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ABSTRACT. Beginning with Lebesgue integration on the real line, and contin-
uing with Euclidean spaces, the Banach-Tarski paradox, and the Riesz rep-
resentation theorem on locally compact Hausdorff spaces, these lecture notes
examine theories of integration with applications to analysis and differential
equations.
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Preface

These notes grew out of lectures given twice a week in a first year graduate
course in advanced real analysis at McMaster University September to December
2010. Part 1 consists of a brief review of compactness and continuity. The top-
ics in Part 2 include Lebesgue integration on Euclidean spaces, the Banach-Tarski
paradox, the Riesz representation theorem on locally compact Hausdorff spaces,
Lebesgue spaces L? (1), Banach and Hilbert spaces, complex measures and the
Radon-Nikodym theorem, and Fubini’s theorem. Applications to differential equa-
tions will be forthcoming in Part 3. Sources include books by Rudin [3], [4] and [5],
and books by Stein and Shakarchi [6] and [7]. Special topics are covered in Bartle
and Sherbert [1] and Wagon [8].






Part 1

Topology of Euclidean spaces



We begin Part 1 by reviewing some of the theory of compact sets and conti-
nuity of functions in Euclidean spaces R"™. We assume the reader is already famil-
iar with the notions of sequence, open, closed, countable and uncountable, and is
comfortable with elementary properties of limits, continuity and differentiability of
functions.



CHAPTER 1

Compact sets

Let R be the set of real numbers equipped with the usual field and order
operations, and the least upper bound property. Denote by R™ the n-dimensional
Euclidean space

R"™ = {(z1,22,...,2n) €E RX R x ... x R (n times)}

equipped with the usual vector addition and scalar and inner products

r+y = (v1+yLT2+Y2, 0 Tn+Yn),
Ax = (Azy, Azo, ..., Axy)
Ty = x1Y1 +22Y2 + ... + TplYn,

if x = (21,22, ..., n), y = (Y1,Y2,..-,Yn) and X € R.

We begin with the single most important property that a subset of Euclidean
space can have, namely compactness. In a sense, compact subsets share the most
important topological properties enjoyed by finite sets. It turns out that the most
basic of these properties is rather abstract looking at first sight, but arises so of-
ten in applications and subsequent theory that we will use it as the definition of
compactness. But first we introduce some needed terminology.

Let E be a subset of R™. A collection G = {Ga}aeA of subsets G, of R" is
said to be an open cover of E if

each G, is open and FE C U Gq.
acA

A finite subcover (relative to the open cover G of E) is a finite collection {Gq, }1_,
of the open sets G, that still covers E:

k=1

oo

For example, the collection G = {(%, 1+ %)}nzl of open intervals in R form an
8

open cover of the interval £ = (%,2), and {(%, 1+ %)}nzl is a finite subcover.

Draw a picture! However, G is also an open cover of the interval E = (0,2) for
which there is no finite subcover since % ¢ (%, 1+ %) forall 1 <n<m.

DEFINITION 1. A subset E of R™ is compact if every open cover of E has a
finite subcover.

ExamMPLE 1. Clearly every finite set is compact. On the other hand, the interval
(0,2) is not compact since G = {(%, 14+ %L) }:11 is an open cover of (0,2) that does
not have a finite subcover.
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The above example makes it clear that all we need is one ‘bad’ cover as witness
to the failure of a set to be compact. On the other hand, in order to show that
an infinite set is compact, we must often work much harder, namely we must show
that given any open cover, there is always a finite subcover. It will obviously be
of great advantage if we can find simpler criteria for a set to be compact, and this
will be carried out below. For now we will content ourselves with giving one simple
example of an infinite compact subset of the real numbers (even of the rational
numbers).

EXAMPLE 2. The set K = {0} U {%}211 18 compact in R. Indeed, suppose
that G = {Ga} e is an open cover of K. Then at least one of the open sets in G
contains 0, say Go,. Since Gy, is open, there is r > 0 such that

B(0,7) C Gq,-
Now comes the cruz of the argument: there are only finitely many points % that lie
outside B (0,7), i.e. + & B(0,7) if and only if k < [1] = n. Now choose Gq, to
contain % for each k between 1 and n inclusive (with possible repetitions). Then the
finite collection of open sets {Gay, Gars Gagy -y Ga,, } (after removing repetitions)
constitute a finite subcover relative to the open cover G of K. Thus we have shown
that every open cover of K has a finite subcover.

It is instructive to observe that K = E where E = {%}zozl is mot compact
(since the pairwise disjoint balls B (%, ﬁ) = (% — ﬁ, % + ﬁ) cover F one point
at a time). Thus the addition of the single limit point 0 to the set E resulted in
making the union compact. The argument given as proof in the above example
serves to illustrate the sense in which the set K is topologically ‘almost’ a finite set.

As a final example to illustrate the concept of compactness, we show that any
unbounded set in R™ fails to be compact. We say that a subset E of R™ is bounded
if there is some ball B (z,r) in R"™ that contains E. So now suppose that F is
unbounded. Fix a point # € R" and consider the open cover {B (z,n)},., of E
(this is actually an open cover of R™). Now if there were a finite subcover, say
{B (z, n;(;)}]k\]:1 where n1 < ng < ... < ny, then because the balls are increasing,

N
EC U B (z,n;) = B(z,ny),
k=1
which contradicts the assumption that E is unbounded. We record this fact in the
following lemma.

LEMMA 1. A compact subset of R™ is bounded.

REMARK 1. We can now preview one of the magjor themes in our development
of analysis. The Least Upper Bound Property of the real numbers will lead directly
to the following beautiful characterization of compactness in the metric space R of
real numbers, the Heine-Borel theorem: a subset K of R is compact if and only if
K is closed and bounded.

1. Properties of compact sets

We now prove a number of properties that hold for compact sets in Euclidean
space R".

LEMMA 2. If K is a compact subset of R™, then K is a closed subset of R™.
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Proof: We show that K¢ is open. So fix a point x € K€ For each point
y € K, consider the ball B (y,r,) with

(1.1) ry = %d(x,y).

Since {B (y, ry)}yeK is an open cover of the compact set K, there is a finite subcover

{B (yk, 7y, ) }p—; with of course y, € K for 1 < k < n. Now by the triangle
inequality and (1.1) it follows that

(1.2) B (z,ry,) N B (yk,ry,) =0, 1<k<n.

Indeed, if the intersection on the left side of (1.2) contained a point z then we would
have the contradiction

d(l‘7yk) S d(]?,Z) +d(zayk) < Ty +7"yk = d(xayk) .
Now we simply take 7 = min {ry, },_, > 0 and note that B (z,r) C B (x,ry,) so
that

B(z,7)NK C B(z,r)N (0 B(ykﬂ“yk))

k=1

Il
C=

{B(z,r) N B (yr,Ty,.)}

-
Il
-

C

C=

{B (x7ryk) n B(ykaryk)} = U 0 =0,
k=1

ES
Il

1

by (1.2). This shows that B (z,7) C K¢ and completes the proof that K¢ is open.
Draw a picture of this proof!

LemMmA 3. If F C K C X where F is closed in R™ and K is compact, then F
is compact.

Proof: Let G = {Ga},c4 be an open cover of F. We must construct a finite
subcover S of F. Now G* = {F°} UG is an open cover of K. By compactness of
K there is a finite subcover S* of G* that consists of sets from G and possibly the
set F¢. However, if we drop the set F'¢ from the subcover S* the resulting finite
collection of sets S from G is still a cover of F' (although not neccessarily of K),
and provides the required finite subcover of F.

COROLLARY 1. If F is closed and K is compact, then F' N K is compact.

Proof: We have that K is closed by Lemma 2, and so F'N K is closed. Now
FNK C K and so Lemma 3 shows that F'N K is compact.

REMARK 2. With respect to unions, compact sets behave like finite sets, namely
the union of finitely many compact sets is compact. Indeed, suppose K and L are
compact subsets of a metric space, and let {Gu},c, be an open cover of K U L.
Then there is a finite subcover {Ga},c; of K and also a (usually different) finite
subcover {Ga},cy of L (here I and J are finite subsets of A). But then the union
of these covers {Ga}ocruy = {Gatacr U{Gatacy @5 a finite subcover of K U L,
which shows that K U L is compact.
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Now we come to one of the most useful consequences of compactness in appli-
cations. A family of sets {E,} 4 is said to have the finite intersection property
if

(] Ea #0

aEF
for every finite subset F' of the index set A. For example the family of open intervals
{(0 1 ) }OO:1 has the finite intersection property despite the fact that the sets have

‘n/tn
o

no element in common: ﬂ (O7 %) = (. The useful consequence of compactness

n=1
referrred to above is that this cannot happen for compact subsets!

THEOREM 1. Suppose that {Kas} ¢ 4 is a family of compact sets with the finite
intersection property. Then

() Ko #0.

a€cA

Proof: Fix a member K,, of the family {K,}, . Assume in order to de-
rive a contradiction that no point of K,, belongs to every K,. Then the open
sets {Kg}aeA\{aU} form an open cover of K,,. By compactness, there is a finite
subcover {K¢} ¢y (apy With F finite, so that

Ko, |J K&
aeF\{ao}
i.e.
Koo () Ka=0,
acF\{ao}

which contradicts our assumption that the finite intersection property holds.

COROLLARY 2. If {K,},7, is a nonincreasing sequence of nonempty compact
sets. i.e. K11 C Ky, for allm > 1, then

Ak so
n=1

THEOREM 2. If E is an infinite subset of a compact set K, then E has a limit
point in K.

Proof: Suppose, in order to derive a contradiction, that no point of K is a
limit point of E. Then for each z € K, there is a ball B(z,7,) that contains at
most one point of E (namely z if z is in F). Thus it is not possible for a finite
number of these balls B (z,7.) to cover the infinite set £. Thus {B (z,7.)},.x is
an open cover of K that has no finite subcover (since a finite subcover cannot cover
even the subset E of K). This contradicts the assumption that K is compact.

The Least Upper Bound Property of the real numbers plays a crucial role in
the proof that closed bounded intervals are compact.

THEOREM 3. The closed interval [a,b] is compact (with the usual metric) for
all a <b.
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We give two proofs of this basic theorem. The second proof will be generalized
to prove that closed bounded rectangles in R™ are compact.

Proof #1: Assume for convenience that the interval is the closed unit interval
[0, 1], and suppose that {Go},c4 is an open cover of [0,1]. Now 1 € G for some
p € A and thus there is 7 > 0 such that (1 —7,147) C Gg. Witha=1+5 > 1
it follows that {G},c 4 is an open cover of [0,a]. Now define

E = {z € [0,a] : the interval [0,z] has a finite subcover} .

We have E is nonempty (0 € E) and bounded above (by a). Thus A = sup E exists.
We claim that A > 1. Suppose for the moment that this has been proved. Then 1
cannot be an upper bound of F and so there is some o € E satisfying

l<o<A

Thus by the definition of the set E it follows that [0,c] has a finite subcover, and
hence so does [0, 1], which completes the proof of the theorem.

Now suppose, in order to derive a contradiction, that A < 1. Then there is
some open set G, with v € A and also some s > 0 such that

(A=s5,X+3) CG,.

Now by the definition of least upper bound, there is some = € E satisfying A — s <
x < A, and by taking s less than a — 1 we can also arrange to have

A+s<14+s<a.

Thus there is a finite subcover {Gq, };_; of [0,z], and if we include the set G, with
this subcover we get a finite subcover of [O, A+ g] This shows that A + 5 € FE,
which contradicts our assumption that A is an upper bound of F, and completes
the proof of the theorem.

Proof #2: Suppose, in order to derive a contradiction, that there is an open
cover {Ga},ca Of [a,0] that has no finite subcover. Then at least one of the two

intervals [a, %rb] and [%rb,b} fails to have a finite subcover. Label it [a1,b;] so
that

a<a; <b <b,

1
b] —ay = 56,

where 6 = b— a. Next we note that at least one of the two intervals [al,
[%, bl} fails to have a finite subcover. Label it [as, bs] so that

a<a; <ap <by<b <0,

ai1+by
5 ] and

1
b2 — ag = 1(5
Continuing in this way we obtain for each n > 2 an interval [a,, b,] such that
(13) a<ar <.p_1<a, <b, <bp,_1...<b < b7
1
by, —an, = —4.
a om

Now let B = {a,, : n > 1} and set = sup F. From (1.3) we obtain that each
b, is an upper bound for F, hence z < b,, and we have

a<ap,<x<b,<b, foralln>1,
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i.e. x € [ap,by] for all n > 1. Now z € [a,b] and so there is 3 € A and r > 0 such
that

(x —r,x+71)C Gp.
By the Archimedian property of R we can choose n € N so large that % <n<2"
(it is easy to prove n < 2" for all n € N by induction), and hence
[an,bp) C (. — 1+ 7) C Gpg.
But this contradicts our construction that [ay, b,] has no finite subcover, and com-

pletes the proof of the theorem.

COROLLARY 3. A subset K of the real numbers R is compact if and only if K
1s closed and bounded.

Proof: Suppose that K is compact. Then K is bounded by Lemma 1 and is
closed by Lemma 2. Conversely if K is bounded, then K C [—a, a] for some a > 0.
Now [—a,a] is compact by Theorem 3, and if K is closed, then Lemma 3 shows
that K is compact.

Proof #2 of Theorem 3 is easily adapted to prove that closed rectangles

R =
k

[ak,bk] = [al,bl] X ... X [an,bn]
1

n

in R™ are compact.

THEOREM 4. The closed rectangle R = [[,_, [ax, bk] is compact (with the usual
metric) for all ap, < b, 1 <k <mn.

Proof: Here is a brief sketch of the proof. Suppose, in order to derive a
contradiction, that there is an open cover {G4}, ., of R that has no finite sub-
cover. It is convenient to write R as a product of closed intervals with super-
scripts instead of subscripts: R = szl [ak , bk]. Now divide R into 2" congruent
closed rectangles. At least one of them fails to have a finite subcover. Label it

R, = szl [a’f,b}f], and repeat the process to obtain a sequence of decreasing
rectangles R,,, = [[,_, [a¥,,b%,] with
a* <ab <..af | <aF, <bF <bF_<bh <P

m

1
bk _ .k _ 75]{:
m — @ om

where 6F = bk — a®, 1 < k < n. Then if we set z* = sup {a’fn tm > 1} we obtain
that x = (:rl, ,m") € R,, C R for all m. Thus thereis 5 € A, r >0and m > 1
such that

R, C B(z,r) C Gg,

contradicting our construction that R,, has no finite subcover.

