Chapt.12: Orthogonal Functions and Fourier series

J.-P. Gabardo
gabardo@mcmaster.ca

Department of Mathematics \& Statistics
McMaster University
Hamilton, ON, Canada

12.1:Orthogonal Functions

- Recall that $\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbb{R}, i=1, \ldots n\right\}$.
- If $\mathbf{u}=\left(u_{1} \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1} \ldots, v_{n}\right)$ belong to \mathbb{R}^{n}, their dot product is the number

$$
(\mathbf{u}, \mathbf{v})=u_{1} v_{1}+\cdots+u_{n} v_{n}=\sum_{i=1}^{n} u_{i} v_{i}
$$

- The dot product has the following properties:
$\circ(\mathbf{u}, \mathbf{v})=(\mathbf{v}, \mathbf{u})$
- $(\alpha \mathbf{u}, \mathbf{v})=\alpha(\mathbf{u}, \mathbf{v})=(\mathbf{u}, \alpha \mathbf{v}), \quad \alpha \in \mathbb{R}$
$\circ(\mathbf{u}+\mathbf{v}, \mathbf{w})=(\mathbf{u}, \mathbf{w})+(\mathbf{v}, \mathbf{w})$
$\circ(\mathbf{u}, \mathbf{u}) \geq 0$ and $(\mathbf{u}, \mathbf{u})=0$ iff $\mathbf{u}=0$

Orthogonal collections

- The norm of a vector: $\|\mathbf{u}\|=\sqrt{u_{1}^{2}+\cdots+u_{n}^{2}}=(\mathbf{u}, \mathbf{u})^{1 / 2}$
- Orthogonality of two vectors: $\mathbf{u} \perp \mathbf{v}$ iff $(\mathbf{u}, \mathbf{v})=0$.
- Orthogonality of a collection of vectors: $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ is an orthogonal collection of vectors iff $\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)=0$ if $i \neq j$.
- Orthogonal basis: If $m=n$, the dimension of the space, then an orthogonal collection $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ where $\mathbf{u}_{i} \neq 0$ for all i, forms an orthogonal basis. In that case, any vector $\mathbf{v} \in \mathbb{R}^{n}$ can be expanded in terms of the orthogonal basis via the formula

$$
\mathbf{v}=\sum_{i=1}^{n}\left(\mathbf{v}, \mathbf{u}_{i}\right) \frac{\mathbf{u}_{i}}{\left\|\mathbf{u}_{i}\right\|^{2}}
$$

- Orthonormal basis: orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ with $\left\|\mathbf{u}_{i}\right\|=1$ for all i.

Orthogonal Functions

- In what follows, we will always assume that the functions considered are piecewise continuous on some interval $[a, b]$.
- Inner product: If f_{1}, f_{2} are two functions defined on $[a, b]$, we define their inner product as

$$
\left(f_{1}, f_{2}\right)=\int_{a}^{b} f_{1}(x) f_{2}(x) d x
$$

- Orthogonality: Two functions f_{1}, f_{2} are orthogonal on $[a, b]$ if $\left(f_{1}, f_{2}\right)=0$.
- Example: $f(x)=\sin (3 x), g(x)=\cos (3 x)$. We have

$$
\int_{-\pi}^{\pi} \sin (3 x) \cos (3 x) d x=0
$$

since $\sin (3 x) \cos (3 x)$ is odd and the interval $[-\pi, \pi]$ is symmetric about 0 . Thus $f(x)=\sin (3 x)$ and $g(x)=\cos (3 x)$ are orthogonal on $[-\pi, \pi]$.

Orthogonal Functions contd.

- Example: $f(x)=\sin (3 x), g(x)=\cos (3 x)$. We have

$$
\int_{-\pi}^{\pi} \sin (3 x) \cos (3 x) d x=0
$$

since $\sin (3 x) \cos (3 x)$ is odd and the interval $[-\pi, \pi]$ is symmetric about 0 . Thus $f(x)=\sin (3 x)$ and $g(x)=\cos (3 x)$ are orthogonal on $[-\pi, \pi]$.

