1K03E Sample Exam Questions

Amalgamated from previous years' practice exams

(Note this is NOT in the same format/length as our exam. See course website for details and layout of the upcoming examination)

- **1.** Suppose a culture of bacteria is growing exponentially. There are 3000 bacteria at 2PM and 4000 at 4PM.
 - a) How many bacterium are there at 5pm?
 - **b)** What is the doubling time for this culture? *(That is: how long does it take the population to double)*

2. Find:

$$\lim_{x\to -\infty}\frac{x^2}{e^{-x}}$$

3. Find the derivatives of the following functions:

a) $h(t) = \frac{1+e^{2t}}{1-e^{t^2}}$ **b)** $f(x) = \ln((2x+1)(x^2+2))$

4. How long would it take a \$1000 investment to double in value if it grew at 6% per year, compounded monthly?

5. Solve for *x*.

a)
$$\left(\left(x^{\frac{1}{2}}\right)\left(x^{\frac{3}{2}}\right)\right)^2 = 81$$
 b) $\log_5 x = 3$ **c)** $(1.35)^{4x} = 20$

6. Graph the given function, finding domain, *y*-intercept, *x*-intercepts, asymptotes, critical points, intervals of increase/descrease, relative max/min, intervals of concavity and inflection points.

$$f(x) = \frac{x}{\ln x}$$

7. Suppose that f(3)=1, f'(3)=-2, and f''(3)=4. Which of the following graphs best represent y=f(x) close to x=3?

8. Find the absolute extreme values (absolute extrema) of:

$$p(x) = x^3 + x^2 - 2x + 1$$

on the interval [-1,2].

9. Find the domain of the following functions:

a)
$$\frac{\sqrt{4-2x}}{x^2-1}$$
 b) $\frac{1}{x^2+3x-4}$

10. Calculate the following limits:

a)
$$\lim_{x \to 2} x^3 - 2x + 3$$
 b) $\lim_{x \to -2} \frac{x^2 - 2x - 8}{x + 2}$ **c)** $\lim_{x \to \infty} \frac{7x^3 - 2x^2 + 1}{2x^3 - 6x}$

11. Find f(g(x)):

$$f(x) = x^2 - 1$$
 $g(x) = x + \frac{1}{x}$

12. Where is the given function decreasing:

$$f(x) = 3x^2 + 6x$$

13. Where does the given function have an inflection point:

$$G(x) = 3x^2 - 12x + 3$$

14. Where is the given function concave up?

$$F(x) = x^4 - 6x^2 + 3$$

15. Find the derivative of:

$$H(x) = \sqrt{1 + \sqrt{x}}$$

at *x*=9.

16. Find all the relative max and min of the function:

$$G(x) = 2x^2 + 7x - 15$$