Assignment 7/ Solution

7.28 a) If a random sample of n measurements is selected from a population with mean u and standard deviation σ , the sample distribution of the sample mean \overline{x} will have mean u and standard deviation σ/\sqrt{n} .

b) From the Empirical Rule (and the general properties of the normal distribution) approximately 95% of the measurements will lie in 2 standard deviations of the mean: $u + 2\sigma / \sqrt{n} = (64575, 66640).$

c)
$$p(\bar{x} > 67000) = p(z > \frac{67000 - 65608}{4000 / \sqrt{n}}) = 0.0035$$

d) \$67000 does not lies in the interval (64575, 66640), so we would consider this is unusual.

7.30 a) The approximate sampling distribution of the sample mean of n=10 is:

$$\overline{x} \sim N(20, 2^2/10)$$
.

b)
$$p(\bar{x} < 20) = p(z < \frac{20 - 21}{2/\sqrt{20}}) = p(z < -1.58) = 0.0571$$

c)
$$p(\bar{x} < 20) = 0.001 \Longrightarrow p(z < \frac{20 - u}{2/\sqrt{20}}) = 0.001$$

$$\Rightarrow p(z < -3.1) = 0.001 \Rightarrow u = 21.95$$

7.44 a) $\hat{p} = 66\%$ since $\hat{n p} = 660$ and $\hat{n q} = 340$, both of them are greater than 5, the binomial distribution can be approximately by a normal distribution with mean p=0.66 and SE=0.015.

b)
$$z = \frac{\hat{p} - p}{\sqrt{pq/n}} \approx 1.33$$
, so p (z>1.33) = 0.09
c) $z = \frac{\hat{p} - p}{\sqrt{pq/n}} \approx -1.33$, so p (-1.33
d) $z = \frac{0.7 - 0.66}{0.0498} = 2.67$, then $p(\hat{p} > 0.7) = 1 - p(\hat{p} < 0.7) = 1 - p(z < 2.67)$
 $= 1 - 0.9962 = 0.0038$

7.46 a)
$$z = \frac{p-p}{\sqrt{pq/n}} = \frac{0.25 - 0.15}{0.036} = 2.78, \ p(\hat{p} > 0.25) \approx p(z > 2.78) = 0.0027$$

b)
$$z = \frac{\hat{p} - p}{\sqrt{pq / n}} = \frac{0.12 - 0.15}{0.036} = -0.83, \quad p(\hat{p} < 0.12) \approx p(z < -0.84) = 0.2005$$

c) $z = \frac{\hat{p} - p}{\sqrt{pq / n}} = \frac{0.3 - 0.15}{0.036} = 4.16$, the value is unusual because $\hat{p} = 0.3$

lies 4.16 standard deviations above the mean p=0.15.

7.57