- Orthogonal collections: A collection of functions $\left\{\phi_{0}(x), \phi_{1}(x), \ldots, \phi_{m}(x), \ldots\right\}$ defined on $[a, b]$ is called orthogonal on $[a, b]$ if

$$
\left(\phi_{i}, \phi_{j}\right)=\int_{a}^{b} \phi_{i}(x) \phi_{j}(x) d x=0, \quad \text { when } i \neq j .
$$

An example

The collection $\{1, \cos (x), \cos (2 x), \cos (3 x), \ldots\}=\{\cos (k x), k \geq 0\}$ is orthogonal on $[-\pi, \pi]$.

- To show this, we use the identity

$$
\cos A \cos B=\frac{\cos (A+B)+\cos (A-B)}{2}
$$

- We have, if $m, n \geq 0$ are integers with $m \neq n$,

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \cos (m x) \cos (n x) d x \\
& =\int_{-\pi}^{\pi} \frac{\cos ((m+n) x)+\cos ((m-n) x)}{2} d x \\
& =\frac{1}{2}\left[\frac{\sin ((m+n) x)}{m+n}+\frac{\sin ((m-n) x)}{m-n}\right]_{-\pi}^{\pi}=0
\end{aligned}
$$

Orthonormality

- If $f(x)$ is a function defined on $[a, b]$, we define the norm of f to be

$$
\|f\|=(f, f)^{1 / 2}=\left(\int_{a}^{b} f(x)^{2} d x\right)^{1 / 2}
$$

- A collection of functions $\left\{\phi_{0}(x), \phi_{1}(x), \ldots, \phi_{m}(x), \ldots\right\}$ defined on $[a, b]$ is called orthonormal on $[a, b]$ if

$$
\left(\phi_{i}, \phi_{j}\right)=\int_{a}^{b} \phi_{i}(x) \phi_{j}(x) d x= \begin{cases}0, & i \neq j \\ 1, & i=j .\end{cases}
$$

- Note that if the collection $\left\{\phi_{0}(x), \phi_{1}(x), \ldots, \phi_{m}(x), \ldots\right\}$ is orthogonal on $[a, b]$ and $\left\|\phi_{i}\right\| \neq 0$, the collection $\left\{\frac{\phi_{0}(x)}{\left\|\phi_{0}\right\|}, \frac{\phi_{1}(x)}{\left\|\phi_{1}\right\|}, \ldots, \frac{\phi_{m}(x)}{\left\|\phi_{m}\right\|}, \ldots\right\}$ is orthonormal on $[a, b]$.

An example

- Consider the collection $\{1, \cos (x), \cos (2 x), \cos (3 x), \ldots\}$ or $\{\cos (k x), k \geq 0\}$ which we have shown to be is orthogonal on $[-\pi, \pi]$.
- We have $\|1\|^{2}=\int_{-\pi}^{\pi} 1^{2} d x=2 \pi$, so $\|1\|=\sqrt{2 \pi}$.
- For $m \geq 1$, we have

$$
\begin{aligned}
\|\cos (m x)\|^{2} & =\int_{-\pi}^{\pi} \cos ^{2}(m x) d x=\int_{-\pi}^{\pi} \frac{1+\cos (2 m x)}{2} d x \\
& =\left[\frac{x}{2}+\frac{\sin (2 m x)}{4 m}\right]_{-\pi}^{\pi}=\pi
\end{aligned}
$$

- Thus $\|\cos (m x)\|=\sqrt{\pi}$.
- The collection $\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos (2 x)}{\sqrt{\pi}}, \frac{\cos (3 x)}{\sqrt{\pi}}, \ldots\right\}$ is thus orthonormal on $[-\pi, \pi]$.
- Suppose that the collection $\left\{\phi_{n}(x)\right\}_{n \geq 0}$ is an orthogonal collection (or "system") on $[a, b]$ and that the function $f(x)$ defined on $[a, b]$ can be expanded as a series

$$
\begin{equation*}
f(x)=c_{0} \phi_{0}(x)+c_{1} \phi_{1}(x)+\cdots+c_{n} \phi_{n}(x)+\ldots, \tag{1}
\end{equation*}
$$

how can we compute the coefficients $c_{0}, c_{1}, c_{2}, \ldots$?