THEOREM 5. Let K be a subset of Fuclidean space R™. Then the following
three conditions are equivalent:
(1) K is closed and bounded;
(2) K is compact;
(3) every infinite subset of K has a limit point in K.
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Proof: We prove that (1) implies (2) implies (3) implies (1). If K is closed
and bounded, then it is contained in a closed rectangle R, and is thus compact by
Theorem 4 and Lemma 3. If K is compact, then every infinite subset of K has a
limit point in K by Theorem 2. Finally suppose that every infinite subset of K
has a limit point in K. Suppose first, in order to derive a contradiction, that K
is not bounded. Then there is a sequence {zj},., of points in K with |z;| > k
for all k. Clearly the set of points in {zj},-, is an infinite subset E of K but has
no limit point in R™, hence not in K either. Suppose next, in order to derive a
contradiction, that K is not closed. Then there is a limit point x of K that is not
in K. Thus each deleted ball B’ (ac7 %) contains some point x from K. Again it is
clear that the set of points in the sequence {zj},, is an infinite subset of K but
contains no limit point in K since its only limit point is  and this is not in K.

COROLLARY 4. FEvery bounded infinite subset of R™ has a limit point in R™.

2. The Cantor set

We now construct the Cantor middle thirds set (1883). This famous fractal
set arises as a counterexample to many conjectures in analysis. We start with the
closed unit interval / = I° = [0,1]. Now remove the open middle third (3, %) of
length % and denote the two remaining closed intervals of length % by I = [O, %]
and I} = [%, 1]. Then remove the open middle third (%, %) of length 3% from
I{ = [0, %] and denote the two remaining closed intervals of length 55 by I7 and
I3. Do the same for I3 and denote the two remaining closed intervals by I3 and I3.

k
Continuing in this way, we obtain at the k*" generation, a collection {Ij’?}jzl

k
of 2% pairwise disjoint closed intervals of length 3. Let K = U?:l I§ and set

oo 0o 2k
E=NK=N UL
k=1 k=1 \j=1
Now each set K} is closed, and hence so is the intersection E. Then E is compact by
Corollary 3. It also follows from Corollary 2 that E is nonempty. Next we observe
that by its very construction, F is a fractal satisfying the replication identity

Thus the fractal dimension « of the Cantor set E is %“— Moreover, F has the

n3’
property of being perfect.

DEFINITION 2. A subset E of R™ is perfect if E is closed and every point in
FE is a limit point of E.

To see that the Cantor set is perfect, pick x € E. For each k > 1 the point z
lies in exactly one of the closed intervals I J’“ for some j between 1 and 2*. Since the
length of I]’?C is positive, it is possible to choose a point z € EN 1']’4C \ {z}. Now the
set of points in the sequence {zy},—, is an infinite subset of £ and clearly has z as
a limit point. This completes the proof that the Cantor set E is perfect.

By summing the lengths of the removed open middle thirds, we obtain

1 2 22
‘length’ ([0,1]\ E) = = + =5 +

3 32 §+:17
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and it follows that E is nonempty, compact and has ‘length’ 1 — 1 = 0. Another
way to exhibit the same phenomenon is to note that for each £ > 1 the Cantor
set E is a subset of the closed set Kj, which is a union of 2¥ intervals each having

length 3% Thus the ‘length’ of K}, is 2’“3% = (%)k, and the ‘length’ of E is at most

ORI

In contrast to this phenomenon that the ‘length’ of E is quite small, the car-
dinality of E is quite large, namely FE is uncountable, as is every nonempty perfect
subset of a metric space with the Heine-Borel property: every closed and bounded
subset is compact.

THEOREM 6. Fvery nonempty perfect subset of R™ is uncountable.

Proof: Suppose that P is a nonempty perfect subset of R”. Since P has a
limit point it must be infinite. Now assume, in order to derive a contradiction, that
P is countable, say P = {z,},_,. Start with any point y; € P that is not z; and

the ball By = B (y1,71) where rq = %. We have
BlﬂP7é(Z)andm1 ¢E
Then there is a point y2 € Bj N P that is not x5 and so we can choose a ball By
such that o o
By NP #( and x5 ¢ By and By C By.

in{d(z2,y2),m71—d(y1, s
min{d(ws y2)2” W1y2)} Continuing

Indeed, we can take By = B (y2,72) where ry =
in this way we obtain balls By satisfying

Br NP # () and x;, ¢ By and By C By_1, k> 2.

Now each closed set By N P is nonempty and compact, and so by Corollary 2

we have

o0 o0

ﬂ(EﬂP)#(Z), saymE(ﬂ&)ﬁP.

k=1 k=1
However, by construction we have x, ¢ B,, for all n and since the sets B,, are
decreasing, we see that z,, ¢ (,—, Bx for all n; hence x # x, for all n. This
contradicts P = {z,,},-, and completes the proof of the theorem.



CHAPTER 2

Continuous functions

We initially examine the connection between continuity and sequences, and
after that between continuity and open sets. Central to all of this is the concept of
limit of a function.

1. Limits

DEFINITION 3. Suppose that f : X — R™ is a function from a subset X of R™
into R™. Let p € R™ be a limit point of X and suppose that ¢ € R™. Then

lim f(z) =q

T—p
if for every e > 0 there is § > 0 such that
(1.1) dgm (f (z),q) < € whenever x € X \ {p} and dg~ (x,p) < 4.

Note that the concept of a limit of f at a point p is only defined when p is a
limit point of the set X on which f is defined. Do not confuse this notion with the
definition of limit of a sequence s = {s,,},-, in R™. In this latter definition, s is a
function from the natural numbers N into R"™, but the limit point p is replaced by
the symbol co. Here is a characterization of limit of a function in terms of limits
of sequences.

THEOREM 7. Suppose that f : X — R™ is a function from a subset X of
R™ 4nto R™. Let p € R™ be a limit point of X and suppose that ¢ € R™. Then
lim,_,, f () = q if and only if
Jim f(sk) =g
for all sequences {sy}r—, in X \ {p} such that
li =p.
Jlim =

Proof: Suppose first that lim,_., f (z) = ¢. Now assume that {s;},—, is a
sequence in X \ {p} such that limy_, o sy = p. Then given £ > 0 there is 6 > 0 such
that (1.1) holds. Furthermore we can find N so large that dgn (sk,p) < 6 whenever
k > N. Combining inequalities with the fact that s, € E gives

dgm (f (sk),q) < &€ whenever k > N,

which proves limy o f (si) = ¢.
Suppose next that lim,_,, f () = ¢ fails. The negation of Definition 3 is that
there exists an ¢ > 0 such that for every ¢ > 0 we have

(1.2) dgm (f (x),q) > ¢ for some x € X \ {p} with drn (z,p) <.

11
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So fix such an € > 0 and for each § = > 0 choose a point s, € X \ {p} with

dgr (sk,p) < 7. Then {si};—, is a sequence in X \ {p} such that the sequence
{f (sk)} 4=, does not converge to ¢ - indeed, dgm (f (sx),q) > >0 for all k > 1.

2. Continuity

DEFINITION 4. Let X be a subset of R™ and suppose that f : X — R™ is a
function from X to R™. Let p € X. Then f is continuous at p if for every e > 0
there is § > 0 such that

(2.1) dgm (f (), f (p)) < € whenever x € X and dg~ (x,p) < 6.
Note that (2.1) says
(2.2) f(B(p,0)NX)CB(f(p),e)

There are only two possibilities for the point p € X; either p is a limit point of
X or pis isolated in X (a point x in X is isolated in X if there is a deleted ball
B’ (x,r) that has empty intersection with X). In the case that p is a limit point of
X, then f is continuous at p if and only if lim,_,, f (z) exists and the limit is f (p),
ie.

(2.3) lim f (2) = f ().

T—p

On the other hand, if p is an isolated point of X, then f is automatically con-
tinuous at p since (2.1) holds for all € > 0 with § = r where B’ (z,7) N X = (.
From these remarks together with Theorem 7, we immediately obtain the following
characterization of continuity in terms of sequences.

THEOREM 8. Suppose that f : X — R™ is a function from a subset X of R"
into R™. Let p € X. Then f is continuous at p if and only if

lim f (s%) = £ ()
for all sequences {si};, in X \ {p} such that
Jim, o1 =
REMARK 3. The theorem remains true if we permit the sequences {si}pe to
lie in X rather than in X \ {p}.

There is an alternate characterization of continuity of f : X — Y in terms of
relative open sets, which is particularly useful in connection with compact sets and
continuity of inverse functions. Recall that a subset @ of X is said to be relatively
open in X if there is an open set G in R™ such that Q@ = GNX. We will often drop
the adverb relatively.

THEOREM 9. Suppose that f : X — Y is a function from a subset X of R™
into a subset Y of R™. Then f is continuous on X if and only if

(2.4) f7H(G) is open in X for every G that is open in Y.

COROLLARY 5. Suppose that f : X — Y 4s a continuous function from a
compact subset X of R™ into a subset Y of R™. Then f(X) is a compact subset
of R™,
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COROLLARY 6. Suppose that f : X — Y 4s a continuous function from a
compact subset X of R™ to a subset Y of R™. If f is both one-to-one and onto,
then the inverse function f~1:Y — X defined by

=Y (y) = = where x is the unique point in X satisfying f (z) =y,
1S a continuous map.
Proof (of Corollary 5): If {Ga},,c 4 is an open cover of f (X), then { f~! (Gq)}

is an open cover of X, hence has a finite subcover {f~* (Gak)}ljjzl. But then
{Ga, },ivzl is a finite subcover of f (X)) since

N N N
fXx)ycfs (U ! (Gak)> c U (1 (Ga) € | Gan-
k=1 k=1

k=1

a€cA

Note that it is not in general true that f~! (f (G)) C G.

Proof (of Corollary 6): Let G be an open subset of X. We must show that
(f_l)f1 (G) is open in Y. Note that since f is one-to-one and onto, we have
(f’l)fl (G) = f(G). Now G° = X \ G is closed in X, hence compact, and so
Corollary 5 shows that f (G¢) is compact, hence closed in Y, so f (G¢) is open in
Y. But again using that f is one-to-one and onto shows that f (G) = f (G°)°, and
so we are done.

REMARK 4. Compactness is essential in this corollary since the map
f:00,21) = T={2€C:|z| =1} defined by f () = €' = (cosb,sinh),

and takes [0,27) one-to-one and continuously onto T, yet the inverse map fails to
be continuous at z = 1. Indeed, for points z on the circle just below 1, f~1(z) is
close to 2w, while f~* (1) = 0.

Proof (of Theorem 9): Suppose first that f is continuous on X. We must
show that (2.4) holds. So let G be an open subset of Y. We must now show that
for every p € f~1 (G) there is r > 0 (depending on p) such that B (p,r) C f~1(Q).
Fix p € f~1(G). Since G is open and f(p) € G we can pick € > 0 such that
B(f(p),e) C G. But then by the continuity of f there is § > 0 such that (2.2)
holds, i.e. f(B(p,d)) C B(f(p),e) C G. It follows that

B(p,6) C f7H(f(B(p,9) C f7H(G).

Conversely suppose that (2.4) holds. We must show that f is continuous at
every p € X. So fix p € X. We must now show that for every € > 0 there is § > 0
such that (2.2) holds, i.e. f(B(p,d)) C B(f (p),e). Fixe > 0. Since B (f (p),¢) is
open, we have that f=1 (B (f (p),¢)) is open by (2.4). Since p € f~1 (B (f (p),e))
there is thus ¢ > 0 such that B (p,d) C f=* (B (f (p),¢)). It follows that

F(B@o)Cf(f T (B(f(p).) CB(f(p).e).

We now show that continuity is stable under composition of maps.

THEOREM 10. Suppose that X,Y, Z are subsets of R™, R™ RP respectively. If
f: X =Y and g:Y — Z are both continuous maps, then so is the composition
h=gof:X — Z defined by

hiz)=g(f(z), zeX
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Proof: If G is open in Z, then
WG = (g7H(G)
is open since g continuous implies ¢g~! (G) is open by Theorem 9, and then f

continuous implies f~! (g_1 (G)) is open by Theorem 9. Thus h is continuous by
Theorem 9.

Continuity at a point is also easily handled using Definition 4. We leave the
proof of the following theorem to the reader.

THEOREM 11. Suppose that X,Y,Z are subsets of R" R™ RP respectively. If
pe X and f: X — Y is continuous at p and g : f (X) — Z is continuous at f (p),
then the composition h =go f : X — Z is continuous at p.

2.1. Real and complex-valued continuous functions. Here is an elemen-
tary consequence of the familiar limit theorems for sums, differences, products and
quotients of complex-valued functions.

PROPOSITION 1. If f and g are continuous complex-valued functions on a subset
X of R™, then so are the functions f + g and fg. If in addition g never vanishes,
then 5 is also continuous on X.

Here is an extremely useful consequence of Corollary 5 when the target space
Y is the real numbers.

THEOREM 12. Suppose that X is a compact subset of R™ and f : X — R is
continuous. Then there exist points p,q € X satisfying

f(p) =sup f(X) and f(q) =inf f (X).

REMARK 5. Compactness of X is essential here as evidenced by the following
example. If X is the open interval (0,1) and f : (0,1) — (0,1) is the identity map
defined by f (z) = x, then f is continuous and

sup f((0,1)) = sup(0,1) =1,
inf £((0,1)) = inf(0,1) = 0.
However, there are no points p,q € (0,1) satisfying either f (p) =1 or f(q) =0.

Proof (of Theorem 12): Corollary 5 shows that f (X) is compact. Lemmas 1
and 2 now show that f(X) is a closed and bounded subset of R. Thus sup f (X)

exists and sup f (X) € f(X), i.e. there is p € X such that sup f (X) = f (p).
Similarly there is ¢ € X satisfying inf f (X) = f (q).

Now consider a complex-valued function f : X — C on a subset X of R”, and
let u: X — R and v : X — R be the real and imaginary parts of f defined by

u@) = Ref()=lTH
v(z) = Imf(ac)zif(m);if(x),

for x € X. It is easy to see that f is continuous at a point p € X if and only if each
of u and v is continuous at p. Indeed, the inequalities

2 2
max {|a|, [b]} < \/|a]” + [b]" <[a| + |0]
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show that if (2.1) holds for f (with F = X), i.e
d(C (f (fE),f (p)) < € whenever dX (x,p) < 53
then it also holds with f replaced by u or by v:

dg (u(z),u(p)) = [u(z) —u(p)|

VIu@) —u @) + v (@) — v ()
= de(f(a >,f<p>><e

whenever dx (z,p) < d.

