Ex: Compute the directional derivative of $f(x, y, z)=x y^{2}-4 x^{2} y+z^{2}$ at ($1,-1,2$)
in the direction of the vector $6 \dot{i}+2 \underline{j}+3 \underline{k}$.
Sol. $\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\left\langle y^{2}-8 x y, 2 x y-4 x^{2}, 2 z\right\rangle$

$$
\begin{aligned}
& =3>\sqrt{149}=7 \\
& =\sqrt{49}=
\end{aligned}
$$

A wit vector with the same direction as $\langle 6,2,3\rangle$

$$
\begin{aligned}
& \text { is }\left\langle\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right\rangle \\
& \begin{aligned}
\left.D_{4} f\right)(1,-1,2) & =\nabla f(1,-1,2) \cdot \underline{u}=\langle 9,-6,4\rangle \cdot\left\langle\frac{6}{7}, \frac{2}{7},\left(\frac{3}{7}\right\rangle\right. \\
& =\frac{54-12+12}{7}=\frac{54}{7} .
\end{aligned} . \quad .
\end{aligned}
$$

Divedton of maximum (ama minimememe) nate \& change

$$
\Delta f(P) \Rightarrow \quad\left(D_{2} f(p)=\nabla f(p) \cdot \underline{u}=\|\nabla f(p)\|\left\|\frac{\|!}{1}\right\| \cos \theta\right.
$$

$$
=\|\nabla f(p)\| \cos \theta \text {, }
$$

$\xrightarrow{\square}$ where θ is the angle bectiven $\nabla f, p$) and $\underline{\|}$
\therefore. If we let 1 vary (with p fixed), (D un) (p)
is: - Meximigiged when $\cos \theta=1$, i. e. $\theta=0$ ie. When <compat>ᄊ<compat>ᅳ hes the Same direction as $\nabla f($ P)

- Minimimized when $\cos \theta=-1$, ie. $\theta=\pi$ ie. $\underline{\underline{u}}$ has direction apposite to that of the gradient vector.
mas. possible value of $D_{\underline{\underline{x}}} f(p)=\|\nabla f(p)\|$
min. " "/ " $=-\|\nabla(p)\|$.
Ex: In which direction does the function $\bar{f}(x, y, z)=\frac{x-z}{y+z}$ incenses the forotest at $(-1,1,3)$? What is the max: mum note of change of $f(x, y, z)$ ot that point ?
Sol

$$
\begin{aligned}
& \text { ot that point ? } \\
& \text { Sod } \nabla f(x, y, z)=\left\langle\frac{1}{y+z}, \frac{z-x}{(y+z)^{2}}, \frac{-(y+z)-(x-z)}{y+z}\right\rangle \\
& \nabla f(-1,1,3)=\left\langle\frac{1}{4}, \frac{4}{4^{2}}, 0\right\rangle=\left\langle\frac{1}{4}, \frac{1}{4}, 0\right\rangle \\
& \therefore f(x, y, z) \text { incursen the first in the direction } \\
& \left.\therefore f\left(\frac{1}{10}, 0\right\rangle\right) \text {. }
\end{aligned}
$$ of $\left\langle\frac{1}{4}, \frac{4}{4}, 0\right\rangle\left(\right.$ or that of $\left.\underline{u}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right\rangle\right)$.

The maximum note of charge of $f(x, y, z)$ at $(-1,1,3)$ is

$$
\|\nabla f(-1,1,3)\|=\left\|\left\langle\frac{1}{4}, \frac{1}{4}, 0\right\rangle\right\|=\frac{\sqrt{2}}{4}
$$

9.6 Tangent planes to level surfores

Consider a level S with equation
$F(x, y, z)=k$, where $F(x, y, z)$
is differentiable and k is a constant.
Let $P=\left(x_{0}, y_{0}, z_{0}\right)$ be a point on s and let C be a curse on C passing through P

$$
\begin{aligned}
& \text { If } C \text { is panamettiged } \\
& \text { by } n(t)=\langle x(t), y(t), z(t)\rangle \text {, } \\
& a \leq t \leq b \text { and } \underline{R}\left(t_{0}\right)=\overrightarrow{O P} \text {. } \\
& \text { Then, } F(x(t), y(t), z(t))=k
\end{aligned}
$$

:. Then, using the chain rule we have
$\left.\frac{d}{d t}\{F(x \mid t), y(t), z(t))\right\}=\frac{d}{d t} k=0$
$=\quad$
$F_{x}(\cdot) x^{\prime}(t)+F_{y}(1) y^{\prime}(t)+F_{z}(\cdot) z^{\prime}(t)=0$

$$
\because \nabla F(\underline{R}(t)) \cdot r^{\prime}(t)=0
$$

\therefore At $t_{=}=t_{0} \quad \nabla F(P) \cdot \underline{r}^{\prime}(t)=0$
(t) the bling in S.
$\therefore \nabla F(P) \perp$ to the tangent plane

The equation of the plane tangent
to S at P is thus:

$$
\begin{aligned}
& p \text { is that: } \\
& \nabla F(p) \cdot\left(\pi-\pi_{0}\right)=0
\end{aligned}
$$

Where iI $=\langle x, y, z\rangle,{n_{0}}_{0}=\overrightarrow{O P}=\left\langle x_{0}, y_{0}, z\right\rangle$
o $\frac{\partial F}{\partial x}(P)\left(x-x_{0}\right)+\frac{\partial F}{\partial y}(P)\left(y-y_{0}\right)+\frac{\partial F}{\partial z}\left(z-z_{0}\right)=0$.
Def: the normal lime to the surface
$F(x, y, z)=k$ at P (P on S) is the line though P with direction vects $\nabla F(P)$.

Ex: Find the equation of the plane tangent to the sphere $x^{2}+y^{2}+z^{2}=4$ at the point $P=(-1,1, \sqrt{2})$.
Sol. Take $F(x, y, z)=x^{2}+y^{2}+z^{2}$

$$
\begin{aligned}
& \nabla F(x, y, z)=\langle 2 x, 2 y, 2 z\rangle \\
& \nabla F(-1,1, \sqrt{2}\rangle=\langle-2,2,2 \sqrt{2}\rangle
\end{aligned}
$$

: The equation of the tangent plane at $(-1,1, \sqrt{2})$
in thus $(-2)(x-(-1))+2(y-1)+2 \sqrt{2}(z-\sqrt{2})=0$

$$
\sigma \quad-x+y+\sqrt{2} z=4
$$

Rem: In $\operatorname{dim} .2$, if $F(x, y)=k$ is a level curve and P is at point on the Gave, the $\nabla F(P)$ is \perp to the cave at P