- Note that if (1) holds, we have, for each $n \geq 0$,

$$
\begin{aligned}
& \left(f, \phi_{n}\right)=\int_{a}^{b} f(x) \phi_{n}(x) d x=\int_{a}^{b}\left\{\sum_{k=0}^{\infty} c_{k} \phi_{k}(x)\right\} \phi_{n}(x) d x \\
& =\sum_{k=0}^{\infty} c_{k} \int_{a}^{b} \phi_{k}(x) \phi_{n}(x) d x=c_{n} \int_{a}^{b} \phi_{n}^{2}(x) d x=c_{n}\left\|\phi_{n}\right\|^{2}
\end{aligned}
$$

Orthogonal systems

- It follows thus that, if (1) holds, then

$$
c_{n}=\frac{\left(f, \phi_{n}\right)}{\left\|\phi_{n}\right\|^{2}}, \quad n \geq 0
$$

and

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \frac{\left(f, \phi_{n}\right)}{\left\|\phi_{n}\right\|^{2}} \phi_{n}(x) \tag{2}
\end{equation*}
$$

- However, the expansion formula (2) does not hold in general for an arbitrary orthogonal system on $[a, b]$. For example, it could happen that $f \neq 0$ but $f(x)$ is orthogonal to each function $\phi_{n}(x)$ in the system and thus the RHS of (2) would be 0 in that case while $f(x) \neq 0$.
- In order for (2) to hold for an arbitrary function $f(x)$ defined on $[a, b]$, there must be "enough" functions ϕ_{n} in our system.

Completeness

- Definition: An orthogonal system $\left\{\phi_{n}(x)\right\}_{n \geq 0}$ on $[a, b]$ is complete if the fact that a function $f(x)$ on $[a, b]$ satisfies $\left(f, \phi_{n}\right)=0$ for all $n \geq 0$ implies that $f \equiv 0$ on $[a, b]$, or, more precisely, that $\|f\|^{2}=\int_{a}^{b} f^{2}(x) d x=0$.
- If $\left\{\phi_{n}(x)\right\}_{n \geq 0}$ on $[a, b]$ is a complete orthogonal system on $[a, b]$, then every (piecewise continuous) function $f(x)$ on $[a, b]$ has the expansion

$$
\begin{equation*}
f(x) \simeq \sum_{n=0}^{\infty} \frac{\left(f, \phi_{n}\right)}{\left\|\phi_{n}\right\|^{2}} \phi_{n}(x) \tag{3}
\end{equation*}
$$

on $[a, b]$ in the L^{2}-sense which means that

$$
\lim _{N \rightarrow \infty} \int_{a}^{b}\left|f(x)-\sum_{n=0}^{N} \frac{\left(f, \phi_{n}\right)}{\left\|\phi_{n}\right\|^{2}} \phi_{n}(x)\right|^{2} d x=0
$$

