$

Take an arbitrary $\delta>0$ then, since X_{n} is bounded in probability we find N_{1} and B such that

$$
n>N_{1} \quad \Rightarrow \quad \mathrm{P}\left(\left|X_{n}\right|>B\right)=1-\mathrm{P}\left(\left|X_{n}\right| \leqslant B\right) \leqslant \frac{\delta}{2}
$$

Also since $Y_{n} \xrightarrow{p} 0$ we can find N_{2} such that

$$
n>N_{2} \quad \Rightarrow \quad \mathrm{P}\left(\left|Y_{n}\right|>\varepsilon\right)<\frac{\delta}{2}
$$

Hence, for any fixed $\delta>0, \varepsilon>0$, we can find $N>\max \left\{N_{1}, N_{2}\right\}$ such that

$$
n>N \Rightarrow \mathrm{P}\left(\left|X_{n} Y_{n}\right|>\varepsilon\right) \leqslant \mathrm{P}\left(\left|Y_{n}\right|>\varepsilon / B\right)+\mathrm{P}\left(\left|X_{n}\right|>B\right)<\delta
$$

and so $X_{n} Y_{n} \xrightarrow{p} 0$ as required.
[8 marks]
b) Using two terms in the Taylors expansion we have

$$
g\left(Y_{n}\right)-g(\theta)=g^{\prime}(\theta)\left(Y_{n}-\theta\right)+\frac{g^{\prime \prime}(\theta)}{2}\left(Y_{n}-\theta\right)^{2}+R_{2}\left(Y_{n}\right)
$$

However, the statement of the Theorem tells us that $g^{\prime}(\theta)=0$ so we have

$$
g\left(Y_{n}\right)-g(\theta)=\frac{g^{\prime \prime}(\theta)}{2}\left(Y_{n}-\theta\right)^{2}+R_{2}\left(Y_{n}\right)
$$

which we can rewrite as

$$
\frac{n\left(g\left(Y_{n}\right)-g(\theta)\right)}{\sigma^{2}}=\left(\frac{\sqrt{n}\left(Y_{n}-\theta\right)}{\sigma}\right)^{2}\left[\frac{g^{\prime \prime}(\theta)}{2}+\frac{R_{2}\left(Y_{n}\right)}{\left(Y_{n}-\theta\right)^{2}}\right]
$$

Now Taylor's Theorem tells us that

$$
\lim _{y \rightarrow \theta} \frac{R_{2}(y)}{(y-\theta)^{2}}=0
$$

which means that for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
|y-\theta|<\delta \Rightarrow \frac{\left|R_{2}(y)\right|}{(y-\theta)^{2}}<\varepsilon
$$

Hence we have that

$$
\mathrm{P}\left(\frac{\left|R_{2}\left(Y_{n}\right)\right|}{\left(Y_{n}-\theta\right)^{2}}<\varepsilon\right) \geqslant \mathrm{P}\left(\left|Y_{n}-\theta\right|<\delta\right)
$$

Since we showed in Question 1(c) above that $Y_{n} \xrightarrow{p} \theta$ we can choose N such that

$$
n>N \Rightarrow \mathrm{P}\left(\frac{\left|R_{2}\left(Y_{n}\right)\right|}{\left(Y_{n}-\theta\right)^{2}}<\varepsilon\right) \geqslant \mathrm{P}\left(\left|Y_{n}-\theta\right|<\delta\right) \geqslant 1-\delta
$$

and so we have that

$$
\frac{R_{2}\left(Y_{n}\right)}{\left(Y_{n}-\theta\right)^{2}} \xrightarrow{p} 0 \Rightarrow \frac{g^{\prime \prime}(\theta)}{2}+\frac{R_{2}\left(Y_{n}\right)}{\left(Y_{n}-\theta\right)^{2}} \xrightarrow{p} \frac{g^{\prime \prime}(\theta)}{2}
$$

[8 marks]
Now let us consider the random variable

$$
Z_{n}=\frac{\sqrt{n}\left(Y_{n}-\theta\right)}{\sigma^{2}} \quad \xrightarrow{d} \quad Z \sim \mathrm{~N}(0,1)
$$

and let $X_{n}=Z_{n}^{2}$ then we have that the cumulative distribution function of X_{n} is

$$
\begin{aligned}
F_{X_{n}}(x) & =\mathrm{P}\left(X_{n} \leqslant x\right) \\
& =\mathrm{P}\left(Z_{n}^{2} \leqslant x\right) \\
& =\mathrm{P}\left(-\sqrt{x} \leqslant Z_{n} \leqslant \sqrt{x}\right) \\
& =F_{Z_{n}}(\sqrt{x})-F_{Z_{n}}(-\sqrt{x})
\end{aligned}
$$