Similarly, if (2.1) holds for both « and v then it holds for f but with e replaced by
2¢e:

IN

de (f (x), f(p)) \/I p)I* + o (2) = v (p)[*
ju(z )— ( )I+|v(33)—v(p)|
dr (u(z),u(p)) + dr (v (2),v(p)) < 2

whenever dx (x,p) < 6.

IN

The same considerations apply equally well to Euclidean space R™ (recall that
C = R? as metric spaces) and we have the following theorem. Recall that the dot
product of two vectors z = (21, ..., zp,) and W = (w1, ...,w,,) in R™ is given by
Z-W =) 2 Wy

THEOREM 13. Let X be a subset of R™ and suppose £ : X — R™. Let fj (x)
be the component functions defined by f (x) = (f1 (z), ..., fm (2)) for 1 <k <m.

(1) The vector-valued function £ : X — R™ is continuous at a point p € X if
and only if each component function fi : X — R is continuous at p.

(2) If both f : X — R™ and g : X — R™ are continuous at p then so are
f+g: X—>R"andf-g: X — R.

Here are some simple facts associated with the component functions on Euclid-
ean space.
e For each 1 < j < n, the component function w = (w1,...,w,) — wj is
continuous from R™ to R.
e The length function w = (wy,...,w,) — |w| is continuous from R" to
[0, 00); in fact we have the so-called reverse triangle inequality:

lz| = [wl| < |z —w[, z,wcR"
e Every monomial function w = (wy, ..., w,) — w’flwézwﬁ" is continuous

from R™ to R.
e Every polynomial P (w) =3, . , _y by .. o, W WK Wk is continu-
ous from R" to R.

3. Uniform continuity

A function f : X — Y that is continuous from a subset X of R™ to another
subset Y of R™ satisfies Definition 4 at each point p in X, namely for every p € X
and € > 0 there is d, > 0 (note the dependence on p) such that (2.1) holds with
FE=X:

(3.1) dy (f (z), f (p)) < € whenever dx (z,p) < Jp.
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In general we cannot choose ¢ > 0 to be independent of p. For example, the function
f (z) = L is continuous on the open interval (0,1), but if we want

1 1
— = ’ whenever |p —z| < 4,
p

e>dy (f(z),f(p) =

X

we cannot take p = § since then x could be arbitrarily close to 0, and so % could
be arbitrarily large. In this example, X = (0, 1) is not compact and this turns out
to be the reason we cannot choose § > 0 to be independent of p. The surprising
property that continuous functions f on a compact metric space X have is that we
can indeed choose d > 0 to be independent of p in (3.1). We first give a name to
this surprising property; we call it uniform continuity on X.

DEFINITION 5. Suppose that f: X — Y maps a subset X of R™ into a subset
Y of R™. We say that f is uniformly continuous on X if for every € > 0 there is
0 > 0 such that

dy (f (z), f (p)) < & whenever dx (z,p) < 0.
The next theorem plays a crucial role in the theory of integration.

THEOREM 14. Suppose that f : X — Y is a continuous map from a compact
subset X of R™ into a subset Y of R™. Then f is uniformly continuous on X.

Proof: Suppose ¢ > 0. Since f is continous on X, (2.2) shows that for each
point p € X, there is d,, > 0 such that

(3:2) FBE.5,) CB(f().5)-

s N

Since X is compact, the open cover {B (p7 7”) } has a finite subcover {B (pk, 6%) }
peX

Now define
s N
0 = min {p’“} .
2 )=

Since the minimum is taken over finitely many positive numbers (thanks to the
finite subcover, which in turn owes its existence to the compactness of X), we have
0 >0.

Now suppose that z,p € X satisfy dx (z,p) < 6. We will show that

dy (f (z), f(p)) <e.

Choose k so that p € B (pk, 6%) Then we have using the triangle inequality in
X that

k=1

) 0 5
dX (vak) S dX (fC,p) + dX (p7pk) < 5+ % S % + % = 5p,€,
so that both p and z lie in the ball B (p, d,, ). It follows from (3.2) that both f (p)
and f (z) lie in
€
£ (B (pis0)) € B (£ (21 5)

Finally an application of the triangle inequality in Y shows that

dy (£ (&), F () < dv (F (&) . f (1) + v (F (00) . F () < 5 + 5 = <.



4. CONNECTEDNESS 17

4. Connectedness

DEFINITION 6. A subset X of R™ is said to be connected if it is not possible

to write X = EUF where E and F are disjoint nonempty relatively open subsets
of X. A set that is not connected is said to be disconnected.

Equivalently, X is disconnected if it has a nonempty proper relatively clopen
subset (a relatively clopen subset of X is one that is simultaneously relatively open
and relatively closed in X).

LEMMA 4. A subset X of R™ is disconnected if and only if there are nonempty
subsets E and F of R™ with X = FE UF and

(4.1) ENF=0and ENF =0,
where the closures refer to the Euclidean space R™.

Proof: It is not hard to see that F is a relatively open subset of X if and only
if ENF = () where F = X \ E. Similarly, F is relatively open in X if and only if
ENF = (. Finally, E is relatively clopen in X if and only if both F and F = X \ E
are relatively open in X.

The connected subsets of the real line are especially simple - they are precisely
the intervals

[a,b],(a,b),]a,b), (a,b)

lying in R with —oo < a < b < 0o (we do not consider any case where a or b is £00
and lies next to either [ or |).

THEOREM 15. The connected subsets of the real numbers R are precisely the
intervals.

Proof: Consider first a nonempty connected subset Y of R. If a,b € Y, and
a < ¢ < b, then we must also have ¢ € Y since otherwise Y N (—o0, ¢) is clopen in
Y. Thus the set Y has the intermediate value property (a,b € Y and a < ¢ < b
implies ¢ € Y'), and it is now easy to see using the Least Upper Bound Property of
R, that Y is an interval. Conversely, if Y is a disconnected subset of R, then Y has
a nonempty proper clopen subset E. We can then find two points a,b € Y with
a€ Fandbe F=Y \ E and (without loss of generality) a < b. Set

c=sup(ENJa,b]).

Then we have ¢ € E, and so ¢ ¢ F by (4.1). If also ¢ ¢ E, then Y fails the
intermediate value property and so cannot be an interval. On the other hand, if
c € E then ¢ ¢ F (the closure of F), and so there is d € (c,b) \ F. But then d ¢ E
since d > c and so lies in (a,b) \ Y, which again shows that Y fails the intermediate
value property and so cannot be an interval.

Connected sets behave the same way as compact sets under pushforward by a
continuous map.

THEOREM 16. Suppose f: X — Y is a continuous map from a subset X of R
to a subset Y of R™. If X is connected, then f(X) is connected.
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Proof: We may assume that ¥ = f(X). If Y is disconnected, there are
disjoint nonempty open subsets E and F' with ¥ = F UF. But then X =
FH(E) U f~1(F) where both f~!(E) and f~!(F) are open in X by Theorem
9. This shows that X is disconnected as well, and completes the proof of the
(contrapositive of the) theorem.

COROLLARY 7. If f : R — R is continuous, then f takes intervals to intervals,
and in particular, f takes closed bounded intervals to closed bounded intervals.

Note that this corollary yields two familiar theorems from first year calculus, the
Intermediate Value Theorem (real continuous functions on an interval attain their
intermediate values) and the Extreme Value Theorem (real continuous functions on
a closed bounded interval attain their extreme values).

Proof: Apply Theorems 16, 5 and 5.

Finally we have the following simple description of open subsets of the real
numbers.

PROPOSITION 2. FEwvery open subset G of the real numbers R can be uniquely
written as an at most countable pairwise disjoint union of open intervals {I,},~:

o Un.

n>1
Proof: For z € G let
I, = U {all open intervals containing x that are contained in G} .
It is easy to see that I, is an open interval and that if =,y € G then
either I, = I, or I, N I, = 0.

This shows that G is a union (J,. 4 [ of pairwise disjoint open intervals. To see
that this union is at most countable, simply pick a rational number r, in each I.
The uniqueness is left as an exercise for the reader.



Part 2

Integration and differentiation



In the second part of these notes we begin with the problem of describing the
inverse operation to that of differentiation, commonly called integration. There are
four widely recognized theories of integration:

e Riemann integration - the workhorse of integration theory that provides
us with the most basic form of the fundamental theorem of calculus;

e Riemann-Stieltjes integration - that extends the idea of integrating the
infinitesmal dz to that of the more general infinitesmal da (x) for an in-
creasing function .

e Lebesgue integration - that overcomes a shortcoming of the Riemann the-
ory by permitting a robust theory of limits of functions, all at the expense
of a complicated theory of ‘measure’ of a set.

e Henstock-Kurtzweil integration - that includes the Riemann and Lebesgue
theories and has the advantages that it is quite similar in spirit to the
intuitive Riemann theory, and avoids much of the complication of mea-
surability of sets in the Lebesgue theory. However, it has the drawback of
limited scope for generalization.

In Chapter 3 we follow Rudin [3] and use uniform continuity to develop the
standard theory of the Riemann and Riemann-Stieltjes integrals. A short detour
is taken to introduce the more powerful Henstock-Kurtzweil integral, and we use
compactness to prove its uniqueness and extension properties.

Chapter 4 draws on Stein and Shakarchi [6] to provide a rapid and transparent
introduction to the theory of the Lebesgue integral on the real line.

Chapter 5 proves the Banach-Tarski paradox by exploiting the existence of a
free nonabelian group of rank 2 in the rotation group SOj3 in three dimensions.
There is no better advertisement for resticting matters to measurable sets.

Chapter 6 uses Urysohn’s Lemma to establish the Riesz representation the-
orem on locally compact Hausdorff spaces, and constructs Lebesgue measure on
Euclidean spaces. Regularity of measures is treated in some detail, and the Tietze
extension theorem is used to prove Lusin’s theorem.

Chapter 7 introduces the Lebesgue spaces LP (1) and develops their elementary
theory including duality theory. The Baire category theorem is used to prove the
classical consequences in the more general setting of Banach spaces, namely the
uniform boundedness principle, the open mapping theorem and the closed graph
theorem, together with some applications. The special case p = 2 is further devel-
oped in the context of Hilbert spaces.

Chapter 8 introduces complex measures and proves the Radon-Nikodym theo-
rem using Hilbert space theory.

Chapter 9 discusses differentiation of integrals using shifted dyadic grids.

Chapter 10 introduces integration on product spaces and proves Fubini’s theo-
rem.



CHAPTER 3

Riemann and Riemann-Stieltjes integration

Let f :[0,1] — R be a bounded function on the closed unit interval [0, 1]. In
Riemann’s theory of integration, we partition the domain [0, 1] of the function into
finitely many disjoint subintervals

N
U LTy — lyxna

and denote the partition by P = {0 =xz¢ < 21 < ... < zn = 1} and the length of
the subinterval [x,—1,2,] by Az, = x, — -1 > 0. Then we define upper and
lower Riemann sums associated with the partition P by

N
U (f;P) Z( sup f)Axn,

[In 1 zﬂ]

L(f;P) = i( inf )Amn.

[Zn—1,%n]

Note that the suprema and infima are finite since f is bounded by assumption.
Next we define the upper and lower Riemann integrals of f on [0, 1] by

U =ifU(fiP), L) =swL(fP).

Thus the upper Riemann integral U (f) is the "smallest" of all the upper sums, and
the lower Riemann integral is the "largest" of all the lower sums.

We can show that any upper sum is always larger than any lower sum by con-
sidering the refinement of two partitions P; and Po: P; U Ps denotes the paritition
whose points consist of the union of the points in P; and P, and ordered to be
strictly increasing.

LEMMA 5. Suppose f : [0,1] — R is bounded. If Py and P2 are any two
partitions of [0,1], then

(0.2) U(f;P1) 2 U (f;PrUP2) > L(f;PrUP2) > L(f;Pa).
Proof: Let
P = {0=xzo<z1 <..<xp =1},
Py = {0=yo<y1 <..<yn=1},
PiUPy = {0=2<z<..<zp=1}.

Fix a subinterval [x,,_1,x,] of the partition P;. Suppose that [z,_1,z,] contains
exactly the following increasing sequence of points in the partition P; U Ps:

2, < 20,41 < oo < 20, 4my,s

21
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ie. zp, = xp—1 and 2, +ym, = Tpn. Then we have

( sup f>Amn = ( sup f> ZAZ&LH
[ [ j=1

Tn—1,Tn] Tn—1,Tn]

M,
> sup  f ) Dz,
=1 \[Zen+i—1:7e +5]

since suppz, .z, ) S SUPR, o) f When [ze, o1, 20,45] C [2n-1, 0] If we
now sum over 1 <n < M we get

Umm::2<prA%

n=1 [fn—laxn]

M m,
sup fl Az, 44
n=1 j=1 \[Ztn+i—1:2en+;]

P
= ( sup f>Asz(f;P1UP2)~
[

Zp—1,2p]

Y

(]
i\g

Similarly we can prove that
L(fiP2) S L(f;P1UP2).

Since we trivially have L (f;P1 UP2) < U (f;P1UPs), the proof of the lemma is
complete.

Now in (0.2) take the infimum over P; and the supremum over Py to obtain
that

Uf)zLf),

which says that the upper Riemann integral of f is always equal to or greater than
the lower Riemann integral of f. Finally we say that f is Riemann integrable on
[0,1], written f € RI[0,1], if U (f) = L(f), and we denote the common value by
1 1

fo f or fo f(z)dz

We can of course repeat this line of definition and reasoning for any bounded
closed interval [a, b] in place of the closed unit interval [0, 1]. We summarize matters
in the following definition.

DEFINITION 7. Let f : [a,b] — R be a bounded function. For any partition
={a=xz9 <z <..<zy=>} of [a,b] we define upper and lower Riemann
sums by

N

U(f;P) = Z({ sup ]f>A33m
n=1 Tn—1,Tn
N

L(f;P) = Z([z inf | )Aaﬁn~
n=1 n=1¥n

Set
U(f) =mtU (f;P), E(f)=8171)pL(f;7’),
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where the infimum and supremum are taken over all partitions P of [a,b]. We say
that f is Riemann integrable on [a,b], written f € R[a,b], if U (f) = L(f), and
we denote the common value by

/abf or /abf(x)d:c.

A more substantial generalization of the line of definition and reasoning above
can be obtained on a closed interval [a,b] by considering in place of the positive
quantities Ax,, = z,, — z,_1 associated with a partition

P={a=xp<x1 <..<zxy =0}
of [a, ], the more general nonnegative quantities
Aay =a(ry) —a(rp_1), 1<n<N,

where « : [a,b] — R is nondecreasing. This leads to the notion of the Riemann-
Stieltjes integral associated with a nondecreasing function « : [a, b] — R.