- If $\left\{\phi_{n}(x)\right\}_{n \geq 0}$ on $[a, b]$ is a complete orthogonal system on $[a, b]$, the expansion formula (3) holds for every (pwc) function $f(x)$ on $[a, b]$ in the L^{2}-sense, but not necessarily "pointwise", i.e. for a fixed $x \in[a, b]$ the series on the RHS of (3) might not necessarily converge and, even if it does, it might not converge to $f(x)$.
- The system $\{1, \cos (x), \cos (2 x), \cos (3 x), \ldots\}=\{\cos (k x), k \geq 0\}$ is orthogonal on $[-\pi, \pi]$ but it is not complete on $[-\pi, \pi]$.
- Indeed, if $f(x)$ any odd function on $[-\pi, \pi](f(-x)=-f(x))$ with $\|f\| \neq 0$, such as $f(x)=x$ or $f(x)=\sin x$, we have

$$
\int_{-\pi}^{\pi} f(x) \cos (n x) d x=0, \quad n \geq 0
$$

since $f(x) \cos (n x)$ is odd and $[-\pi, \pi]$ is symmetric about 0 .

Section 12.2: Fourier series

- Theorem: The system

$$
\mathcal{T}:=\{1, \cos (x), \sin (x), \cos (2 x), \sin (2 x), \cos (3 x), \sin (3 x), \ldots\}
$$

is a complete orthogonal system on $[-\pi, \pi]$.

- To show the orthogonality of this system, one needs to show that

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \cos (m x) \cos (n x) d x=0, \quad m, n \geq 0, m \neq n, \quad(a) \\
& \int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x=0, \quad m, n \geq 1, m \neq n, \quad(b) \\
& \int_{-\pi}^{\pi} \cos (m x) \sin (n x) d x=0, \quad m \geq 0, n \geq 1 .(c)
\end{aligned}
$$

Fourier series contd.

- For example, to show (b), we use the formula

$$
\sin A \sin B=\frac{\cos (A-B)-\cos (A+B)}{2}
$$

- We have then, if $m, n \geq 1$ and $m \neq n$,

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x \\
& =\int_{-\pi}^{\pi} \frac{\cos ((m-n) x)-\cos ((m+n) x)}{2} d x \\
& =\left[\frac{\sin ((m-n) x)}{m-n}-\frac{\sin ((m+n) x)}{m+n}\right]_{-\pi}^{\pi}=0
\end{aligned}
$$

- We have also, for $m, n \geq 1$,

$$
\|1\|^{2}=2 \pi, \quad\|\cos (m x)\|^{2}=\pi, \quad\|\sin (n x)\|^{2}=\pi
$$

Fourier series expansions

- Note that the completeness of the system \mathcal{T} is much more difficult to prove.
- Using the previous theorem, it follows that every (pwc) function $f(x)$ on $[-\pi, \pi]$ admits the expansion

$$
\begin{equation*}
f(x) \simeq \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos (n x)+b_{n} \sin (n x)\right\} \tag{4}
\end{equation*}
$$

where $\frac{a_{0}}{2}=\frac{(f, 1)}{\|1\|^{2}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=$ average of f on $[-\pi, \pi]$,

$$
\begin{aligned}
a_{n} & =\frac{(f, \cos (n x))}{\|\cos (n x)\|^{2}}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x, n \geq 1 \\
b_{n} & =\frac{(f, \sin (n x))}{\|\sin (n x)\|^{2}}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x n \geq 1
\end{aligned}
$$

Fourier series on general intervals

- The series expansion (4) in terms of the trigonometric system \mathcal{T} is called the Fourier series expansion of $f(x)$ on $[-\pi, \pi]$.
- More generally, if $p>0$ and $f(x)$ is pwc on $[-p, p]$, then it will have a Fourier series expansion on $[-p, p]$ given by

$$
\begin{equation*}
f(x) \simeq \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{n \pi x}{p}\right)+b_{n} \sin \left(\frac{n \pi x}{p}\right)\right\} \tag{4}
\end{equation*}
$$

where the Fourier coefficients a_{n}, b_{n} are defined by

$$
\begin{aligned}
a_{n} & =\frac{1}{p} \int_{-p}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x, n \geq 0 \\
b_{n} & =\frac{1}{p} \int_{-p}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x n \geq 1
\end{aligned}
$$

