Arts/Sci 2R06 Solution for Assignment 5

4.83
a) Since one of the requirements of a probability distribution is that sum of probability of x is equal to 1 , so that $p(3)=1-(0.1+0.3+0.3+0.1)=0.2$
b) Probability histogram:

c) For the random variable x given here, $\mathrm{E}(\mathrm{X})=\sum \mathrm{X} P(\mathrm{X})$

$$
\begin{aligned}
& =0(0.1)+1(0.3)+2(0.3)+3(0.2)+4(0.1) \\
& =1.9
\end{aligned}
$$

The variance of x is defined as $\operatorname{Var}(\mathrm{X})=\mathrm{E}[(\mathrm{X}-\mathrm{u})]^{2}=\sum(\mathrm{X}-\mathrm{u})^{2} \mathrm{P}(\mathrm{X})$

$$
\begin{aligned}
& =(0-1.9)^{2}(0.1)+\ldots+(4-0.9)^{2}(0.1) \\
& =1.29
\end{aligned}
$$

The standard deviation is 1.136 .
d) Using the table form of the probability distribution given in the exercise,

$$
\mathrm{P}(\mathrm{X}>2)=0.2+0.1=0.3
$$

e) $\mathrm{P}(\mathrm{X} \leq 3)=1-\mathrm{P}(\mathrm{X}=4)=1-0.1=0.9$

4.87

a-b On the first try, the prob of selecting the proper key is $1 / 4$. If the key is not found on the first try, the probability changes on the second try. Let F denote a failure to find the key and S denote a success. The random variable is x, the number of keys tried before the correct key is found. The four associated simple events are shown below:

$$
\begin{aligned}
& \text { E1: } S(X=1) \\
& \text { E2: } F S(X=2) \\
& \text { E3: } F F S(X=3) \\
& \text { E4: FFFS }(X=4)
\end{aligned}
$$

c-d Then $\mathrm{P}(1)=\mathrm{P}(\mathrm{X}=1)=\mathrm{P}(\mathrm{s})=1 / 4$

$$
\begin{aligned}
& \mathrm{P}(2)=\mathrm{P}(\mathrm{X}=2)=\mathrm{P}(\mathrm{FS})=\mathrm{P}(\mathrm{~F}) \mathrm{P}(\mathrm{~S})=(3 / 4)(1 / 3)=1 / 4 \\
& \mathrm{P}(3)=\mathrm{P}(\mathrm{X}=3)=\mathrm{P}(\mathrm{FFS})=\mathrm{P}(\mathrm{~F}) \mathrm{P}(\mathrm{~F}) \mathrm{P}(\mathrm{~S})=(3 / 4)(2 / 3)(1 / 2)=1 / 4 \\
& \mathrm{P}(4)=\mathrm{P}(\mathrm{X}=4)=\mathrm{P}(\mathrm{FFFS})=\mathrm{P}(\mathrm{~F}) \mathrm{P}(\mathrm{~F}) \mathrm{P}(\mathrm{~F}) \mathrm{P}(\mathrm{~S})=(3 / 4)(2 / 3)(1 / 2)(1)=1 / 4
\end{aligned}
$$

The probability distribution and probability histogram follow:

X	1	2	3	4
$\mathrm{P}(\mathrm{X})$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$

4.96

a) By definition: $\mathrm{E}(\mathrm{X})=\sum \mathrm{XP}(\mathrm{X})=3(0.03)+4(0.05)+\ldots .+13(0.01)=7.9$
b) $\operatorname{Var}(\mathrm{X})=\sum(\mathrm{X}-\mathrm{u})^{2} \mathrm{P}(\mathrm{X})=(3-7.9)^{2}(0.03)+\ldots .+(13-7.9)^{2}(0.01)=4.73$
so standard deviation $=\sqrt{4.73}=2.174856$
c) $\mathrm{u}+2 \sigma=7.9+4.349712=(3.55,12.25)$, so $1-\mathrm{P}(\mathrm{x}=3)-\mathrm{P}(\mathrm{x}=13)=1-0.03-0.01=0.96$,so approximately 96% of all measurements falls into the interval $u+2 \sigma$.