DEFINITION 8. Let f : [a,b] — R be a bounded function and suppose « : [a, b] —
R is nondecreasing. For any partition P = {a =z0 <21 < ... <xn = b} of [a,b]
we define upper and lower Riemann sums by

N
U(f;P.a) = Z( sup f)Aam

L(f;P,a) = XN:( inf f)Aan.

Set
u(f7a):i%fU(f;,P’a)v E(f,a):s%pL(f;P,a),

where the infimum and supremum are taken over all partitions P of [a,b]. We say
that f is Riemann-Stieltjes integrable on [a,b], written f € Ry [a,b], if U (f,a) =
L(f,a), and we denote the common value by

/abfda or /abf(x)da(x).

The lemma on partitions above generalizes immediately to the setting of the
Riemann-Stieltjes integral.

LEMMA 6. Suppose f : [a,b] — R is bounded and « : [a,b] — R is nondecreas-
ing. If P1 and P2 are any two partitions of [a,b], then

(0.3) U(fiPr,a) 2 U (f; PrUPa,a) > L(f; PLUP2, ) > L(f;P2,a).

0.1. Existence of the Riemann-Stieltjes integral. The difficult question
now arises as to exactly which bounded functions f are Riemann-Stieltjes integrable
with respect to a given nondecreasing « on [a,b]. We will content ourselves with
showing two results. Suppose f is bounded on [a, b] and « is nondecreasing on [a, b].
Then

o f€Ryla,b if in addition f is continuous on [a, b];
o f€Ryla,b]if in addition f is monotonic on [a,b] and « is continuous on

[a, b].
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Both proofs will use the Cauchy criterion for existence of the integral f; fda
when f : [a,b] — R is bounded and « : [a,b] — R is nondecreasing;:

(0.4) For every € > 0 there is a partition P of [a,b] such that
U(f;P,a) = L(f;P,a) <e.

Clearly, if (0.4) holds, then from (0.3) we obtain that for each € > 0 that there is a
partition P. satisfying

U(f,a)—L(f,a) = i%fU(f;P7a)—sL;pL(f;P’a)
U(f;Peya) — L(f;Peya) <e.

It follows that U (f,a) = L(f,«) and so f: fda exists. Conversely, given € > 0
there are partitions P; and Py satisfying

U(fa) = mtU(f;P,a) >U(f;Pr,0) -

L(f,a) = supL(f;P,a) < L(f;P2,a)+
P

IN

[\3\0)[\3 | ™

Inequality (0.3) now shows that
U(f;P1UP2,a) = L(f;PrUP2,0) < U(f;Pr,a) = L(f;P2,0)

< (Z/{(f,a)+§) - (L(f,a)—g) —

since U (f,a) = L (f, ) if fab fda exists. Thus we can take P = P; U Py in (0.4).

The existence of f; fda when f is continuous will use Theorem 14 on uniform
continuity in a crucial way.

THEOREM 17. Suppose that f : [a,b] — R is continuous and « : [a,b] — R is
nondecreasing. Then f € Ry [a,b].

Proof: We will show that the Cauchy criterion (0.4) holds. Fix ¢ > 0. By
Theorem 14 f is uniformly continuous on the compact set [a, b], so there is § > 0
such that
whenever |z — 2’| < 6.

_ N < &
@)~ <
Let P ={a =129 < x1 < .. <xy = b} be any partition of [a, b] for which

max Az, <0.
1<n<N

Then we have
sup f— inf f< sup If (z) = f(a)] <e,

[@n—1,2n] [zn—1,2n] 2,07 €[Tn_1,7n]

since |z — 2’| < Az, < § when z,2’ € [z,_1,2,] by our choice of P. Now we
compute that

N
U(f;P,a)— L(f;P,a) = Z( sup f— inf f)Aan

n=1 [Zn—1,2n] [Tn—1,2n]
N

S Z ( > Aa, =c¢,
n=1 ( )

which is (0.4) as required.
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REMARK 6. Observe that it makes no logical difference if we replace strict
inequality < with < in ‘€ — ¢ type’ definitions. We have used this observation twice
in the above proof, and will continue to use it without further comment in the sequel.

The proof of the next existence result uses the intermediate value theorem for
continuous functions.

THEOREM 18. Suppose that [ : [a,b] — R is monotone and « : [a,b] — R is
nondecreasing and continuous. Then f € R, [a,b].

Proof: We will show that the Cauchy criterion (0.4) holds. Fix ¢ > 0 and
suppose without loss of generality that f is nondecreasing on [a,b]. Let N > 2 be a
positive integer. Since « is continuous we can use the intermediate value theorem
to find points z,, € (a,b) such that zo = a, xx = b and

oz(xn):a(a)+%(a(b)—a(a)), 1<n<N-1.

Since « is nondecreasing we have z,,_1 < x, for all 1 <n < N, and it follows that
P={a=xp<x1 <..<xy=0}
is a partition of [a, b] satisfying
a(b) —ala) < €
N f®)=f(a)

provided we take N large enough. With such a partition P we compute

Aoy, = a(z,) — a(zp—1) =

N
U(f;P,a)— L(f;P,a) = Z( sup f— inf }f)Aozn

n—1 [Zn—1,Tn] LTn—1,Tn

3 il )
m Z ([mns_ufrn] f a [fnl—rif:l’n] f)

= e Y (@)~ flan) =6,

IN

This proves (0.4) as required.

0.2. A stronger form of the definition of the Riemann integral. For the
Riemann integral there is another formulation of the definition of f; f that appears
at first sight to be much stronger (and which doesn’t work for general nondecreasing
« in the Riemann-Stieltjes integral). For any partition P = {a = 29 < 1 < ... < xy = b},
set ||P|| = maxi<p<n Azy, called the norm of P. Now if f; f exists, then for every
€ > 0 there is by the Cauchy criterion (0.4) a partition P = {a = 2p < 1 < ... < xy = b}
such that

U(f;P)—L(f;P)<§

Now define ¢ to be the smaller of the two positive numbers

€
in A .
1£LI£N Zn and 2N diam f ([a,b])

Cramm 1. If Q={a=yy <y1 < ... <ym = b} is any partition with

= A 0
el | Jnax Ay <,
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then
U(f;Q —L(f;Q)<e.

Indeed, since Ay, < § < Az, for all m and n by choice of 4, each point z,,
lies in a distinct one of the subintervals [y;,—1,Ym] of Q, call it J, = [ym, -1, Ym,, |-
The other subintervals [y;,—1,¥ym] of @ with m not equal to any of the m,,, each
lie in one of the separating intervals K, = [ymnfl , ymn_l} that are formed by the
spaces between the intervals J,,. These intervals K,, are the union of one or more
consecutive subintervals of Q. We have for each n that

Z ([ sup f - inf f> A Ym

_ [Ym—1,Ym]
M [Ym—1,Ym] CEKn \Ym 1Ym] e

$n1$n+1] ["5711"5711»1]

S sup f - inf f Z Aym
[y""nfl7ymn—1] [ymnfl’ym”_l} M:[Ym—1,Ym] CKn
< ({ sup f— inf f) (Ym — Ym-1)

§< sup f— inf f>(58n+193n)-
[

T, Tnt1] [Tns@nt1

Summing this in n yields

N
(0.5) Z Z ({ sup f— inf f) A Y

n=1m:[Ym—1,Yym|CKn Ym—1,Ym] [Ym—1,ym]

n—1 [@n,Tnt1] [Zn,Tni1

N
< Z( sup f— inf }f)(xn+1—$n)=U(f§P)_L(f§P)-

Now we compute

M
U(f;Q)—L(f;Q)=Z<[ sup f— inf ]f>Aym
m=1

Ym—1,Ym] [Ym—1,Ym
N
- Z (Supf — inf f) (Y, — Y1)
=\ In

N
> > <sup f— inf f)Aym,

n—1 7n:[ym_1,ym]CKn [ym,l,ym] [ym—laym]

which by (0.5) and choice of § is dominated by
N
diam. f ([a,0]) Y (Wm, = Ym,—1) + U (/i P) = L(f;P)
n=1

e € ¢
< ] —_ —_ —_ =
< diam f([a,b])N(S—i-2<2-i-2 g,

and this proves the claim.
Conversely, if
(0.6) For every ¢ > 0 there is 6 > 0 such that

U(f; Q) — L(f;Q) < e whenever ||Q| <4,
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then the Cauchy criterion (0.4) holds with P equal to any such Q. Thus (0.6)
provides another equivalent definition of the Riemann integral f; f that is more

like the € — ¢ definition of continuity at a point (compare Definition 4).

1. Properties of the Riemann-Stieltjes integral

The Riemann-Stieltjes integral f: fda is a function of the closed interval [a, b],
the bounded function f on [a,b], and the nondecreasing function « on [a,b]. With
respect to each of these three variables, the integral has natural properties related
to monotonicity, sums and scalar multiplication. In fact we have the following
lemmas dealing with each variable separately, beginning with f, then o and ending
with [a, b].

LEMMA 7. Fiz [a,b] CR and « : [a,b] — R nondecreasing. The set R, [a,b] is

a real vector space and the integral f: fda is a linear function of f € R [a,b]: if
fi € Rla,b] and A\; € R, then

b b b
f=Mfi+XfoeRala,b] and/ deV:)\l/ f1d01+)\2/ foda.

Furthermore, R, [a,b] is partially ordered by declaring f < g if f(z) < g(x) for
x € [a,b], and the integral fab fda is a nondecreasing function of f with respect to
this order: if f,g € Ry [a,b] and f < g, then fj fda < ff gda.
LEMMA 8. Fiz [a,b] CR and f : [a,b] — R bounded. Then
Crla,b] = {a:[a,b] = R: « is nondecreasing and f € R [a,b]}
is a cone and the integral ff fda is a ‘positive linear’ function of a: if aj € Cy [a, D]

and ¢; € [0,00), then

b b b
a=cioq + cas € Cy[a,b] and fda =¢; / fdaq + 02/ fdas.
a a

a
LEMMA 9. Fiz [a,b] C R and « : [a,b] — R nondecreasing and f € Rq [a,b]. If
a<c<b, then a:[a,c] = R and o : [¢,b] — R are each nondecreasing and

b c b
fE€Rala,c] and f € Ry |[c,b] and/ fda:/ fda+/ fda.

These three lemmas are easy to prove, and are left to the reader. Properties
regarding multiplication of functions in R, [a,c] and composition of functions are
more delicate.

THEOREM 19. Suppose that f : [a,b] — [m, M| and f € Rala,b]. If ¢ :
[m, M] — R is continuous, then po f € Ry [a,b].

COROLLARY 8. If f,g € Ra[a,b], then fg € Ra[a,b], |f| € Rala,b] and

/abfda s/abﬂda.

is continuous, Lemma 7 and Theorem 19 yield

fgzé{(fﬂJ)Q*fQ*gQ} € Ra[a,b].

Proof: Since ¢ (v) = 22
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Since ¢ (z) = |z| is continuous, Theorem 19 yields |f| € Rq [a,b]. Now choose
¢ = =1 so that cf: fda > 0. Then the lemmas imply

/abfdoz :c/abfda:/ab(cf)dag/abudw

Proof (of Theorem 19): Let h = ¢ o f. We will show that h € R, [a,b] by
verifying the Cauchy criterion for integrals (0.4). Fix € > 0. Since ¢ is continuous
on the compact interval [m, M], it is uniformly continuous on [m, M] by Theorem
14. Thus we can choose ¢ > 0 such that

lp (s) — ¢ (t)] < & whenever |s —t| < 0.
Since f € R, [a,b], there is by the Cauchy criterion a partition
P={a=xp<z1 <..<zxy =0}

such that
(1.1) U(f;P,a) — L(f;P,a) < b.
Let
M, = [mnsulpmn} f and m,, = [z"i_rfxn 1,
M, = sup handm; = inf A,
[Tn—1,%n] [Tn—1,2n]
and set

A={n: M, —m, <} and B={n: M, —m, > d}.
The point of the index set A is that for each n € A we have

My —mg = sup  [p(f (@) —e(f )] < sup [ (s) — @ (1)
I:ye[a?n—17w7z] ‘S_t‘SMn_mn
< sup Je(s) —e(t)] <e, n e A.
|s—t|<d

As for n in the index set B, we have 6 < M,, — m,, and the inequality (1.1) then
gives

5> Doy Y (M —my) A ay < Oe.
neB neB
Dividing by § > 0 we obtain
Z Ao, < €.

neB
Now we use the trivial bound

M;, — m}, < diam o ([m, M))
to compute that

U(h;P,a) — L(h;P,a) = {Z Z} A

n€eA neB

< ZsAanJeriamcp([m,M])Aan
neA neB
< e(a(b) —ala)) +e diam ¢ ([m, M])

= ela(b) — a(a)+ diam ¢ ([m, M))],
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. . . b .
which verifies (0.4) for the existence of [ hdo as required.

2. The Henstock-Kurtzweil integral

We can reformulate the ¢ — ¢ definition of the Riemann integral f; fin (0.6)
using a more general notion of partition, that of a tagged partition. If P =
{a =29 <z1 <..<zy =0} is a partition of [a,b] and we choose points t, €
[Zn—1,2y] in each subinterval of P, then

Pr={a=z0<ti1 <o < .. <oy <ty <y = b},
where g < 1 < ... < zn,

is called a tagged partition P* with underlying partition P. Thus a tagged parti-
tion consists of two finite intertwined sequences {xn}gzo and {tn},]:[:p where the
sequence {xn}szo is strictly increasing and the sequence {tn}flv:l need not be. For
every tagged partition P* of [a, b], define the corresponding Riemann sum S (f; P*)

by

N
S(fiP*) = f(tn) &y
n=1
Note that inf(y, , 2,1 f < f(tn) <supp,, .. f implies that

L(f;P)<S(f;P) <U(f;P)

for all tagged partitions P* with underlying partition P.
Now observe that if f € R [a,b], € > 0 and the partition P satisfies

U(f;P) = L(f;P) <e,
then every tagged partition P* with underlying partition P satisfies

b
(2.1) S(f;P*)—/ fl<UP) - L(P) <<

Conversely if for each € > 0 there is a partition P such that every tagged partition
P* with underlying partition P satisfies (2.1), then (0.4) holds and so f € R [a, b].
However, we can also formulate this approach using the e — § form (0.6) of the

definition of ff f. The result is that f € R [a,b] if and only if
(2.2) There is L € R such that for every ¢ > 0 there is § > 0 such that
|S (f;P*) — L| < e whenever ||P*|| < 4.