An example

- The function

$$
f(x)= \begin{cases}0, & -\pi<x \leq 0 \\ x, & 0<x<\pi\end{cases}
$$

has a Fourier series expansion on $[-\pi, \pi]$ given by

$$
\begin{align*}
& f(x) \simeq \frac{\pi}{4}+\sum_{\substack{n \geq 1 \\
n \text { odd }}}\left(\frac{-2}{\pi n^{2}}\right) \cos (n x)+\sum_{n \geq 1} \frac{(-1)^{n+1}}{n} \sin (n x) \\
& \simeq \frac{\pi}{4}-\frac{2}{\pi} \cos (x)-\frac{2}{9 \pi} \cos (3 x)-\frac{2}{25 \pi} \cos (5 x)+\ldots \\
& \sin (x)-\frac{1}{2} \sin (2 x)+\frac{1}{3} \sin (3 x)-\frac{1}{4} \sin (4 x)+\ldots \quad(*) \tag{*}
\end{align*}
$$

Periodic extension

- If a function $f(x)$ defined on the interval $[-p, p]$ is expanded as the Fourier series

$$
f(x) \simeq \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{n \pi x}{p}\right)+b_{n} \sin \left(\frac{n \pi x}{p}\right)\right\}
$$

we can view the RHS of (5) as a function defined om all of \mathbb{R}.

- Since

$$
\begin{aligned}
& \cos \left(\frac{n \pi(x+2 p)}{p}\right)=\cos \left(\frac{n \pi x}{p}+2 n \pi\right)=\cos \left(\frac{n \pi x}{p}\right) \\
& \sin \left(\frac{n \pi(x+2 p)}{p}\right)=\sin \left(\frac{n \pi x}{p}+2 n \pi\right)=\sin \left(\frac{n \pi x}{p}\right)
\end{aligned}
$$

the RHS of (5) is $2 p$-periodic and thus equal to the $2 p$-periodic extension of $f(x)$ to the real line.

Piecewise continuity

- Recall that a function $f(x)$ defined on the interval $[a, b]$ is piecewise continuous (pwc) on $[a, b]$ if $[a, b]$ can be divided into N subintervals $\left[a_{i}, a_{i+1}\right], i=0, \ldots, N-1$ with $a=a_{0}<a_{1}<a_{2}<\cdots<a_{N-1}<a_{N}=b$ and such that $f(x)$ is continuous on each open interval $\left(a_{i}, a_{i+1}\right), i=0, \ldots, N-1$ and

$$
\lim _{x \rightarrow a_{i}^{+}} f(x)=f\left(a_{i}^{+}\right), \quad \lim _{x \rightarrow a_{i+1}^{-}} f(x)=f\left(a_{i+1}^{-}\right)
$$

both exist (and are finite) for each $i=0, \ldots, N-1$.

- A function $f(x)$ defined on \mathbb{R} is pwc if it is pwc on every interval $[a, b] \subset \mathbb{R}$.

Pointwise convergence

- Note that, in the theory of Fourier series, if $f(x)$ is pwc, the value of the function $f(x)$ at the end points a_{i} where $f(x)$ is discontinuous is unimportant (as they do not affect the integral to compute the Fourier coefficients of $f(x)$).
- Definition: If a function $f(x)$ defined on \mathbb{R} is $2 p$-periodic $(f(x+2 p)=f(x))$, its Fourier series is the Fourier series of its restriction to the interval $[-p, p]$.
- Theorem: Let $f(x)$ be a $2 p$-periodic function defined on \mathbb{R} such that both $f(x)$ and $f^{\prime}(x)$ are pwc on \mathbb{R}. Then, the Fourier series of $f(x)$ converges for all x to a function $S(x)$ where

$$
S(x)=\left\{\begin{array}{ll|}
f(x), & \text { if } f(x) \text { is continuous at } x, \\
\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}, & \text { if } f(x) \text { is not continuous at } x .
\end{array}\right.
$$