5.24
 $(0.15)(0.15)=0.0225$

5.25

Define x to be the number of cars that are black, then $\mathrm{P}=\mathrm{P}[$ black $]=0.1$ and $\mathrm{n}=25$
Use Table 1 in Appendix I:
a) $\mathrm{P}(\mathrm{X} \geq 5)=1-\mathrm{P}(\mathrm{X} \leq 4)=1-0.902=0.098$
b) $\mathrm{P}(\mathrm{X} \geq 6)=0.991$
c) $\mathrm{P}(\mathrm{X}>4)=1-\mathrm{P}(\mathrm{X} \leq 4)=1-0.902=0.098$
d) $\mathrm{P}(\mathrm{X}=4)=\mathrm{P}(\mathrm{X} \leq 4)-\mathrm{P}(\mathrm{X} \leq 3)=0.902-0.764=0.138$
e) $\mathrm{P}(3<\mathrm{X}<5)=\mathrm{P}(\mathrm{X} \leq 5)-\mathrm{P}(\mathrm{X} \leq 2)=0.967-0.537=0.430$
f) $\mathrm{P}($ more than 20 not black $)=\mathrm{P}($ less than 5 black $)=\mathrm{P}(\mathrm{X} \leq 4)=0.902$

5.43

Let X to be the number of misses during a given month.
Then x has a Poisson distribution with $\mathrm{u}=5$
a) $P(0)=e^{-5}=0.0067$
b) $\mathrm{P}(5)=5^{5} \mathrm{e}^{-5} / 5!=0.1755$
c) $\mathrm{P}(\mathrm{X} \geq 5)=1-\mathrm{P}(\mathrm{X} \leq 4)=1-0.440=0.560$ from Table 2 .

5.48

By Definition of the Poisson Probability Distribution:
$\mathrm{P}(\mathrm{X}=\mathrm{x})=\lambda^{\mathrm{x}} e^{-\lambda} / \mathrm{X}!\quad \mathrm{x}=0,1,2, \ldots$,
We're given E.coli have occurred in Colorado at a rate of 2.5 per 10,000 for a period of 2 years, so for part (a), we have $\lambda=2.5 / 2=1.25$
a) $\mathrm{P}(\mathrm{X} \leq 5)=\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3)+\mathrm{P}(\mathrm{X}=4)+\mathrm{P}(\mathrm{X}=5)$

$$
=0.2865048+0.358131+0.2238319+0.09326328+0.02914478+0.007286194
$$

$$
=0.998162
$$

b) $\mathrm{P}(\mathrm{X}>5)=1-\mathrm{P}(\mathrm{X} \leq 5)=1-0.998162=0.001838$
c) So approximately 95% of occurrences of E. coli involve at most 3 cases with $\lambda=1.25$.

5.52

For this question, $\mathrm{N}=8, \mathrm{n}=3, \mathrm{M}=5$ blue candies and $\mathrm{N}-\mathrm{M}=3$ red candies, so follow the hypergeometic distribution formula, we can get $\mathrm{P}(\mathrm{X}=\mathrm{x})=\mathrm{C}_{x}^{5} \mathrm{C}_{3-x}^{3} / \mathrm{C}_{3}^{8}$
a) $\mathrm{P}(\mathrm{X}=2)=\mathrm{C}_{2}^{5} \mathrm{C}_{1}^{3} / \mathrm{C}_{3}^{8}=15 / 28=0.5357$
b) $\mathrm{P}(\mathrm{X}=0)=\mathrm{P}$ (the candies are all red $)=\mathrm{C}_{0}^{5} \mathrm{C}_{3}^{3} / \mathrm{C}_{3}^{8}=0.01786$
c) $\mathrm{P}(\mathrm{X}=3)=\mathrm{C}_{3}^{5} \mathrm{C}_{0}^{3} / \mathrm{C}_{3}^{8}=0.1786$

5.56

We are given $\mathrm{N}=10, \mathrm{n}=4, \mathrm{M}=5, \mathrm{~N}-\mathrm{M}=5$ and $\mathrm{P}(\mathrm{X})=\mathrm{C}_{x}^{5} \mathrm{C}_{4-x}^{5} / \mathrm{C}_{4}^{10}$
a) $\mathrm{P}(\mathrm{X}=4)=\mathrm{C}_{4}^{5} \mathrm{C}_{0}^{5} / \mathrm{C}_{4}^{10}=0.0238$
b) $\mathrm{P}(\mathrm{X} \leq 3)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3)=0.976$
c) $\mathrm{P}(2 \leq \mathrm{X} \leq 3)=0.3296703+0.07326007=0.714$

Q10.

