Assignment 7/ Solution

7.28 a) If a random sample of n measurements is selected from a population with mean u and standard deviation σ, the sample distribution of the sample mean \bar{x} will have mean u and standard deviation σ / \sqrt{n}.
b) From the Empirical Rule (and the general properties of the normal distribution) approximately 95% of the measurements will lie in 2 standard deviations of the mean: $u+2 \sigma / \sqrt{n}=(64575,66640)$.
c) $p(\bar{x}>67000)=p\left(z>\frac{67000-65608}{4000 / \sqrt{n}}\right)=0.0035$
d) $\$ 67000$ does not lies in the interval $(64575,66640)$, so we would consider this is unusual.
7.30 a) The approximate sampling distribution of the sample mean of $n=10$ is: $\bar{x} \sim N\left(20,2^{2} / 10\right)$.
b) $p(\bar{x}<20)=p\left(z<\frac{20-21}{2 / \sqrt{20}}\right)=p(z<-1.58)=0.0571$
c) $p(\bar{x}<20)=0.001 \Rightarrow p\left(z<\frac{20-u}{2 / \sqrt{20}}\right)=0.001$
$\Rightarrow p(z<-3.1)=0.001 \Rightarrow u=21.95$
7.44 a) $\hat{p}=66 \%$ since $\mathrm{n} \hat{p}=660$ and $\mathrm{n} \hat{q}=340$, both of them are greater than 5 , the binomial distribution can be approximately by a normal distribution with mean $\mathrm{p}=0.66$ and $\mathrm{SE}=0.015$.
b) $\mathrm{z}=\frac{\hat{p}-p}{\sqrt{p q / n}} \approx 1.33$, so $\mathrm{p}(\mathrm{z}>1.33)=0.09$
c) $z=\frac{\hat{p}-p}{\sqrt{p q / n}} \approx-1.33$, so $p(-1.33<z<1.33)=0.8164$
d) $Z=\frac{0.7-0.66}{0.0498}=2.67$, then $p(\hat{p}>0.7)=1-p(\hat{p}<0.7)=1-p(z<2.67)$

$$
=1-0.9962=0.0038
$$

7.46 a) $z=\frac{\hat{p}-p}{\sqrt{p q / n}}=\frac{0.25-0.15}{0.036}=2.78, \quad p(\hat{p}>0.25) \approx p(z>2.78)=0.0027$
b) $z=\frac{\hat{p}-p}{\sqrt{p q / n}}=\frac{0.12-0.15}{0.036}=-0.83, p(\hat{p}<0.12) \approx p(z<-0.84)=0.2005$
c) $z=\frac{\hat{p}-p}{\sqrt{p q / n}}=\frac{0.3-0.15}{0.036}=4.16$, the value is unusual because $\hat{p}=0.3$
lies 4.16 standard deviations above the mean $\mathrm{p}=0.15$.
7.57

