
Disclaimer: The following solutions are most likely correct. In the event of a discrepency, please 
                    inform the professor as soon as possible!

Solutions: Test #2b
Multiple choice answers: (One mark each)

1. a)     2. b)     3. d)     4. a)    5. e)    6. c)    7. d)     8. d)

Long Answers: (Three marks each)

9.  {3 marks}
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Putting all this back into '  we get:
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Disclaimer: The following solutions are most likely correct. In the event of a discrepency, please 
                    inform the professor as soon as possible!

10. {2+0.5 marks}

            Note:  Due to possible clarity issues, with the wording, the last question is now out of 2, (with
                        a possible 0.5 bonus), not the original 3.

Total grades:  13
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If '( ) 0 2  These are c.p.'s 

If '( ) 0  Not a c.p. since 0 is NOT in the domain of ( ).  {1 }
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Or, equivalently, we can perform the second derivative test:
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8     "   ,  and we evaluate at each c.p.

                " 1 <0 Concave Down local max at 2

                " 1 >0 Concave Up local min at 2
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