Of course if such a number L exists we write L = f: f and call it the Riemann
integral of f on [a,b]. Here we define ||P*|| to be ||P| where P is the underlying
partition of P*. The reader can easily verify that f € R[a,b] if and only if the
above condition (2.2) holds.

Now comes the clever insight of Henstock and Kurtzweil. We view the positive
constant ¢ in (2.2) as a function on the interval [a, b], and replace it with an arbitrary
(not necessarily constant) positive function ¢ : [a,b] — (0,00). We refer to such
an arbitrary positive function ¢ : [a,b] — (0,00) as a guage on [a,b]. Then for any
guage on [a, b], we say that a tagged partition P* on [a, b] is J-fine provided

(2.3) [Zne1,2n] C (tn — 0 (tn) s ta + 0 (£2)), 1<n <N,
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Thus P* is d-fine if each tag t,, € [x,_1,x,] has its associated guage value ¢ ()
sufficiently large that the open interval centered at ¢, with radius 0 (t,,) contains
the n'" subinterval [x,_1,,] of the partition P. Now we can give the definition of
the Henstock and Kurtzweil integral.

DEFINITION 9. A function f : [a,b] — R is Henstock-Kurtzweil integrable on
[a,b], written f € HK [a,b], if there is L € R such that for every e > 0 there is a
guage dc : [a,b] — (0,00) on [a,b] such that

|S (f;P*) — L| < ¢ whenever P* is d.-fine.

It is clear that if f € R [a,b] is Riemann integrable, then f satisfies Definition

9 with L = fabf - simply take J. to be the constant guage J in (2.2). However,
for this new definition to have any value it is necessary that such an L is uniquely
determined by Definition 9. This is indeed the case and relies crucially on the fact
that [a,b] is compact. Here are the details.

Suppose that Definition 9 holds with both L and L’. Let ¢ > 0. Then there
are guages d. and 6. on [a, b] such that

IS (f;P*)—L| < & whenever P* is .-fine,
IS (f;P*)—L'| < & whenever P* is §_-fine.
Now define
n. () =min {6, (z),0.(z)}, a<z<b
Then 7, is a guage on [a,b]. Here is the critical point: we would like to produce

a tagged partition P} that is n.-fine! Indeed, if such a tagged partition P exists,
then P* would also be J.-fine and §’-fine (since 7. < 6. and 7. < §~) and hence

L= L' <[S(f;P2) = LI+|S(f;P2) — L' < 2¢

for all € > 0, which forces L = L'.
However, if 7 is any guage on [a, b], let

Bz, (@) = (x —n(z),z +1 () andB(:v,n(;)> - <x"(;),x+”(;)>.

Then {B (3:, @)} ] is an open cover of the compact set [a,b], hence there
x€|a,
N
is a finite subcover {B (mn, "(;”)>} . We may assume that every interval
n=0

B (xn, @) is needed to cover [a, b] by discarding any in turn which are included

in the union of the others. We may also assume that a < zg < 21 < ... < xny < b.

It follows that B (xn_l, w> N B (xn, w> # (), so the triangle inequality

yields

N (Tn—1) +1 ()
2

|Tp — Tpo1] <

If n(z,) > n(2n—1) then

, 1<n<N.

[xn—laxn] cB (x'mn (xn)) )
and so we define
tn = Tn.

Otherwise, we have 1 (x,,—1) > 1 (z,,) and then
[xn—la xn} cB (xn—l, n (wn—l)) )
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and so we define
tn = Tpn—1-
The tagged partition
Pr={a=ao<ti <z1 <...<azny_1 <ty <zy=0b}

is then n-fine.

With the uniqueness of the Henstock-Kurtzweil integral in hand, and the fact
that it extends the definition of the Riemann integral, we can without fear of confu-
sion denote the Henstock-Kurtzweil integral by f: f when f € HK [a,b]. Tt is now
possible to develop the standard properties of these integrals as in Theorem 19 and
the lemmas above for Riemann integrals. The proofs are typically very similar to
those commonly used for Riemann integration. One exception is the Fundamental
Theorem of Calculus for the Henstock-Kurtzweil integral, which requires a more
complicated proof. In fact, it turns out that the theory of the Henstock-Kurtzweil
integral is sufficiently rich to include the theory of the Lebesgue integral, which we
consider in detail in a later chapter. For further development of the theory of the
Henstock-Kurtzweil integral we refer the reader to Bartle and Sherbert [1] and the
references given there.






CHAPTER 4

Lebesgue measure theory

Recall that f is Riemann integrable on [0, 1), written f € R[0,1), if U (f) =
L(f), and we denote the common value by fol for fol f(x)dz. Here U (f) and

L (f) are the upper and lower Riemann integrals of f on [0,1) respectively given
by

N

—

-
|

[Tn—1,Zn)

1nfo73 1nfz< sup f)Axn,

L(f) = supL(fP _supz< inf f)Amn,
P

et [Tn—1,Tn)

where P = {0 =29 <1 < ... <xzy =1} is any partition of [0,1) and Az, =
Zp — Tp—1 > 0. For convenience we work with [0, 1) in place of [0, 1] for now.

This definition is simple and easy to work with and applies in particular to
bounded continuous functions f on [0,1) since it is not too hard to prove that
f € R[0,1) for such f. However, if we consider the vector space L% ([0,1)) of
Riemann integrable functions f € R[0,1) endowed with the metric

o= ([ e |dx)%7

it turns out that while L% ([0, 1)) can indeed be proved a metric space (actually we
must consider equivalence classes of functions where we identify functions f and

g if fol |f () — g (2)|* dz = 0), it fails to be complete. This is a serious shortfall
of Riemann’s theory of integration, and is our main motivation for considering the
more complicated theory of Lebesgue below. We note that the immediate reason
for the lack of completeness of L% ([0,1)) is the inability of Riemann’s theory to
handle general unbounded functlons For example, the sequence { fn} , defined
on [0,1) by

5o )= X 2 min {527

is a Cauchy sequence in L% ([0,1)) that clearly has no bounded function as limit
in L% ([0,1)). Indeed,

2—"n o—n
A fu) = [ Vs @)= fu@Pdos [ pifae =2t

and so for m > n we have

m—1

m—1
d(fr; fm) < Zd fi, frq1) < 271 — 0 asn — oco.
k=n

k=n

33
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However, even locally there are problems. For example, once we have Lebesgue’s
theory in hand, we can construct a famous example of a Lebesgue measurable subset
E of [0,1) with the (somewhat surprising) property that

0<|EN(a,b)<b—a, 0<a<bd<I,

where |F'| denotes the Lebesgue measure of a measurable set F' (see Problem 3
below). It follows that the characteristic function xp is bounded and Lebesgue
measurable, but that there is no Riemann integrable function f such that f =
Xp almost everywhere, since such an f would satisfy U (f) = 1 and L(f) = 0.
Nevertheless, by Lusin’s Theorem (see page 34 in [6] or page 55 in [4]) there is a
sequence of compactly supported continuous functions (hence Riemann integrable)
converging to xp almost everywhere and that are uniformly bounded. By the
Dominated Convergence Theorem below, this sequence is Cauchy in L% ([0, 1)).

On the other hand, in Lebesgue’s theory of integration, we partition the range
[0, M) of the bounded function f into a homogeneous partition,
N N
M M
0,M) = [(n1)N,nN> =J In,
n=1 n=1
and we consider the associated upper and lower Lebesgue sums of f on [0, 1) defined
by

U*(f;P)

|
M=
VRS
3
=S
N———
=
=

L™ (f;P)

Il
=
N
—
3
|
—_
N—
~_
=
L
—
z

where of course
I, = {x €0,1): f(z)el, = {(n— 1)]\1\/‘;771%)}7

and |E| denotes the "measure" or "length" of the subset F of [0, 1).

Here there will be no problem obtaining that U* (f;P) — L* (f;P) is small
provided we can make sense of | ft (In)| But this is precisely the difficulty with
Lebesgue’s approach - we need to define a notion of "measure" or "length" for
subsets E of [0,1). That this is not going to be as easy as we might hope is
evidenced by the following negative result. Let P ([0,1)) denote the power set of
[0,1), i.e. the set of all subsets of [0,1). For z € [0,1) and E € P ([0,1)) we define
the translation F @ x of E by x to be the set in P ([0, 1)) defined by

E®dz = E+z (modl)
= {z€]0,1):thereisy € E withy+x—2z € Z}.

THEOREM 20. There is no map p: P ([0,1)) — [0,00) satisfying the following
three properties:

(1) u((0.1) = 1
(2) p{UpeiBn ) = Xo0r, w(E,) whenever {E,} 7, is a pairwise disjoint

sequence of sets in P ([0,1)),
(3) p(E®x)=p(FE) for all E € P(]0,1)).
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REMARK 7. All three of these properties are desirable for any notion of measure
or length of subsets of [0,1). The theorem suggests then that we should not demand
that every subset of [0,1) be "measurable”. This will then restrict the functions f
that we can integrate to those for which f='([a,b)) is "measurable" for all —oo <
a<b<oo.

Proof: Let {r,},—, = QN[0,1) be an enumeration of the rational numbers
in [0,1). Define an equivalence relation on [0,1) by declaring that « ~ y if z —
y € Q. Let A be the set of equivalence classes. Use the aziom of choice to
pick a representative a = (A) from each equivalence class A in A. Finally, let
E = {{A) : A € A} be the set consisting of these representatives a, one from each
equivalence class A in A.

Then we have

[0,1) = Un:lE DTy
Indeed, if z € [0,1), then = € A for some A € A, and thus z ~ a = (4), i.e.
r—a€{r,},—,. lfz>athenz—aecQnN|0,1) and z = a+r,, where a € F and
Tm € {rntory. Tz <athenz—a+1€Qn[0,1) and z = a + (ry, © 1) where
a€Eandr,ole{r,} —,. Finally,ifa®r,, =b&r,, thenacb=1r,Sr, €Q
which implies that a ~ b and then r, = r,,.
Now by properties (1), (2) and (3) in succession we have

1=u([0,1))=u<Un_lE@rn> =Y n(Eer,) =) uE),

which is impossible since the infinite series > 2 | pu (E) is either oo if u (E) > 0 or
0if 1 (E) = 0.

1. Lebesgue measure on the real line

In order to define a "measure" satisfying the three properties in Theorem 20,
we must restrict the domain of definition of the set functional p to a "suitable"
proper subset of the power set P ([0,1)). A good notion of "suitable" is captured
by the following definition where we expand our quest for measure to the entire
real line.

DEFINITION 10. A collection A C P (R) of subsets of real numbers R is called
a o-algebra if the following properties are satisfied:

(1) ¢ €A,
(2) A° € A whenever A € A,
(3) Up—, A, € A whenever A,, € A for all n.

Here is the theorem asserting the existence of "Lebesgue measure" on the real
line.

THEOREM 21. There is a o-algebra L C P (R) and a function p : L — [0, 0]
such that

(1) [a,b) € L and p([a,b)) =b—a for all —co < a < b < 0,
(2) Upr1Bn € L and p <Un=1En> = > w(Ey,) whenever {E,} " is a

pairwise disjoint sequence of sets in L,

B) E+zcLand p(E+x)=p(E) forall E € L,
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(4) E€ L and p(E) =0 whenever E C F and F € L with u(F) =0.

The sets in the o-algebra £ are called Lebesgue measurable sets. A pair (£, )
satisfying only property (2) is called a measure space. Property (1) says that the
measure 4 is an extension of the usual length function on intervals. Property (3)
says that the measure is translation invariant, while property (4) says that the
measure is complete.

From property (2) and the fact that p is nonnegative, and finite on intervals,
we easily obtain the following elementary consequences (where membership in £ is
implied by context):

(1.1) ¢ € Land u(g)=0,
E € L for every open set F in R,
w(l b — a for any interval I with endpoints a and b,

)
w(E) = suwpp(B,) = lim pu(E,) if B, /' E,
pw(E) = infu(E,) = lim p(E,) if E, \, E and p(F;) < c0.

For example, the fourth line follows from writing

E=FU {Un_lEn+1 N (En)c}

and then using property (2) of p.

To prove Theorem 21 we follow the treatment in [6] with simplifications due to
the fact that Theorem 15 implies the connected open subsets of the real numbers
R are just the open intervals (a,b). Define for any E € P (R), the outer Lebesgue
measure p* (E) of E by,

(1.2)

/”'* (E) = inf {Z (bn - an) B C U —1 (anybn) and — oo S an < bn S OO} .
n=1 -

It is immediate that ©* is monotone,
w (E)<u" (F)if ECF.

A little less obvious is countable subadditivity of p*. The reason lies in the use of
pairwise disjoint covers of E by open intervals in the definition of p* (E) in (1.2).
If we had instead used arbitrary open covers by open intervals in the definition,
then countable subadditivity of p* would have been trivial.

LEMMA 10. p* is countably subadditive:

w* <U En) < Z w(En), {En}fﬂ CP(R).
n=1

n=1
o

Proof: Given 0 < € < 1, we have E,, C Uk:l (ak,ns br,n) With

oo

N €
Z (b — @eyn) < p* (En) + o M2 1.
k=1
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Now let
. M*

U (Ukl (@K, bk,n)> = LJm:1 (Cmydm),

where M* € NU {oo}. Then define disjoint sets of indices
Irn = {(k,n) : (a'k',na bk‘,n) C (Cma dm)} .

In the case ¢, d, € R, we can choose by compactness a finite subset F,, of Z,,
such that
€ € >
(13) Cm + iamvdm - §5m} C U (ak,rmbk,n) ;
(k,n)EFm

where 0., = dp, — ¢ We may assume that each such interval (agn,bkn) has
nonempty intersection with the compact interval on the left side of (1.3). Fix m
and arrange the left endpoints {a’k’”}(k,n)e]:m in strictly increasing order {ai}le
and denote the corresponding right endpoints by b; (if there is more than one
interval (a;,b;) with the same left endpoint a;, discard all but one of the largest of
them). From (1.3) it now follows that a;+1 € (a4, b;) for i < I since otherwise b;
would be in the left side of (1.3), but not in the right side, a contradiction. Thus
@41 — a; < b; —a; for 1 <4 < I and we have the inequality

(1—¢)0m = (dm - g(sm) - (cm + fam)

1
< br—ar = I_(II"FE (@it1 — @)
=1

I
< Z b — CL Z (bk,n - ak,n)
=1

(k,n)efm

< Z (bk,n - ak)m) .