Hence, since $F_{Z_{n}}(z) \rightarrow \Phi(z)$ as $n \rightarrow \infty$ for all $z \in \mathbb{R}$ we have

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=\Phi(\sqrt{x})-\Phi(-\sqrt{x})=\mathrm{P}\left(Z^{2}<x\right)
$$

where Z^{2} is the square of a standard normal random variable and, from Example 2.1.9 in the text book, $Z^{2} \sim \chi_{1}^{2}$ so we have that $X_{n} \xrightarrow{d} X \sim \chi_{1}^{2}$.
[5 marks]
We can now apply Slutsky's Theorem to

$$
\frac{n\left(g\left(Y_{n}\right)-g(\theta)\right)}{\sigma^{2}}=X_{n} W_{n}
$$

where

$$
\begin{aligned}
X_{n} & =\frac{n\left(Y_{n}-\theta\right)^{2}}{\sigma^{2}} \quad \xrightarrow{d} X \\
W_{n} & =\frac{g^{\prime \prime}(\theta)}{2}+\frac{R_{2}\left(Y_{n}\right)}{\left(Y_{n}-\theta\right)^{2}} \quad \xrightarrow{p} \frac{g^{\prime \prime}(\theta)}{2}
\end{aligned}
$$

to see that

$$
n\left(g\left(Y_{n}\right)-\theta\right) \xrightarrow{d} \frac{\sigma^{2} g^{\prime \prime}(\theta)}{2} X \quad \text { where } X \sim \chi_{1}^{2}
$$

Q. 3 a) (i) From Theorem 6.15 in my notes the cdf of $X_{(n)}$ is

$$
\mathrm{P}\left(X_{(n)} \leqslant x\right)=\left(\mathrm{P}\left(X_{1} \leqslant x\right)\right)^{n}=\left(1-\mathrm{e}^{-x / \mu}\right)^{n}
$$

For any $B_{\varepsilon}>0$ we have

$$
\begin{aligned}
\mathrm{P}\left(X_{(n)} \leqslant B_{\varepsilon}\right) & =\left(1-\mathrm{e}^{-B_{\varepsilon} / \mu}\right)^{n} \\
\Rightarrow \lim _{n \rightarrow \infty} \mathrm{P}\left(X_{(n)} \leqslant B_{\varepsilon}\right) & =\lim _{n \rightarrow \infty}\left(1-\mathrm{e}^{-B_{\varepsilon} / \mu}\right)^{n} \\
& =0
\end{aligned}
$$

Hence we have that for any $B_{\varepsilon}>0$ we can find N_{ε} such that

$$
n \geqslant N_{\varepsilon} \Rightarrow \mathrm{P}\left(X_{(n)} \leqslant B_{\varepsilon}\right) \leqslant \varepsilon
$$

and so we see that the sequence $X_{(n)}$ is not bounded in probability
(ii) For the above we know that, for any $z \in \mathbb{R}$

$$
\begin{aligned}
\mathrm{P}\left(Z_{n} \leqslant z\right) & =\mathrm{P}\left(X_{(n)}-\mu \log \leqslant z\right) \\
& =\mathrm{P}\left(X_{(n)} \leqslant z+\mu \log n\right) \\
& = \begin{cases}\left(1-\exp \left\{\frac{z}{\mu}-\log (n)\right\}\right)^{n} & \text { for } z>-m u \log n \\
0 & \text { for } z<-\mu \log n\end{cases} \\
& = \begin{cases}\left(1-\frac{\mathrm{e}^{-z / \mu}}{n}\right)^{n} & \text { for } z>-m u \log n \\
0 & \text { for } z<-\mu \log n\end{cases}
\end{aligned}
$$

Hence for any $z \in \mathbb{R} \lim _{n \rightarrow \infty} \mathrm{P}\left(Z_{n} \leqslant z\right)=\exp \left\{-\mathrm{e}^{-z / \mu}\right\}$.

Now we need to show that this is a valid cumulative distribution function.
Let $G(z)=\exp \left\{-\mathrm{e}^{z / \mu}\right\}$ the we see that

$$
\frac{d G(z)}{d z}=\frac{1}{\mu} \exp \left\{-\frac{z}{\mu}-\mathrm{e}^{-z / \mu}\right\}>0
$$

Hence $G(z)$ is monotone increasing.
Furthermore we have

$$
\begin{aligned}
& \lim _{z \rightarrow-\infty} G(z)=\lim _{z \rightarrow-\infty} \exp \left\{-\mathrm{e}^{z / \mu}\right\}=\exp \left\{-\lim _{z \rightarrow-\infty} \mathrm{e}^{-z / \mu}\right\}=0 \\
& \lim _{z \rightarrow \infty} G(z)=\lim _{z \rightarrow \infty} \exp \left\{-\mathrm{e}^{z / \mu}\right\}=\exp \left\{-\lim _{z \rightarrow \infty} \mathrm{e}^{-z / \mu}\right\}=\exp \{0\}=1
\end{aligned}
$$