Section 12.3: Fourier cosine and sine series

- Definition: Let $f(x)$ be a function defined on $[-p, p]$
- $f(x)$ is even if $f(-x)=f(x)$.
- $f(x)$ is odd if $f(-x)=-f(x)$.
- Note that if $f(x)$ is even, then $\int_{-p}^{p} f(x) d x=2 \int_{0}^{p} f(x) d x$.
- On the other hand, if $f(x)$ is odd, $\int_{-p}^{p} f(x) d x=0$.
- Note that
- $f(x)$ even and $g(x)$ even $\Longrightarrow f(x) g(x)$ even
- $f(x)$ even and $g(x)$ odd $\Longrightarrow f(x) g(x)$ odd
- $f(x)$ odd and $g(x)$ odd $\Longrightarrow f(x) g(x)$ even

Fourier cosine and sine series

- If $f(x)$ is even on $[-p, p]$, we have

$$
a_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x
$$

for $n \geq 0$, and

$$
b_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x=0, n \geq 1
$$

- Similarly, if $f(x)$ is odd on $[-p, p]$, we have

$$
a_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x=0, n \geq 0
$$

and, for $n \geq 1$,

$$
b_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x
$$

Fourier cosine and sine series contd.

- The Fourier series of an even function $f(x)$ on $[-p, p]$ is thus a Fourier cosine series

$$
\begin{equation*}
f(x) \simeq \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right) \quad x \in[-p, p], \tag{6}
\end{equation*}
$$

where $a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x, n \geq 0$.

- Similarly, the Fourier series of an odd function $f(x)$ on $[-p, p]$ is a Fourier sine series

$$
\begin{equation*}
f(x) \simeq \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right) \quad x \in[-p, p] \tag{7}
\end{equation*}
$$

where $b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x, n \geq 1$.

Fourier sine series:an example

- The function $f(x)=\sin (x / 2),-\pi<x<\pi$, is odd.
- Its Fourier series on $[-\pi, \pi]$ is thus a sine Fourier series.
- It is given explicitly by

$$
f(x) \simeq \frac{2}{\pi} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{2}-1 / 4} \sin (n x), \quad x \in[-\pi, \pi] .
$$

Half-range expansions; even $2 p$-periodic extension

- Suppose that $f(x)$ is defined on the interval $[0, p]$. Then, $f(x)$ can be expanded in a Fourier series in several ways.
- We can, for example, consider the even extension, $f_{e}(x)$, of $f(x)$ on $[-p, p]$, defined by $f_{e}(x)=f_{e}(-x)=f(x), 0<x<p$, and compute its $2 p$-periodic cosine Fourier series expansion. The coefficients can be computed directly in terms of the original function $f(x)$.
- We have $f_{e}(x) \simeq \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)$ for $x \in[-p, p]$, where, for $n \geq 0$,

$$
a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x\left(=\frac{2}{p} \int_{0}^{p} f_{e}(x) \cos \left(\frac{n \pi x}{p}\right) d x\right)
$$

In particular, since $f_{e}(x)=f(x)$ for $0 \leq x \leq p$,

$$
f(x) \simeq \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right) \quad x \in[0, p] .
$$

Half-range expansions; odd $2 p$-periodic extension

- We can also consider the odd extension, $f_{o}(x)$, of $f(x)$ on $[-p, p]$, defined by

$$
f_{o}(x)= \begin{cases}f(x), & 0<x<p \\ -f(-x), & -p<x<0\end{cases}
$$

and compute its $2 p$-periodic sine Fourier series expansion. The coefficients can be computed directly in terms of the original function $f(x)$.