We also observe that a similar argument shows that Z(k’n)el bk — Q) = 00

if §,, = co. Then we have

pr(E) < Z5m_

bk,n - ak:,n)
m=1 (k,n)EF,

1i62(bk,n_akn = szg bkn ak:n

IN

k,n n=1k=1

< 115-:§:1(M(E”)Jr ) : Z

s'
Let € — 0 to obtain the countable subadditivity of u*.

DEFINITION 11. Now define the subset L of P (R) to consist of all subsets A
of the real line such that for every e > 0, there is an open set G D A satisfying

(1.4) P (G\A) <e.
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REMARK 8. Condition (1.4) says that A can be well approximated from the
outside by open sets. The most difficult task we will face below in using this defini-
tion of L is to prove that such sets A can also be well approximated from the inside
by closed sets.

Set
w(A) =" (4), AeL.
Trivially, every open set and every interval is in £. We will use the following two
claims in the proof of Theorem 21.
. N*
Cramv 2. If G is open and G = J,,_; (an,by) (where N* € NU {oo}) is the
decomposition of G into its connected components (an, b,) (Proposition 2 of Chapter

2), then
N

p(G) = p (G) = (by — an).

We first prove Claim 2 when N* < co. If G C Um:l (Cm»dm), then for each
1<n < N* (an,byn) C (cm,di) for some m since (ay, by,) is connected. If

T ={n: (an,bn) C (cm,dm)},

it follows upon arranging the a,, in increasing order that

Z (bn*an) Sdmfcmy

n€Lm

since the intervals (an,b,) are pairwise disjoint. We now conclude that

p*(G) = inf { Z (dm —cm) : G C Um:1 (cm,dm)}

m=1
oo N*
S5 5D SIURINES SIS]
m=1n€eL,, n=1
* : N*
and hence that p* (G) = Zf:le (bp, — ap) by definition since G C |J,,,_; (@n,bn).
Finally, if N* = oo, then from what we just proved and monotonicity, we have
. N N
@2 (U, ) =3 0000

for each 1 < N < oo. Taking the supremum over N gives p* (G) > > 07| (b, — ay),
and then equality follows by definition since G C U:;l (an,bp).
CrAm 3. If A and B are disjoint compact subsets of R, then
W (A)+ 4 (B) = " (AU B).
First note that
d=dist(A,B) =inf{|lx —y|:x € A,y € B} >0,

since the function f (x,y) = |z — y| is positive and continuous on the closed and
bounded (hence compact) subset A x B of the plane - Theorem 12 shows that f



1. LEBESGUE MEASURE ON THE REAL LINE 39

achieves its infimum dist (A, B), which is thus positive. So we can find open sets
U and V such that

ACUand BCVandUNV = ¢.
For example, U = {J,c4 B ( ,2) and V =, B (aj ) work. Now suppose that

e o}

AuBcG=]  (anba).

Then we have
. K* L*

ACUQG:Uk: ek,fk) and BCVNG= U gg,hg)

and then from Claim 2 and monotonicity of p* we obtain, using that G is a disjoint
union of GNU and GNV,

K* L
pA)+p (B < Y (fe—en)+ Y (he—g0)
k=1 =1
K* L

< pi(G) = Z (bn —an).

Taking the infimum over such G gives p* (A) 4+ p* (B) < p* (AU B), and subaddi-
tivity of p* now proves equality.

Proof (of Theorem 21): We now prove that £ is a o-algebra and that £ and p
satisfy the four properties in the statement of Theorem 21. First we establish that
L is a o-algebra in four steps.

Step 1: Ae Lif p*(A)=0.
Given € > 0, there is an open G D A with u* (G) < e. But then p* (G\ A) <
w* (G) < & by monontonicity.
Step 2: |J 2, A,, € £ whenever A,, € L for all n.

Given ¢ > 0, there is an open G, D A, with pu*(Gn\ An) < 57. Then

A = U, A, is contained in the open set G = |Jo—; G,, and since G \ A is

n=1

contained in J;~, (G, \ 4,), monotonicity and subadditivity of x* yield
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Step 3: A € L if A is closed.

Suppose first that A is compact, and let € > 0. Then using Claim 2 there is
. N*

G =,,—; (@n,b,) containing A with

oo

Z (b, —an) < p* (A) + e < 0.

n=1
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M
Now G\ A is open and so G\ A = {J,,,_; (¢m,dm) by Proposition 2. We want to
show that p* (G\ A) <e. Fix a finite M < M* and

1 .
0<n< 3 lgglnlgM(dm —Cm) -

Then the compact set
M

K’r/ = U [cm + m, d’m - T)]

m=1
is disjoint from A, so by Claim 3 and induction we have
M

W AUK,) = 1 (A) 4+ 1* (Ky) = 1 (A) + 3 1" (em 4+, do = 1)

m=1

We conclude from subadditivity and AU K, C G that

M
P (A) + D (A — e — 20) = p* (AU K,) < 5" (G) < ™ (A) +e.
m=1

Since p* (A) < oo for A compact, we thus have

M
(dm —cm) <e+2Mn

m=1
for all 0 < 7 < %minlSmSM (dm — ¢m). Hence Zi\:{:l (dm — ¢m) < € and taking
the supremum in M < M* we obtain from Claim 2 that
M

WG\ A) = 3 ([ — ) <.

m=1

Finally, if A is closed, it is a countable union of compact sets A = Jo—_, ([—n,n] N A),
and hence A € L by Step 2.

Step 4: Acc Lif Ae L.

For each n > 1 there is by Claim 2 an open set G,, D A such that p* (G, \ 4) <
%. Then F,, = G¢ is closed and hence F,, € £ by Step 3. Thus

SEDFnE£, S C A°,

n=1

and A°\ S C G, \ A for all n implies that

1
pANS) S (Gu\A) < - mz L,

Thus p* (A°\ S) = 0 and by Step 1 we have A°\ S € L. Finally, Step 2 shows that
A°=SU(4A°\ S) e L.

Thus far we have shown that £ is a o-algebra, and we now turn to proving that

L and p satisfy the four properties in Theorem 21. Property (1) is an easy exercise.

Property (2) is the main event. Let {E,,} —, be a pairwise disjoint sequence of sets
. 00

n=1
in £,and let £ =J,,_,En.
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We will consider first the case where each of the sets E,, is bounded. Let £ > 0
be given. Then ES € £ and so there are open sets G,, O E¢ such that

WG \E) < o mzl

Equivalently, with F,, = G¢, we have F), closed, contained in E,,, and
€
w (E7L\Fn)< on’ n > 1.

Thus the sets F,, in the sequence {F, }, - | are compact and pairwise disjoint. Claim
3 and induction shows that

N N
S w(Fa) =t (U F) <u'(E), N>l

n=1

and taking the supremum over N yields

oo

S w (B < ut (B).

n=1

Thus we have

> o (En)

IN
(]
—
7;*
S
—
&
+
t*
5
=

n=1
[e’e] c ) . .

< Dot W () <etpt(B).
n=1 n=1

Since e > 0 we conclude that Y " | u* (E,) < u* (E), and subadditivity of p* then
proves equality.
In general, define F,, ;, = E,, N [k, k + 1) for k € Z so that

e e}

E= E,=J En .
n=1 " n>1,kez ¥

Then from what we just proved applied first to F and then to E, we have

p(E)= > p(Bug)=) <Z w (En,k)> => w(En).

n>1,kEZ n=1 \k€Z

oo

Finally, property (3) follows from the observation that E C Un:l (an, by) if and

only if E4+x C J,,_; (an + x,b, + x). It is then obvious that p* (E 4 z) = pu* (E)
and that E+x € L if E € L. Property (4) is immediate from Step 1 above. This
completes the proof of Theorem 21.

REMARK 9. The above proof also establishes the regularity of Lebesgue measure:
for every E € L and & > 0, there is a closed set F' and an open set G satisfying

F Cc EcCG,
p(G\F) < e

This follows from the definition of L together with the fact that L is closed under
complementation.
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EXERCISE 1. Use the regularity of Lebesgue measure to show that E € L if and
only if there is an increasing sequence {Kn}zozl of compact sets in R and a null set

N (i.e. p* (N)=0) such that

E= <fj Kn> UN.

n=1
Show also that if another pair (L', ') satisfies (1) - (4), then K € L' and p/ (K) =
w (K) for all compact subsets K of R. Deduce from this that (L', 1') is an extension
of (L,u), i.e. LD L and ' (E) = pu(F) for ol E € L.

2. Measurable functions and integration

Let [—o00,00] = R U {—00,00} be the extended real numbers with order and
(some) algebra operations defined by

—00 < x< o9, z € R,

r+o00 = 00, r € R,

r—00 = —00, x € R,
TrT-00 = 00, z >0,

r-o0o = —00, z <0,
0-c0 = 0.

The final assertion 0 - co = 0 is dictated by >~ ; a, = 0 if all the a,, = 0. It turns
out that these definitions give rise to a consistent theory of measure and integration
of functions with values in the extended real number system.

Let f: R — [—00,00]. We say that f is (Lebesgue) measurable if

fH([~o0,2)) €L, zER.

The simplest examples of measurable functions are the characteristic functions x g
of measurable sets E. Indeed,

¢ if x<0
(xg)  ([~o0,z)) =4 E¢ if 0<z<l1
R if z>1

It is then easy to see that finite linear combinations s = 22;1 anXg, of such char-
acteristic functions xp , called simple functions, are also measurable. Here a,, € R
and F,, is a measurable subset of R. Note that these functions are those arising as
upper and lower Lebesgue sums. However, since the difference of upper and lower
Lebesgue sums is automatically controlled, we proceed to develop integration by
an approximation method instead. It turns out that if we define the integral of a
simple function s = 25:1 anXg, by

N
/ s = Z Qp (En) »
R n=1

the value is independent of the representation of s as a simple function. Armed
with this fact we can then extend the definition of integral fR f to functions f that
are nonnegative on R, and then to functions f such that [ |f| < occ.

At each stage one establishes the relevant properties of the integral along with
the most useful theorems. For the most part these extensions are rather routine, the
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cleverness inherent in the theory being in the overarching organization of the con-
cepts rather than in the details of the demonstrations. As a result, we will merely
state the main results in logical order and sketch proofs when not simply routine.
We will however give fairly detailed proofs of the three famous convergence theo-
rems, the Monotone Convergence Theorem, Fatou’s Lemma, and the Dominated
Convergence Theorem. The reader is referred to the excellent exposition in [6] for
the complete story including many additional fascinating insights.

2.1. Properties of measurable functions. From now on we denote the
Lebesgue measure of a measurable subset E of R by |F| rather than by p (E) as in
the previous sections. We say that two measurable functions f,g : R — [—00, o0]
are equal almost everywhere (often abbreviated a.e.) if

H{z e R: f(z) # g (2)} = 0.

We say that f is finite-valued if f : R — R. We now collect a number of elementary
properties of measurable functions.

LEMMA 11. Suppose that f, fn,g: R — [—00,00] for n € N.

(1) If f is finite-valued, then f is measurable if and only if f=1(G) € L for
all open sets G C R if and only if f= (F) € L for all closed sets F C R.

(2) If f is finite-valued and continuous, then f is measurable.

(3) If f is finite-valued and measurable and ® : R — R is continuous, then
® o f is measurable.

(4) If{fn},—; is a sequence of measurable functions, then the following func-
tions are all measurable:

sup fp (x), ir&f fn(x),...1im sup f, (z), lm n{lgo fn ().
(5) If{fn},—, is a sequence of measurable functions and f (x) = limy, oo fr (%),
then f is measurable.
(6) If f is measurable, so is ™ forn € N.
(7) If f and g are finite-valued and measurable, then so are f + g and fg.
(8) If f is measurable and f = g almost everywhere, then g is measurable.

Comments: For property (1), first show that f is measurable if and only if
F ' ((a,b)) € L for all —co < a < b < co. For property (3) use (®o f) ' (G) =
ft ((I>_1 (G)) and note that ®~1 (G) is open if G is open. For property (7), use

{f+9>a} = JUf>a-rin{g>r}], acR,
reQ

fo = plFrar- -9

EXAMPLE 3. [t is not always true that f o ® is measurable when ® : R — R is

continuous and f is measurable. To see this recall the construction of the Cantor
o) 2k

set £ = ﬂ Ky, where Ky, = U IJI?. Denote the open middle third of the closed
k=0 j=1
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interval IJ]-c by G?. Define the Cantor function F :[0,1] — [0,1] by

1 . (12
F(x) = 21f07’x€G1:<3,3);
1 1 2 3 7 8
Pe) = pireci=(gg). F@=gpreeai=(gg);
1 3
F(z) = 2*3f07"37€G%, F($)=2—3for:ceG§,

5 7
F(m):?gfm’xeG%, F(ZC):ZfoorxeGi;

2j — 1
F(z) = JTfomeG?—l, 1<j<2y,  k>1,

and then extend F' to the Cantor set E = [0,1]\ U G% | by continuity. (Exercise:

k,j
Prove there exists a unique continuous extension.) Now define
F(z)+=z
o - O iy

Then G : [0,1] — [0,1] is one-to-one (strictly increasing) and onto, hence the
inverse function ® = G=! : [0,1] < [0,1] is continuous by Corollary 6. Now
|G ([0,1]\ E)| = £ [0,1] \ E| = L by construction, and so |G (E)| =1—31=1. We
have _
G(E)=J{a®Em Ao},
n>1

and if B, =G(E)N (A& r,) € L, then

Z‘Bn@rﬂ = U (Bn@rj) <1
j=1

Jj=1
implies that |By,| = 0. Since |G (E)| > 0, it follows that B,, ¢ L for some n > 1.
Denote such a set B, by B. Then f = Xg(p) is measurable since ® (B)CEisa

null set. On the other hand, f o ® = xp is not meaurable, despite the continuity
of ®.

Recall that a measurable simple function ¢ (i.e. the range of ¢ is finite) has
the form

N
szakXEk, ar €R, Ey € L.
k=1

Next we collect two approximation properties of simple functions.

PROPOSITION 3. Let f : R — [—00,00] be measurable.

(1) If f is nonnegative there is an increasing sequence of nonnegative simple
unctions {@;. } 1o, that converges pointwise and monotonically to f:
kSk=1

o () < ppyq (@) and klim o (@) = f(x), for all x € R.
(2) There is a sequence of simple functions {¢}re, satisfying

e @) < @i (@)] and lim ¢y (2) = f(2),  forallzeR.



2. MEASURABLE FUNCTIONS AND INTEGRATION 45

Comments: To prove (1) let fay = min {f, M}, and for 0 < n < NM define

n n+1
= D= < .
En,N,M {SC cR N < fM (:L') Sy }

k. .
Then ¢, (z) = Ei:kl %XE,L,Qk,k (x) works. Property (2) follows from applying (1)
to the positive and negative parts of f:

F* (@) = max {f (z),0} and f- (z) = max{—f (x),0}.