Therefore G is indeed a valid cumulative distribution function and so there is a random variable Z such that $Z_{n} \xrightarrow{d} Z$.
[4 marks]
Finally the probability density function of the limiting random variable Z is

$$
f_{z}(x)=\frac{d G(z)}{d z}=\frac{1}{\mu} \exp \left\{-\frac{z}{\mu}-\mathrm{e}^{-z / \mu}\right\} \quad \text { for } z \in \mathbb{R}
$$

[2 marks]

b) Casella \& Berger 5.44

(i) Since X_{1}, \ldots, X_{n} are iid $\operatorname{Bernoulli}(p)$ random variables we have

$$
\mathrm{E}\left(X_{i}\right)=p \quad \operatorname{Var}\left(X_{i}\right)-p(1-p)<\infty \quad i=1, \ldots, n
$$

Hence the Central Limit Theorem applies and

$$
\frac{\sqrt{n}\left(Y_{n}-p\right)}{\sqrt{p(1-p)}} \xrightarrow{d} \mathrm{~N}(0,1) \Rightarrow \sqrt{n}\left(Y_{n}-p\right) \xrightarrow{d} \mathrm{~N}(0, p(1-p))
$$

[3 marks]
(ii) We can define the function

$$
g(x)=x(1-x) \Rightarrow g^{\prime}(x)=1-2 x
$$

Hence $g^{\prime}(p) \neq 0$ provided $p \neq 0.5$ and we can apply the first order delta method to get

$$
\begin{aligned}
\sqrt{n}\left(g\left(Y_{n}\right)-g(p)\right) & =\sqrt{n}\left(Y_{n}\left(1-Y_{n}\right)-p(1-p)\right) \\
& \xrightarrow{d} \mathrm{~N}\left(0,\left(g^{\prime}(p)\right)^{2} p(1-p)\right) \\
& \stackrel{d}{=} \mathrm{N}\left(0,(1-2 p)^{2} p(1-p)\right)
\end{aligned}
$$

(iii) When $p=0.5$ we have $g^{\prime}(p)=0$ and so the first order delta method is not applicable but the second order delta method is applicable as long as $g^{\prime \prime}(0.5)$ exists and is not 0 . In our case we have

$$
g^{\prime \prime}(p)=-2 \quad \text { for any } p \in(0,1)
$$

Hence we have

$$
\begin{aligned}
n\left(g\left(Y_{n}\right)-g(0.5)\right) & =\sqrt{n}\left(Y_{n}\left(1-Y_{n}\right)-0.25\right) \\
& \xrightarrow{d} \frac{g^{\prime \prime}(0.5) \times 0.5 \times(1-0.5)}{2} \chi_{1}^{2} \\
& \stackrel{d}{=}-0.25 \chi_{1}^{2}
\end{aligned}
$$

Q. 4 a) The probability mass function of the $\operatorname{Binomial}(n=4, p=1 / 3)$ distribution can be written as

x	0	1	2	3	4
$f(x)$	$\frac{1}{81}$	$\frac{8}{81}$	$\frac{24}{81}$	$\frac{32}{81}$	$\frac{16}{81}$

The cumulative distribution function is then

$$
F(x)= \begin{cases}0 & x<0 \\ \frac{1}{81} & 0 \leqslant x<1 \\ \frac{9}{81} & 1 \leqslant x<2 \\ \frac{33}{81} & 2 \leqslant x<3 \\ \frac{65}{81} & 3 \leqslant x<4 \\ 1 & x \geqslant 4\end{cases}
$$

Hence an algorithm to generate such random variables is

1. Generate $U \sim \operatorname{Uniform}(0,1)$.
2. If $U<\frac{1}{81}$ then return $X=0$

Else if $\frac{1}{81}<U<\frac{9}{81}$ then return $X=1$
Else if $\frac{9}{81}<U<\frac{33}{81}$ then return $X=2$
Else if $\frac{33}{81}<U<\frac{65}{81}$ then return $X=3$
Else return $X=4$
it was not required but a more second step in this algorithm is If $U<\frac{32}{81}$ then return $X=3$

Else if $\frac{32}{81}<U<\frac{56}{81}$ then return $X=2$
Else if $\frac{56}{81}<U<\frac{72}{81}$ then return $X=4$
Else if $\frac{72}{81}<U<\frac{80}{81}$ then return $X=1$
Else return $X=0$
b) (i) Even though the cdf of the logistic is given in the textbook, you were required to derive it as stated in the question.
The cdf is given by

$$
F(x)=\int_{-\infty}^{x} \frac{\mathrm{e}^{-y}}{\left(1+\mathrm{e}^{-y}\right)^{2}} d y
$$