- We have $f_{o}(x) \simeq \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)$ for $x \in[-p, p]$, where,

$$
b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x\left(=\frac{2}{p} \int_{0}^{p} f_{o}(x) \sin \left(\frac{n \pi x}{p}\right) d x\right),
$$

for $n \geq 1$. In particular, since $f_{o}(x)=f(x)$ for $0 \leq x \leq p$,

$$
f(x) \simeq \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right) \quad x \in[0, p] .
$$

Half-range expansions; full p-periodic Fourier series extension

- A third possibility is to extend $f(x)$ as a p-periodic function on the real line $(f(x+p)=f(x))$. The resulting function will have a full Fourier series expansion.
- It is calculated in the same way as for a function defined on $[-p, p]$ except that, in the formulas, p is replaced by $p / 2$ and the integration is done over the interval $[0, p]$ instead of $[-p, p]$:

$$
f(x) \simeq \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 n \pi x}{p}\right)+b_{n} \sin \left(\frac{2 n \pi x}{p}\right) \quad x \in[0, p]
$$

where

$$
\begin{aligned}
a_{n} & =\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{2 n \pi x}{p}\right) d x, n \geq 0 \\
b_{n} & =\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{2 n \pi x}{p}\right) d x, n \geq 1
\end{aligned}
$$

Section 12.4: Complex Fourier series

- Recall Euler's formula: $e^{i x}=\cos x+i \sin x$ (and also $\left.e^{-i x}=\cos x-i \sin x\right)$.
- If $f(x)$ is a function defined on $[-p, p]$ its Fourier series

$$
f(x) \simeq \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)+b_{n} \sin \left(\frac{n \pi x}{p}\right) \quad x \in[-p, p]
$$

can also be written as

$$
\begin{aligned}
f(x) & \simeq \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n}\left(\frac{e^{\frac{i n \pi x}{p}}+e^{-\frac{i n \pi x}{p}}}{2}\right)+b_{n}\left(\frac{e^{\frac{i n \pi x}{p}}-e^{-\frac{i n \pi x}{p}}}{2 i}\right) \\
& =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(\frac{a_{n}-i b_{n}}{2}\right) e^{\frac{i n \pi x}{p}}+\sum_{n=1}^{\infty}\left(\frac{a_{n}+i b_{n}}{2}\right) e^{-\frac{i n \pi x}{p}} \\
& =c_{0}+\sum_{n=1}^{\infty} c_{n} e^{\frac{i n \pi x}{p}}+\sum_{n=1}^{\infty} c_{-n} e^{-\frac{i n \pi x}{p}}
\end{aligned}
$$

Complex Fourier series contd.

where the coefficients $c_{n},-\infty<n<\infty$, are defined by:

- $c_{0}=\frac{a_{0}}{2}=\frac{1}{2 p} \int_{-p}^{p} f(x) d x$,

$$
\begin{aligned}
c_{n} & =\frac{a_{n}-i b_{n}}{2} \\
& =\frac{1}{2 p} \int_{-p}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x-i \frac{1}{2 p} \int_{-p}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x \\
& =\frac{1}{2 p} \int_{-p}^{p} f(x) e^{\frac{-i n \pi x}{p}} d x, \quad n \geq 1,
\end{aligned}
$$

$$
c_{-n}=\frac{a_{n}+i b_{n}}{2}=\frac{1}{2 p} \int_{-p}^{p} f(x) e^{\frac{i n \pi x}{p}} d x, \quad n \geq 1
$$

Complex Fourier series contd.

It follows that any (pwc) function $f(x)$ defined on $[-p, p]$ can be expanded as a complex Fourier series

$$
f(x) \simeq \sum_{n \in \mathbb{Z}} c_{n} e^{\frac{i n \pi x}{p}},
$$

where

$$
c_{n}=\frac{1}{2 p} \int_{-p}^{p} f(x) e^{\frac{-i n \pi x}{p}} d x, \quad n \in \mathbb{Z} .
$$

- The complex Fourier series is more elegant and shorter to write down than the one expressed in term of sines and cosines, but it has the disadvantage that the coefficients c_{n} might be complex even if $f(x)$ is real valued.