2.2. Properties of integration and convergence theorems. If ¢ is a
measurable simple function (i.e. its range is a finite set), then ¢ has a unique
canonical representation

N
Y= ZakXEka
k=1

where the real constants oy, are distinct and nonzero, and the measurable sets Ej,
are pairwise disjoint. We define the Lebesgue integral of ¢ by

N
[e@do =3 anlml.
k=1

If F is a measurable subset of R and ¢ is a measurable simple function, then so is
X g, and we define

| e@d= [ (xwe) @ aa.
LEMMA 12. Suppose that ¢ and i are measurable simple functions and that

E,FecL.

(1) If o = Zkle BrXF, (not necessarily the canonical representation), then

M
/wx)dzzzﬁk il
k=1

(2) [(ap+bp)=a[e@+b [ forabeC,
(3) fEuF@ZIEw‘i’fF@Z'fEmF:(b;
@) [e< [vife<i,

) [ o] < [lol-

Properties (2) - (5) are usually referred to as linearity, additivity, monotonicity
and the triangle inequality respectively. The proofs of (1) - (5) are routine.

Now we turn to defining the integral of a nonnegative measurable function
f:R —[0,00]. For such f we define

/f(m)dx:sup{/go(x)dx:oggogfandapissimple}.

It is essential here that f be permitted to take on the value oo, and that the
supremum may be oo as well. We say that f is (Lebesgue) integrable if [ f (z)dx <
o0o. For E measurable define

[ 1@ = [ ) @) e

Here is an analogue of Lemma 12 whose proof is again routine.
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LEMMA 13. Suppose that f,g : R — [0,00] are nonnegative measurable func-
tions and that E,F € L.

(1) [(af+bg)=a [ f+b[g forabe (0,00),
(2) fEuFf:fEf_l'fFf Z'fEﬁF:qﬁ,
(B) [f<[gifo<f<g
(4) If [ f < oo, then f (z) < o< for a.e. z,
(5) If [ f=0, then f(xz) =0 for a.e. z.
Note that convergence of integrals does not always follow from pointwise con-
vergence of the integrands. For example,

n—oo

lim X[n,n+1] ('7:) dr =1 7& 0= /nILHgO X[n,n+1] (l‘) daj,
and

lim nX(0,1) (x)de =1#0= /nh—{go nX[o,1] (x) du.

n—oo

In each of these examples, the mass of the integrands "disappears" in the limit; at
"infinity" in the first example and at the origin in the second example. Here are our
first two classical convergence theorems giving conditions under which convergence
does hold. The first generalizes the property in line 4 of (1.1):

w(E) =supu(E,) = lim p(E,) if E, /' E.
THEOREM 22. (Monotone Convergence Theorem) Suppose that {fy}.o, is an

increasing sequence of nonnegative measurable functions, i.e. fn (x) < fnt1 (2),
and let

Then f is nonegative and measurable and

/f(w) dx = st}lp/fn (x)dr = lim [ f,(z)dx.

n—oo

Proof: Since [ f, < [ fo41 we have lim,, .o [ f = L € [0,00]. Now f is
measurable and f, < f implies [ f,, < [ f so that

Lgsglp/fns/f.

To prove the opposite inequality, momentarily fix a simple function ¢ such that
0 < ¢ < f. Choose ¢ < 1 and define

E,={zeR: f,(z) >cp(x)}, n>1L

Then E,, is an increasing sequence of measurable sets with J7—; E,, = R. We have

/fnz fnZC/ ¢, n=>1
E’ll EVL

Now let ¢ = Zivzl arXp, be the canonical representation of ¢. Then

J

n

N
WZZQHEnﬂFkL
k=1
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and since lim,_,o |E, N Fy| = |F)| by the fourth line in (1.1), we obtain that

N N
/ ‘P:Zak|EnﬂFk|—>Zak|Fk|:/§0
En k=1 k=1

as n — o0o. Altogether then we have

L= lim fan/go

n—oo

for all ¢ < 1, which implies L > [ ¢ for all simple ¢ with 0 < ¢ < f, which implies
L > [ f as required.

Note that as a corollary we have [ f = limy_.~ [ ¢, where the simple functions
¢, are as in (1) of Proposition 3. We also have this.

COROLLARY 9. Suppose that ay, (z) > 0 is measurable for k > 1. Then

/iak(z)dxli/ak(x)dm

To prove the corollary apply the Monotone Convergence Theorem to the se-
quence of partial sums f, (z) = >} _; ax ().

LEMMA 14. (Fatou’s Lemma) If {f,},—, is a sequence of nonnegative mea-
surable functions, then

/lim inf f, (z)dr <lim inf /fn (z) dx

n—oo

Proof: Let g, () = infy>, fx (z) so that g, < f, and [g, < [ f,. Then
{gn}f;)=1 is an increasing sequence of nonnegative measurable functions that con-
verges pointwise to liminf,, o fn (z). So the Monotone Convergence Theorem
yields

/lim inf f, (z)dz = lim [ g, (z)dz <lim inf /fn
Nn— 00 n— oo n—oo
Finally, we can give an unambiguous meaning to the integral [ f (x)dz in the
case when f is integrable, by which we mean that f is measurable and f | f )| dx <
. To do this we note that the positive and negative parts of f,

f*(2) = max {f (z),0} and f_ (z) = max {—f (z),0},

are both nonnegative measurable functions with finite integral. We define

[t@d= [ @do- [ 1@

With this definition we have the usual elementary properties of linearity, addi-
tivity, monotonicity and the triangle inequality.

LEmMmA 15. Suppose that f, g are integrable and that E, F € L.

(1) [(af+bg)=a[f+b[gforabeR,
@) [popf=J pf+ o ifENF=¢,
@) [f<fgiff<g,

@ [ < [IA
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Our final convergence theorem is one of the most useful in analysis.

THEOREM 23. (Dominated Convergence Theorem) Let g be a nonnegative in-
tegrable function. Suppose that {f,},— | is a sequence of measurable functions sat-

isfying
lim f, (x) = f(z), a.e. T,

and

fn (@) <g(z), aex
Then
and hence

/f (z)dx = lim [ f, (z)dx.

n—oo

Proof: Since |f| < g and f is measurable, f is integrable. Since |f — f,| < 2g,
Fatou’s Lemma can be applied to the sequence of functions 2g — | f — f,.| to obtain

[20 <t int [ 2g-17- 5]
/29+1imn13£0 <_/|f_fn|)
= /2g—limnsggo/|f—fn|-

Since [2g < 0o, we can subtract it from both sides to obtain

mnwp/v—ﬁwéa

n—oo

which implies lim, o [ |f — fn| = 0. Then [ f = lim, . [ f, follows from the
triangle inequality U(f — fn)’ < f |f — fl-

Note that as a corollary we have f f=limg_ o f ¢}, where the simple functions
¢y, are as in (2) of Proposition 3.

Finally, if f(z) = u(z) + v (z) is complex-valued where u (x) and v (z) are
real-valued measurable functions such that

[ir@lde= [ u@? + @i <o
/f(x)dﬂ?z/u(x)dx+i/v(x)dx.

The usual properties of linearity, additivity, monotonicity and the triangle inequal-
ity all hold for this definition as well.

then we define
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2.3. Three famous measure problems. The following three problems are
listed in order of increasing difficulty.

PROBLEM 1. Suppose that E1, ..., E, aren Lebesgque measurable subsets of [0, 1]
such that each point x in [0, 1] lies in some k of these subsets. Prove that there is
at least one set E; with |E;| > %

PROBLEM 2. Suppose that E is a Lebesgue measurable set of positive measure.
Prove that
E-E={z—y:z,yc E}
contains a nontrivial open interval.
PROBLEM 3. Construct a Lebesque measurable subset of the real line such that

ENI|
1]

0< <1

for all nontrivial open intervals I.

To solve Problem 1, note that the hypothesis implies £ < Z;‘L:1 XE, (z) for
x € [0,1]. Now integrate to obtain

1 1 n n 1 n
b= [ k< [ Yoxn @ | de =" [ g, o= Y IE,
0 0 \j=1 j=170 j=1

which implies that |E;| > % for some j. The solution is much less elegant without
recourse to integration.

To solve Problem 2, choose K compact contained in E such that |K| > 0. Then
choose G open containing K such that |G \ K| < |K|. Let § = dist (K,G) > 0. It
follows that (—0,0) C K — K C E— E. Indeed, if x € (=¢,9) then K — 2 C G and
KN (K — z) # ¢ since otherwise we have a contradiction:

2|K|=|K|+ |K -2 < |G| < |G\ K[ + |K| <2[K].
Thus there are k; and ko in K such that k; = k2 — x and so
r=ky—k1 € K- K.

Problem 3 is most easily solved using generalized Cantor sets E,. Let 0 < a <1
and set I{ = [0,1]. Remove the open interval of length $o centered in I{ and denote
the two remaining closed intervals by I and I3. Then remove the open interval of
length sz« centered in I and denote the two remaining closed intervals by I3 and
I3. Do the same for I and denote the two remaining closed intervals by 12 and I3.

k
Continuing in this way, we obtain at the k*" generation, a collection {If}jzl

of 2% pairwise disjoint closed intervals of equal length. Let

-
k=1 \j

Then by summing the lengths of the removed open intervals, we obtain

2

1 2 2
|[O,1]\Ea|:§a+3—2a+3—3a+...:a,

2’6

k

I
1
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and it follows that E, is compact and has Lebesgue measure 1 — . It is not hard
to show that F, is also nowhere dense. The case o = 1 is particularly striking: F,
is a compact, perfect and uncountable subset of [0, 1] having Lebesgue measure 0.
This is the classical Cantor set introduced at the end of Chapter 1.

In order to construct the set F in Problem 3, it suffices by taking unions of
translates by integers, to construct a subset E of [0, 1] satisfying

ENnI
(2.1) 0< | i | <1,  for all intervals I C [0,1] of positive length.
1
Fix 0 < a1 < 1 and start by taking E* = E,,. It is not hard to see that |E‘ITI| <1

for all I, but the left hand inequality in (2.1) fails for E = E* whenever I is a subset
of one of the component intervals in the open complement [0,1] \ E'. To remedy
this fix 0 < a2 < 1 and for each component interval .J of [0, 1] \ E%, translate and
dilate E,, to fit snugly in the closure J of the component, and let E? be the union
2

of E! and all these translates and dilates of E,,. Then again, |E| 1TI| < 1 for all
I but the left hand inequality in (2.1) fails for E = E? whenever I is a subset of
one of the component intervals in the open complement [0,1] \ E2. Continue this
process indefinitely with a sequence of numbers {a,},-; C (0,1). We claim that
E =J;2, E™ satisfies (2.1) if and only if

(2.2) > (1—ap) <o

n=1

To see this, first note that no matter what sequence of numbers «,, less than
|Em1‘ for all intervals I of positive length. Indeed,
each set E" is easily seen to be compact and nowhere dense, and each component

interval in the complement [0,1] \ E™ has length at most

one is used, we obtain that 0 <

A% Snogn

33 3~
Thus given an interval I of positive length, there is n large enough such that I will
contain one of the component intervals J of [0,1] \ E™, and hence will contain the
translated and dilated copy C (Ea" +1) of B, ,, that is fitted into J by construction.

Since the dilation factor is the length |.J| of J, we have
|[ENI| > |C(Ea,.,)| =IJ||E = |J] (1 — apns1) >0,

Qn 41 Qn 41 ’

since apy1 < 1.

It remains to show that |ENI| < |I| for all intervals I of positive length in
[0, 1], and it is here that we must use (2.2). Indeed, fix I and let J be a component
interval of [0,1] \ E™ (with n large) that is contained in I. Let C (E,, ) be the
translated and dilated copy of E, that is fitted into J by construction. We
compute that

IENJ| = [C(Bap)|+ (1 —ani2) [J\C(Bap,)| + -
= (I=apt1) [J][+ (1 = anta) any1 ||
+ (1 - an+3) 420,41 |J| + ...

k=1

n+1
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where
5Z = (1 — Oln+k) AOptfp—1---Cp+1, k Z 1.

(oo}
|[ENJ| = (Zﬁﬁ) || <],
k=1
|ENI]|

and hence also == < 1, if we choose {a, },,7; so that 3777, By <1 for all n.
Now by induction we have
N

0 N 0
Z BZ = lim Z (1 - a7L+k) Untk—1---Ont1 = lim 1- H Un+k | = 1_H An+k,
= N—o0 N—oo i1 Pt}

k=1

Then we have

and by the first line in (2.3) below, this is strictly less than 1 if and only if
> one i (1= i) < oo for all n. Thus the set E constructed above satisfies (2.1) if
and only if (2.2) holds.

2.3.1. Infinite products. If 0 < u, <1 and 0 < v, < oo then
(2.3) H (1—wu,) > 0if and only if Zun < 00,

n=1

H +u,) < ooifandonlyivan<oo.

n=1
35 8O that e~ > 1 —w,, > e 2%n and
e2 < 14w, < e’ For example, when 0 < z < , the alternating series estimate
yields

To see (2.3) we may assume 0 < u,,v, < 5

(22)°
2!

e <1 -2+ <1-—ux,

while the geometric series estimate yields

e2x<1—|—<1 >{1—|—$+x +..} <1+

) - I
) -1

Thus we have

(2.4) exp (

exp (
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CHAPTER 5

Paradoxical decompositions and finitely additive
measures

DEFINITION 12. Let G be a group acting on a set X. A subset E of X is finitely
G-paradoxical if there are subsets A;, Bj of X and group elements g;, h; such that

(0.5) E 5 (UA)0(UB,),
EF = UznzlgiAi = U?:lhlij'

The notation U asserts that the indicated union is pairwise disjoint. Note that
one can easily arrange to have each collection of sets {g;4;},~, and {thj}?zl
in the second line of (0.5) pairwise disjoint simply by paring the sets A; and B;.
One can also achieve equality in the first line of (0.5), but this is harder, and is
not proved until Corollary 12 below. We say that E is countably G-paradozxical if
m,n in (0.5) are permitted to be oo, the first infinite ordinal. By G-paradoxical
we mean finitely G-paradoxical. Finally, we say that GG is paradoxical if G acts on

itself by left multiplication and G is G-paradoxical. The next result uses the axiom
of choice.