Now consider the change of variables

$$
u=1+\mathrm{e}^{-y} \Rightarrow d u=-\mathrm{e}^{-y} d y
$$

and the limits transform to

$$
y \rightarrow-\infty \Rightarrow u \rightarrow \infty \quad y=x \Rightarrow u=1+\mathrm{e}^{-x}
$$

Hence we get

$$
\begin{aligned}
F(x) & =\int_{\infty}^{1+\mathrm{e}^{-x}}-\frac{1}{u^{2}} d u \\
& =\int_{1+\mathrm{e}^{-x}}^{\infty} u^{-2} d u \\
& =-\left.\frac{1}{u}\right|_{1+\mathrm{e}^{-x}} ^{\infty} \\
& =\frac{1}{1+\mathrm{e}^{-x}}
\end{aligned}
$$

The inverse of this cumulative distribution can be found by setting $u=F(x)$ and solving for x. This gives

$$
\begin{aligned}
u=\frac{1}{1+\mathrm{e}^{-x}} & \Rightarrow 1+\mathrm{e}^{-x}=\frac{1}{u} \\
& \Rightarrow \mathrm{e}^{-x}=\frac{1-u}{u} \\
& \Rightarrow x=\log (u)-\log (1-u)
\end{aligned}
$$

Hence the algorithm to generate standard logistic random variables is

1. Generate $U \sim \operatorname{Uniform}(0,1)$.
2. Return $X=\log (U)-\log (1-U)$.
(ii) Suppose that $Z \sim \operatorname{logistic}(0,1)$ then consider the location scale transformation $X=\mu+\beta Z$. The cdf of X is then

$$
F_{X}(x)=\mathrm{P}(X \leqslant x)=\mathrm{P}\left(Z \leqslant \frac{x-\mu}{\beta}\right)=\left(1+\exp \left\{\frac{x-\mu}{\beta}\right\}\right)^{-1}
$$

and so the pdf of X is

$$
f_{X}(x)=\frac{d F(x)}{d x}=\frac{1}{\beta} \frac{\exp \{-(x-\mu) / \beta\}}{(1+\exp \{-(x-\mu) / \beta\})^{2}}
$$

which from Page 624 in the textbook is the pdf of the $\operatorname{logistic}(\mu, \beta)$ distribution.

Hence the algorithm to generate general logistic random variables is

1. Generate $U \sim \operatorname{Uniform}(0,1)$.
2. Return $X=\mu+\beta(\log (U)-\log (1-U))$.

c) Casella and Berger 5.50

Suppose that U_{1} and U_{2} are independent $\operatorname{Unif}[0,1]$ random variables and

$$
X_{1}=\cos \left(2 \pi U_{1}\right) \sqrt{-2 \log U_{2}} \quad X_{2}=\sin \left(2 \pi U_{1}\right) \sqrt{-2 \log U_{2}}
$$

then we have that

$$
\begin{aligned}
& X_{1}^{2}+X_{2}^{2}=-2 \log U_{2} \Rightarrow U_{2}=\exp \left\{-\frac{1}{2}\left(X_{1}^{2}+X_{2}^{2}\right)\right\} \\
& \frac{X_{2}}{X_{1}}=\tan \left(2 \pi U_{2}\right) \Rightarrow U_{2}=\frac{1}{2 \pi} \tan ^{-1}\left(\frac{X_{2}}{X_{1}}\right)
\end{aligned}
$$

The Jacobian of the transformation $\left(U_{1}, U_{2}\right) \rightarrow\left(X_{1}, X_{2}\right)$ is

$$
\begin{aligned}
|J| & =\left|\begin{array}{cc}
\frac{-x_{2} / x_{1}^{2}}{\frac{1}{2 \pi}\left(1+\frac{x_{2}^{2}}{x_{1}^{2}}\right)} & \frac{1 / x_{1}^{2}}{\frac{1}{2 \pi}\left(1+\frac{x_{2}^{2}}{x_{1}^{2}}\right)} \\
-x_{1} \exp \left\{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)\right\} & -x_{2} \exp \left\{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)\right\}
\end{array}\right| \\
& =\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)\right\}
\end{aligned}
$$

Now note that $\sqrt{-2 \log U_{2}} \in(0, \infty)$ and in each case this is multiplied by something which lies in the interval $[-1,1]$ so X_{1} and X_{2} can both take on any real values.
[2 marks]

Hence we have

$$
\begin{aligned}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)\right\} \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \\
& =\left(\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x_{1}^{2} / 2}\right)\left(\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x_{2}^{2} / 2}\right) \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
\end{aligned}
$$

So X_{1} and X_{2} are independent $\mathrm{N}(0,1)$ random variables.
[2 marks]