Expressions for the mean and variance of Binomial distribution:

$$
\begin{aligned}
E(x) & =\sum_{x=0}^{n} x P\{x=x\} \\
& =\sum_{x=0}^{n} x{ }^{n} C_{x} p^{x} q^{n-x} \\
& =\sum_{x=0}^{n} \frac{x n!}{x!(n-x) i} p^{x} q^{n-x} \\
& =n p \sum_{x=0}^{n-1} \frac{(n-1)!}{(x-1)!\{(n-1)-(x-1)\}!} p^{x-1} q^{(n-1)-(x-1)} \\
& =n p \sum_{x=0}^{n-1} n-1 C_{x} p^{x-1} q^{n-x} \\
& =n p(p+q)^{n-1} \\
& E(x)=n p
\end{aligned}
$$

To find the variance:

$$
\begin{aligned}
& E\left(x^{2}\right)=\sum_{x=0}^{n} x^{2} p\{x=x\} \\
& =\sum_{x=0}^{n}(x(x-1)+x) p(x=x) \\
& =\sum_{x=0}^{n}[x(x-1)] P(x=x)+\sum_{x=0}^{n} x P(x=x) \\
& =\sum_{x=0}^{n} \frac{x(x-1) n!}{x!(n-x)!} p^{x} q^{n-x}+n p \\
& =\sum_{x=2}^{n} \frac{n(n-1(n-2)!}{(x-2)!(n-x)!} p^{x-2+2}(1-q)^{(n-2)-(x-2)}+n p \\
& =n(n-1) p^{2} \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!(n-x)!} p^{x-2}(1-p)^{(n-2)-(x-2)}+n p \\
& L e t y=x-2 \\
& =n(n-1) p^{2} \sum_{y=0}^{n-2} \frac{(n-2)!}{y!(n-2-y)!} p^{y}(1-p)^{n-2-y}+n p \\
& =n(n-1) p^{2}(p+q)^{n-2}+n p \\
& =n^{2} p^{2}-n p^{2}+n p \\
& =n^{2} p^{2}+n p(1-p) \\
& =n^{2} p^{2}+n p q \\
& \text { Now, } V(x)=E\left(x^{2}\right)-[E(x)]^{2} \\
& =n^{2} p^{2}+n p q-n^{2} p^{2} \\
& =n p q
\end{aligned}
$$

Expressions for the mean and variance of Poisson distribution:

$$
\begin{aligned}
E(x) & =\sum_{x=0}^{\infty} x P\{x=x\} \\
& =\sum_{x=0}^{\infty} x \cdot \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =\lambda \sum_{x=1}^{\infty} \frac{e^{-\lambda} \lambda^{x-1}}{(x-1)!} \\
& =\lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\lambda e^{-\lambda} \sum_{y=0}^{\infty} \frac{\lambda^{y}}{y!} \quad \text { Put } y=x-1\right) \\
& =\lambda e^{-\lambda} \mathbf{e}^{\lambda} \\
& =\lambda \\
E\left(x^{2}\right) & =\sum_{x=0}^{\infty} x^{2} P\{x=x\} \\
& =\sum_{x=0}^{\infty} x^{2} \cdot \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =\sum_{x=0}^{\infty}\{x(x-1)+x\} \cdot \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =\sum_{x=0}^{\infty} \frac{x(x-1) e^{-\lambda} \lambda^{x}}{x!}+\sum_{x=0}^{\infty} \frac{x e^{-\lambda} \lambda^{x}}{x!} \\
& =\sum_{x=2}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{(x-2)!}+\sum_{x=1}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{(x-1)!} \\
& =\lambda^{2} \sum_{x=2}^{\infty} \frac{e^{\lambda} \lambda^{x-2}}{(x-2)!}+\lambda \sum_{x=1}^{\infty} \frac{e^{-\lambda} \lambda^{x-1}}{(x-1)!} \\
& =\lambda^{2} e^{-\lambda} e^{\lambda}+\lambda e^{-\lambda} e^{\lambda} \\
& =\lambda^{2}+\lambda \\
V(X) & =E\left(x^{2}\right)-\{E(x)\}^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
\end{aligned}
$$

