# Introduction to Probability and Basic Statistical Inference 

Qihao Xie

Department of Mathematics and Statistics
McMaster University
Statistics 2D03, Fall 2009

## Outline

- Combinatorial Analysis (§ 1.1-1.5)
- Axioms of Probability (§ 2.1-2.5, and 2.7)
- Conditional Probability and Independence (§3.1-3.5)
- Discrete Random Variables and Discrete Distributions (§4.1-4.9)
- Continuous Random Variables and Continuous Distributions (§5.1-5.6)
- Transformations (§5.7)
- Joint Distributed Random Variables (§ 6.1-6.5)
- Properties of Expectation (§ 7.1, 7.2, 7.4, and 7.5)
- Moment Generating Function (§ 7.7)
- Central Limit Theorems (§8.3)


## Introduction to Probability Theory

In this section, we will cover the following topics:

- Combinatorial Analysis (§ 1.2-1.5)
- Axioms of Probability (§ 2.2-2.5 \& 2.7)


## $\diamond$ What is Probability?

- Whether we have math skills or not, we frequently estimate and compare probabilities, sometimes without realizing it, especially when making decisions.
- Beyond the word probability, there is a whole conception developed by Probability Theory.
- Any of its interpretation cannot leave aside the mathematical notation.
- Probability

Probability is defined to be a measure of how frequently the event will occur or has occurred from a random experiment.

- Random Experiment

A Random Experiment is an experiment that can be repeated numerous times under the same condition and result in different outcomes, for which the outcome cannot be determined in advance.

## What is Probability?

- Examples
- Rolling a die - 6 possible outcomes with number 1 to 6 as the die faces are labeled
- Tossing a coin-2 possible outcomes, heads or tails
- Selecting a numbered ball (1-20) in an urn - 20 possible outcomes
- Drawn in a lottery


## $\diamond$ Combinatorial Analysis

- In fact, many problems in probability theory can be involved simply by counting the number of different ways that a certain event can occur.
- Combinatorial Analysis

The Combinatorial Analysis is the mathematical theory of counting that deals with permutations and combinations, especially used in probability and statistics.

- Basic Principal of Counting

Suppose 2 experiments are to be performed. If experiment 1 can result in any one of $m$ possible outcomes, and if for each outcome of experiment 1 , there are $n$ possible outcomes of experiment 2, then together there are $m n$ possible outcomes of the two experiments.
Proof:

## $\diamond$ Combinatorial Analysis

- Example 1.1

How many 2 letter words can be formed from the letter $a, b, c$ and $d$, if repetition are not allowed and any sequence of 2 letter is defined to be a word?

## Solution:

- Generalized Basic Principal of Counting

Suppose $r$ experiments are to be performed and that experiment $i$ may result any
of $n_{i}$ possible outcomes, for $i=1, \ldots, r$. Then, there is a total number of $n_{1} \cdot n_{2} \cdots n_{r}$ distinct possible outcomes of the $r$ experiments.

## $\diamond$ Combinatorial Analysis

- Example 1.2

In Example 1.1 above, how many 3 letter words can be obtained? Solution:

- Example 1.3

How many different ordered arrangements of the letters $a, b$ and $c$ are possible? Solution:

## $\diamond$ Combinatorial Analysis

- Permutations

The number of distinct permutations (or arrangements) of $n$ objects of which $n_{i}$ is alike in the $i^{\text {th }}$ group, for $i=1, \ldots, r$, is given by

$$
\frac{n!}{n_{1}!\cdot n_{2}!\cdots n_{r}!},
$$

where $n!=n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1$.
Proof: (using the Generalized Basic Principal of Counting)

## $\diamond$ Combinatorial Analysis

- Note 1.1: The number of different permutations of $n$ distinct objects from a set of $n$ without repetition is $n!$.
- Note 1.2: The number of different permutations of $r$ distinct objects from a set of $n(r \leq n)$ without repetition is

$$
n \cdot(n-1) \cdot(n-2) \cdots(n-r+1)=\frac{n!}{(n-r)!} .
$$

## Proof:

## $\diamond$ Combinatorial Analysis

- Example 1.4

How many licence plate can be made if a licence plate consists of exactly 10 numbers ( $0-9$ digits) without repetition?

