Arts/ Sci 2R06 Assignment 6 Solution

6.14: We are given $\mathrm{P}(\mathrm{Z}>7.5)=0.8023$ and standard deviation is equal to 2 , so we know $\mathrm{P}(\mathrm{Z}<7.5)=0.1977$

By checking the Table 3, we can find $\mathrm{Z}=-0.85$, since $\mathrm{Z}=(\mathrm{X}-\mu) / \sigma$, then $\mu=7.5+0.85(2)=9.2$
6.17 Since $P(X>4)=0.9772$,so $P(X \leq 4)=1-0.9772=0.0228$

$$
P(X>5)=0.9332 \text {, so } P(X \leq 5)=1-0.9332=0.0668
$$

By checking Table 3, we know $\mathrm{P}(\mathrm{Z}=-2)=0.0228$ and $\mathrm{P}(\mathrm{Z}=-1.5)=0.0668$
So, we can solve these two equations with two unknowns,

$$
-2=(4-\mu) / \sigma \text { and }-1.5=(5-\mu) / \sigma
$$

Therefore, $\sigma=2, \mu=8$.
6.18 It is given that the random variable X (the weights of these "1-pound"package)are normally distributed with $\mu=1, \sigma=0.15$.
a) The proportion of the packages will weigh more than 1 lb is 0.5 .
b) The proportion of the packages will weigh between 0.95 and 1.05 lbs is 0.2586 .
c) The probability that a randomly selected package will weigh less than 0.8 lbs is 0.0918 .
d) $Z=3$, yes, this would be unusual to find a package of that size.
6.21 We are given Cerebral blood flow in the brains of healthy people is normally distributed with a mean of 74 and a standard deviation of 16 .
a) The probability that a healthy person will have CBF reading between 60 and 80 is 0.4586 .
b) The probability that a healthy person will have a CBF of above 100 is 0.0526 .
c) The probability that a healthy person will be mistakenly diagnosed as at risk is 0.0170 .
6.38 a) Since $n p=15 * 0.5=7.5$ and $n q=15 * 0.5=7.5$, both $n p>5$ and $n q>5$, so the normal approximation is appropriate.
b) $\mu=\mathrm{np}=7.5, \sigma=\sqrt{n p q}=1.9365$, so $\mathrm{P}(\mathrm{X} \geq 6)=1-\mathrm{P}(\mathrm{X} \leq 5) \approx 1-\mathrm{P}\left(\mathrm{Z} \leq \frac{5.5-\mu}{\sigma}\right)$ $=1-\mathrm{P}(\mathrm{Z} \leq-1.03)=1-0.1515=0.8485$.
c) $\mathrm{P}(\mathrm{X}>6)=1-\mathrm{P}(\mathrm{X} \leq 6)=1-\mathrm{P}(\mathrm{Z} \leq-0.52)=1-0.3015=0.6985$.
d) The approximations from b) and c) are very close to the exact probabilities.
6.46 Since $p=0.001, q=0.999$ and $n=50000$, and both $n p>5$ and $n q>5$, so it is appropriate to use the normal approximation to the binomial probability, then $\mu=50$ and $\sigma=\sqrt{n p q}=7.068$, $\mathrm{P}(\mathrm{X} \geq 60) \approx \mathrm{P}\left(\mathrm{Z} \geq \frac{59.5-50}{7.068}\right)=\mathrm{P}(\mathrm{Z} \geq 1.34)=1-0.9099=0.0901$, therefore, the probability of there being 60 children with genetic defects is low, but now so low as to considered rare event.
6.52 a) $\mathrm{P}(\mathrm{X}>20)=1-\mathrm{P}(\mathrm{X} \leq 20)=1-0.991=0.009$
b) Using the normal approximation to the binomial distribution:
$\mathrm{P}(\mathrm{X}>20)=1-\mathrm{P}(\mathrm{X} \leq 20) \approx 1-\mathrm{P}\left(\mathrm{Z} \leq \frac{20.5-15}{2.449}\right)=1-0.9878=0.0122$, compart to part a), they are quite close.
c) $\mathrm{n}=25$ and $\mathrm{p}=0.8$, by using Table 1 in Appendix I,
so $\mathrm{P}(15 \leq \mathrm{X} \leq 20)=\mathrm{P}(\mathrm{X} \leq 20)-\mathrm{P}(\mathrm{X} \leq 14)=0.579-0.006=0.573$
d) Using the normal approximation to the binomial distribution to approximate the probability, so $\mathrm{P}(15 \leq \mathrm{X} \leq 20) \approx P\left(\frac{14.5-20}{2} \leq Z \leq \frac{20.5-20}{2}\right)=0.5987-0.0030=0.5957$, therefore, the approximation is relatively close to the actual value from part c).

