Name:

Student Number:

MATHEMATICS 1K03E Summer Session #1, 2008 PRACTICE TEST ONLY! - Solutions on last page

C. McLean

TERM TEST EVENING CLASS DURATION OF TEST: 50 min MCMASTER UNIVERSITY TERM TEST

Thursday, May 22, 2008

THIS TEST INCLUDES 7 PAGES AND 10 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING YOUR COPY OF THE TEST IS COMPLETE. BRING ANY DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.

Instructions:

- 1. <u>Only</u> the Casio FX-991 calculator is allowed to be used on this test.
- **2.** Make sure your name and student number at the top of each page.
- **3.** In part A, PRINT the letter corresponding to the answer of your <u>choice on page 2</u>, in the box beside <u>the corresponding question number below.</u>
- **4.** A blank answer is an automatic zero for any question in part A, even if the correct solution is circled on the question itself.
- **5.** Incorrect or multiple answers for part A are also worth zero marks. No negative marks or part marks will be assigned.
- **6.** In part B, provide complete solutions on this exam paper in the space provided below each question. Part marks are available.
- 7. Each question in part A is worth 1 mark, and in part B each question is worth 3 marks.
- **8.** Rough work paper will be provided upon request. All rough work must be handed in with the test, but any solutions written on the rough paper will **NOT** be graded.
- 9. Good Luck!

Grade/Answer Chart

Part A

Question	Ans.	Question	Ans.
#1		#5	
#2		#6	
#3		#7	
#4		#8	

Part B			
Question	Grade		
#9			
#10			

Total Part B: _____/6

Total Grade Part A: _____/8

Net Grade :

Name:

Student Number:

<u>Part A</u>

Remember: Write the letter of your selection in the chart on Page #2

1. Evaluate f'(0) for the function:

$$f(x) = (x^2 + 2x + 1)(x^{\frac{4}{3}} + 2)$$

a) 4 **b**) $-\frac{5}{3}$ **c**) $\frac{2}{3}$ **d**) 2 **e**) -1

2. Compute the indicated value of the given function:

$$h(t) = (t^2 - 13)^{-\frac{3}{2}}, \quad h(7)$$

a) $-\frac{39}{2}$ **b)** $\frac{1}{216}$ **c)** -52 **d)** 1 **e)** 7

3. Which type of functions are the following:

$$g(x) = \sqrt{1 - x}$$
 $h(x) = x^2 - 2$

a) g(x) is rational, h(x) is a polynomial
b) g(x) is a power function, h(x) is rational
c) g(x) is algebraic, h(x) is a polynomial
d) g(x) is a polynomial, h(x) is rational
e) Both functions are polynomials

Student Number:_____

Remember: Write the letter of your selection in the chart on Page #2

4. Evaluate the given limit:

$$\lim_{x \to 3^{-}} \frac{x-3}{9-x^2}$$

a)
$$\frac{1}{3}$$
 b) - 2 **c**) DNE **d**) $-\frac{1}{6}$ **e**) $\frac{2}{9}$

5. Evaluate the limit:

$$\lim_{x \to -\infty} \frac{x^2 - 3x + 2}{2x^2 - 3x + 7}$$

a)
$$\frac{1}{2}$$
 b) - 2 **c**) 0 **d**) - 3 **e**) ∞

6. Evaluate the limit:

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$

a) 1 **b**)
$$\frac{1}{2}$$
 c) $\frac{1}{4}$ **d**) - ∞ **e**) DNE

Name: _____

Name:

Student Number:_____

Remember: Write the letter of your selection in the chart on Page #2

7. Which of the following is the equation of a line passing through the points (1,2) and (2,5)?

a)
$$y = \frac{1}{3}x + 2$$
 b) $y = 3x - 8$ **c**) $y = 3x + 5$ **d**) $y = 3x - 1$ **e**) $y = x + 2$

8. Which of the following statements hold true for all real x in the domain of the function:

$$f(x) = \frac{x}{\sqrt{x-1}}$$

a) x > 1 **b**) x > 0 **c**) x < 1 **d**) $x \ge 0$ and $x \ne 1$ **e**) $0 \le x < 1$

Student Number:_____

<u>Part B</u>

Remember: In this section, you need to include full solutions to get full marks.

9. a) State the definition of the derivative of a function f(x).

b) Use this definition to evaluate f'(2), where:

$$f(x) = \frac{1}{x}$$

(In other words, evaluate f'(2) from first principles.)

Name: ______ S

Student Number:_____

Remember: In this section, you need to include full solutions to get full marks.

10. Evaluate the expression $\frac{d^2y}{dx^2}$, for the function:

 $y = x^{\frac{3}{2}} - 2x + 7$

THE END

Disclaimer: The following solutions are most likely correct. In the event of a discrepency, please inform the professor as soon as possible!

Solutions

Multiple choice answers: (One mark each)

1. a) 2. b) 3. c) 4. d) 5. a) 6. c) 7. d) 8. a)

Long Answers: (Three marks each)

9. part a)

The standard form of the definition of the derivative, given in this course is:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

part b)

Since we know that :

So we can use this with the definition to get:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \lim_{h \to 0} \frac{\frac{x - (x+h)}{(x+h)x}}{h} = \lim_{h \to 0} \frac{\frac{-h}{(x+h)x}}{h}$$
$$= \lim_{h \to 0} \frac{-1}{(x+h)x} = \frac{-1}{(x+0)x} = -\frac{1}{x^2}$$

10.

$$y = x^{\frac{3}{2}} - 2x + 7 \implies y' = \frac{d}{dx}(x^{\frac{3}{2}}) + \frac{d}{dx}(-2x) + \frac{d}{dx}(7)$$

$$= \frac{d}{dx}(x^{\frac{3}{2}}) - 2\frac{d}{dx}(x) + \frac{d}{dx}(7)$$

$$= \frac{3}{2}x^{\frac{1}{2}} - 2 \cdot 1 + 0 = \frac{3}{2}\sqrt{x} - 2 = y'$$

$$y' = \frac{3}{2}\sqrt{x} - 2 \implies y'' = \frac{d}{dx}(\frac{3}{2}\sqrt{x}) + \frac{d}{dx}(-2)$$

$$= \frac{3}{2}\frac{d}{dx}(x^{\frac{1}{2}}) + 0 = \frac{3}{2} \cdot \frac{1}{2}(x^{-\frac{1}{2}})$$

$$= \frac{3}{4\sqrt{x}} = y''$$