## Solution:

- Example 1.5

How many licence plate can be obtained if a licence plate consists of exactly 6 numbers selected from $0-9$ without repetition?

## Solution:

- Example 1.6

How many licence plate can be obtained using all of three 0's, two 1's and two 2's? Solution:

## $\diamond$ Combinatorial Analysis

- Combinations

Suppose we want to select a group of $r$ items from a set of $n(r \leq n)$ items.
According to GBPC, there are $r$ experiments being counted when the order of selection is relevant.

Recalled from Note 1.2, the number of different ways that a group of $r$ items could be selected from $n$ items when the order of selected is important is

$$
n \cdot(n-1) \cdot(n-2) \cdots(n-r+1)=\frac{n!}{(n-r)!} .
$$

However, each group consisting of $r$ items will be counted $r$ ! times. It follows that the number of different groups of $r$ items that can be formed from a set of $n$ items is given by

$$
\frac{n \cdot(n-1) \cdot(n-2) \cdots(n-r+1)}{r!}=\frac{n!}{(n-r)!r!} .
$$

## $\diamond$ Combinatorial Analysis

- Notation

We define " $n$ " choose " $r$ " by

$$
\binom{n}{r}= \begin{cases}\frac{n!}{(n-r)!r!}, & 0 \leq r \leq n \\ 0, & r<0 \text { or } r>n\end{cases}
$$

with convention $0!=1$.
Notice that

$$
0!=1 \Longrightarrow\binom{n}{0}=\binom{n}{n}=1
$$

- Note 1.3: $\binom{n}{r}$ represents the number of different groups of size $r$ that can be selected from a set of $n$ objects when the order of selection is not consider relevant.


## $\diamond$ Combinatorial Analysis

- Recalled from Note 1.2, when order is relevant, the number of different groups of size $r$ that can be selected is $\frac{n!}{(n-r)!}$.

This includes $r$ ! ordering for each selection of $r$.

Thus, when order is not relevant, the number of different group is

$$
\frac{n!}{(n-r)!} / r!=\frac{n!}{(n-r)!r!}=\binom{n}{r}
$$

## $\diamond$ Combinatorial Analysis

- Notation

We define the multinomial coefficient by

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}=\frac{n!}{n_{1}!\cdot n_{2}!\cdots n_{r}!},
$$

where $n_{1}+n_{2}+\cdots+n_{r}=n$.

- Note 1.4: $\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}$ represents the number of possible divisions of $n$ distinct objects into $r$ distinct groups of respective sizes $n_{1}, n_{2}, \ldots, n_{r}$.


## $\diamond$ Combinatorial Analysis

- Example 1.7

In how many ways can a committee of 4 people be formed from a group of 10 people?
Solution:

- Example 1.8

How man 5 cards poker hands can be dealt?

## Solution:

- Example 1.9

A class of 60 students will be writing a test in 3 rooms that will be hold 15,20 , and 25 , respectively. In how many different ways can the 60 students be assigned to the 3 rooms?

## Solution:

## $\diamond$ Combinatorial Analysis

- Combinatorial Identity

$$
\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r} \quad 1 \leq r \leq n .
$$

## Proof:

- Notice that the values $\binom{n}{r}$ are often referred as binomial coefficients.
- Binomial Theorem

$$
(x+y)^{n}=\sum_{k=0}^{n} x^{k} y^{n-k} .
$$

Proof: (by induction)

## $\diamond$ Combinatorial Analysis

- Multinomial Theorem

$$
\left(x_{1}+x_{2}+\cdots+x_{r}\right)^{n}=\sum_{\left(n_{1}, \ldots, n_{r}\right): n_{1}+\cdots+n_{r}=n}\binom{n}{n_{1}, \ldots, n_{r}} x_{1}^{n_{1}} \cdot x_{2}^{n_{2}} \cdots x_{r}^{n_{r}} .
$$

Proof: (by induction)