THEOREM 24. Let G be the circle group T and let it act on itself X = T by
group multiplication:
e € G sends the point €' € X to the point ¢''T%) € X,
Then X s countably G-paradoxical.
Proof: Let M be a choice set for the equivalence classes of the relation on
T given by declaring two points equivalent if one is obtained from the other by
rotation through a rational multiple of 27 radians. Let {p;};—, enumerate the

rotations through a rational multiple of 27 radians, and set M; = p;M. Then the
countable paradoxical decomposition is provided by

X = (Uz oddMi) U (Uz evenMi) 5
X U’L oddgiMi = Uz ovcnhiMiy

where g; = p%p;1 for ¢ odd, and h; = p%p;1 for 4 even.

COROLLARY 10. There is a non-Lebesgue measurable subset of T.

Proof: If A;, B, g;, hj witness a countable paradoxical decomposition (0.5) of
T = F with m,n < oo, and if we assume every subset of T is Lebesgue measurable,
then

m n m n
21 = |G| =) A+ > IBil =) lgiAil + > h; Byl
i=1 =1 i=1 =1
> UL giAs] 4 |Uj_ by B;| = 4,

53



54 5. PARADOXICAL DECOMPOSITIONS AND FINITELY ADDITIVE MEASURES

a contradiction.
Denote by G,, the group of isometries of Euclidean space R™.

REMARK 10. There exists a Go-paradozical subset E of the plane R? = C that
does not require the axiom of choice for its construction, namely the Sierpinski-
Mazurkiewicz Paradoz: let € be a transcendental complex number and define

E = {x = Z zne™ € C:x, € Zy and x, =0 for all but finitely many n} ,
n=0

E1 = {.’EEEZLEQZO},

E, = {zxe€FE:x5>0}.

Then E = ElUE2 = e_wEl =Fy, —1.
1. Finitely additive invariant measures

Let G be a group acting on a set X. If there exists a finitely (countably)
additive G-invariant probability measure p on the power set P (X), then there are
no finitely (countably) G-paradoxical subsets F of X having positive pu-measure.
In particular G itself is not finitely (countably) G-paradoxical. This is proved as
in the proof of Corollary 10 above. Thus paradoxical constructions can be viewed
as nonexistence theorems for invariant measures, and by the contrapositive, the
construction of invariant measures precludes paradoxical decompositions. In fact
a theorem of Tarski shows that if £ C X on which a group acts, then there is a
finitely additive G-invariant positive measure p on P (X) with p(E) = 1 if and
only if E is not G-paradoxical.

We now state two theorems in this regard. The first states that paradoxical
decompositions never occur for abelian groups (such as the group of translations
on Euclidean space R™), and the second shows that paradoxical decompositions do
exist for the rotation groups on Euclidean space R™ when n > 3 (resulting in the
Banach-Tarski paradox).

THEOREM 25. Suppose G is an abelian group and let M be the power set of G.

There is p : M — [0,1] satisfying
(1) p(ErUE2) = p(Er) +p(E2),  EieM,
(2) p(E+a)=p(E), EeMaced,
(3) 1(G) = 1.

DEFINITION 13. Let G act on a set X. Subsets A and B of X are said to be
G-equidecomposable, written A ~g B or simply A ~ B when G is understood, if
A=U;_1A; and B = U, B; where A; = g;B; for some g; € G, 1 <i < n.

We will see later that E is G-paradoxical if and only if E = AUB where
A~g E ~g B.

REMARK 11. If X is Euclidean space R™, then Gj3-equidecomposability pre-
serves the following properties: boundedness, Lebesgue measure zero, first category
(a countable union of nowhere dense sets), and second category (not first category).

THEOREM 26. (Banach-Tarski paradox) The sphere S? is SOs-paradoxical and
the ball B3 is G3-paradoxical. Moreover, if A and B are any two bounded subsets
of R3, each having nonempty interior, then A and B are G3-equidecomposable.

We prove only the second theorem on the Banach-Tarski paradox.
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2. Paradoxical decompositions and the Banach-Tarski paradox

We obtain the strong form of the Banach-Tarski paradox in four steps.

e First, we prove that the free nonabelian group F5 of rank 2 is paradoxical.

e Second, we show that the special orthogonal group SOj3 in three dimen-
sions contains a copy of Fj.

e Third, we lift the paradoxical decomposition from SO3 to the sphere S?
on which it acts “almost” without nontrivial fixed points.

e Fourth, we extend the paradox to bounded sets with nonempty interior
with the help of the proof of the Schroder-Bernstein theorem.

First step: We prove that F; is paradoxical. Let Fy consist of all finite “words”
in 0,07, 7,771 with concatenation as the group operation, and the empty word
as identity 1. For p € {a, 0’1,7',7'*1}, let W (p) consist of all reduced words that
begin with p (a word is reduced if no pair of adjacent symbols is o1, 0~ to, 7771,

or 7717). The following decompositions witness the paradoxical nature of Fy:

Fy = {1}UW (o) OW (o7 1) OW (1) UW (r71),
F, = W(o)UoW (671,
F, = W(n)urw ().

Note that we do not use the identity in these reconstructions of Fy. We can however
witness the paradox with four disjoint pieces whose union is F5 using an absorption
process as follows. First we include 1 with the set W (0) and call the new set A;.
But then Fy, = A,UcW (0'_1) fails since 1 is also in oW (0'_1). So 1 must be
removed from oW (0_1), and we achieve this by moving c~! from W (0'_1) to Ay
and denoting the new set W (a‘l) \ {0‘1} by As. But then 0! is in both A; and
As. So we move 02 from Ay to A;. This process must be continued indefinitely,
solet S ={o "} 7 and define

Aq W (o) U{1}US,
Ay, = W (cr*l) S,
Az = W(r),

Ay w (7‘71) .

Then FQ = Uf:1A7 and FQ = AlUO—AQ and FQ = A3LJTA4 since
oA,y oW (e )\oS = {{1}UW (7" ) UW (1) UW (7~ 1)} \ {{1} US}
{W (e™)\SHUW (1) UW (r71),

has complement Aj.

Second step: To embed a copy of Fy in SO3 we define the 3 X 3 matrices:

1 522 ) 1 F2v2 0]
Pt = £22 10| =3 +2v2 1 0
0 0 1 0 0 3 ]
10 0 | 3 0 0
pto= o L F22 :% 0 1 F2V2
0o 22 1 0 +2v2 1
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It suffices to show that no nonempty reduced word w in (;Si, p* equals the identity
in SO3. Since conjugation by ¢i doesn’t affect the vanishing of a word, we may
assume that w is a nonempty reduced word ending in qﬁi.

CraM 4. Every nonempty reduced word w in qi)i,pi that ends in <;Si satisfies
w(1,0,0) = 37* (a7 bV/2, c) for some a,b,c € Z with 31b, and where k is the length
of w. In particular b # 0 and w is not the identity.

We prove the claim by induction on the length k£ of w. The case £k = 1 is
evident upon examining the first columns of the two matrices gbi. If w of length
k > 2 equals gf)iw’ or prw’, where

w' (1,0,0) = 31F (a/,b’\@, c’), a\b,d €L, 31V,
then
(2.1) ¢*w' (1,0,0)

3k (a’ 4, (0 £ 2a) V2, 3«:’) ,
pEu’ (1,0,0) = 3°F (3a’, W F2¢) V2, ¢ + 4b’) .

We now see that w (1,0,0) has the form 3% (a,bﬁ, c) for some a,b,c € Z,
and it remains only to prove 3 { b given that 3 { ¥’. There are four cases: w =
qbipiv, piqbiv, (biqbiv and pTptv where v is possibly empty. We may suppose
that v (1,0,0) = 327F (a”,b”\/i c”) where a”,b", " € Z (we do not assume 3 1 b”
in order to include the case v is empty). In the first case, we have a’ = 3a” by
the second line in (2.1) applied to v instead of w’. Now 3 { ¥’ and so we obtain
31V £2a’ = b as required. The second case is similar. For the third case we have

d = d — 4",
b/ — 2a// + b//
by the first line in (2.1) applied to v instead of w’. Then
b=t +£2d =b £2(a FA) =b +b" +2d" — 9" =2 — 9v,

and again 3 1 b follows from 3 1 b’. The fourth case is similar and this completes the
proof of the claim.

Third step: To lift a paradoxical decomposition from a group to a set on
which it acts is easy using the axiom of choice provided the action is with trivial
fixed points. We say that a group G acts on a set X with trivial fixed points if
gr # x for all x € X and all g € G\ {e} where e denotes the identity element of
G.

PROPOSITION 4. If G is a paradozical group and acts on a set X with trivial
fixed points, then X is G-paradozxical.

Proof: Let A;, B;, g;, hj witness the paradoxical nature of G as in (0.5). Let
M be a choice set for the G-orbits in X. Then {gM} g is a partition of X because

there are no nontrivial fixed points. Then A} = Uyeca,gM and B = Uhij hM
easily yield a paradoxical decomposition of X:

X o (UL A)U (U B;),
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COROLLARY 11. (Hausdorff’s paradox) There is a countable set D C S? such
that S>\D is SOs-paradozical.

Proof: Let F be a free nonabelian group of rank 2 in SO3. Then F is countable
and since each o € F'\ {1} fixes exactly 2 points,

D={zeS*: az ==z for some o € F'\ {1}}

is countable. Then F acts on S?\ D with trivial fixed points. Indeed, the set D
of trivial fixed points of F is invariant for F since if £ € D and af = &, then
(604,6_1) B¢ = BE for all o, B € F; and thus S\ D is invariant for F' as well. So
Proposition 4 implies that S\ D is F-paradoxical, hence also SOs-paradoxical.

Hausdorfl’s paradox is already sufficient to disprove the existence of finitely
additive rotation invariant positive measures of total mass 1 on the power set of
S?, and hence also disproves the existence of finitely additive isometry invariant
positive measures on the power set of R? that normalize the unit cube (this was
Hausdorff’s motivation). FEzercise: prove this! We can eliminate the countable
set D in Hausdorff’s paradox by an absorption process once we have the following
lemma.

LEMMA 16. Let G act on a set X and let E,E' € P(X). If E ~g E', then E
is G-paradozical if and only if E' is G-paradozical.

First we note that the relation ~¢ is transitive. Suppose that F ~g A
and E ~g B. Then E = U] ;A; = U;’l:lBj where A = U;_,g;A; and B =
L'J;n:lthj for some group elements g;, h;j. Then A = 0232191‘ (A;N B;) and
B = UZ’;Zlhj (A; N B;) shows that A ~¢ B. From this we easily obtain the lemma.
Indeed, F is G-paradoxical if and only if there are disjoint subsets B, By of E such
that both By ~¢ E and By ~g E. From E ~g E’, we have E = U_; A; and E' =
O?:lgiAi- Thus if we define Bi = U?:lgz (Az ﬂBl) and Bé = U?:lgz (AL ﬂBQ),
we have that B}, B} are disjoint subsets of E’ such that B} ~g U;_, (4; N By) =
B ~¢ E ~¢ E' and similarly Bj ~¢ E’. This shows that E’ is G-paradoxical.

THEOREM 27. (Banach-Tarski paradox) S? is SOs-paradoxical and B3 is G3-
paradozical.

Proof: Let D = {d;};—, be as in Hausdorfl’s paradox. Pick a line ¢ through
the origin that misses D and fix a plane P containing ¢. Let

A{l(&@])n,z,]GN}, Qiii(dl,é),
n

where £ (d;, ¢) denotes the angle mod 7 through which the plane P must be rotated
(in a fixed sense) about £ so as to contain d;. Pick § ¢ A (mod «). Then if p is
rotation about ¢ through angle 6, we have

pPDNptD = ¢, m # n in Z.

Indeed, if ¢ is the z-axis and p™D N p"D # ¢ for some m # n, then using polar
coordinates in the zy-plane we have e””‘grje“gf = e"prLe* which implies 0 =
% € A. So with D = U,” p"D = DUpD we have

§? — (82\13) UD ~so, (82\5) UpD = SA\D,
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and the lemma shows that S? is SOs-paradoxical.
Finally, the equality

B3\{0} = Uyegs? {)\w 0< AL 1}

shows that B3\ {0} is SOs-paradoxical, and an absorption argument as above then
shows that B3 is Gs-paradoxical. Indeed, use a rotation p about a line ¢ passing
through (0, 0, %) but not passing through the origin, so that p™0 # p™0 for m # n,
and set D = U~ ,p"0 = {0} UpD. Then since p € G,

By — (Bg\ﬁ) UD ~a, (183\15) UpD = By {0} .

REMARK 12. The arguments above show that S? can be duplicated using 8
pieces, and that Bs can be duplicated using 16 pieces. More refined arguments show
that 4 pieces suffice for S?, and that 5 pieces suffice for Bz. These latter results are
optimal.

Fourth step: The next result shows that if we declare A <g B when A is
G-equidecomposable to a subset of B, then the relation = is a partial ordering of
the ~¢ equivalence classes in P (X).

THEOREM 28. (Banach-Schréder-Bernstein) Suppose that a group G acts on a
set X. If A, B € P(X) satisfy both A <g B and B <¢ A, then A ~g B.
Proof: We have the following two properties of the relation ~¢:
o If A~y B, then there is a bijection g : A — B such that
(2.2) C ~¢ g(C) whenever C C A.
e If AANAy=¢ =B NByand A; ~g B; for i = 1,2 then A1 U Ay ~¢g
By U Bs.

By hypothesis, A ~g By and A; ~g B for some B; C B and A; C A. By
the first property, there are bijections f : A — Bj and g : A; — B satisfying
C ~¢ f(C)and D ~g ¢g(D) whenever C C A and D C A;. Let Cp = AN\ A; and
inductively C,, 41 = g~1f (C,) for n > 0. With C = U, ,C,, we have

g (ANC) = B\f(0O)
and then ANC ~g B\ f (C) by (2.2). But we also have C ~¢ f (C) by (2.2) and
the second property now yields
A= (ANC)UC ~a (BNF (C)Uf (C) = B.

COROLLARY 12. A subset E of X is G-paradozical if and only if there are
disjoint sets A, B C E with AUB=F and A ~g E ~g B.

THEOREM 29. (strong form of the Banach-Tarski paradox) If A and B are
any two bounded subsets of R3, each with nonempty interior, then A and B are
G3-equidecomposable.

Proof: It suffices to show that A <g, B, since interchanging A and B yields
B =@, A, and the Banach-Schroder-Bernstein theorem then shows that A ~¢q, B.
So choose solid balls K and L such that A C K and L C B, and let n be large
enough that K can be covered by n copies of L. Use the Banach-Tarski paradox to
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create a union S of n pairwise disjoint copies of L, and then cover K by a union of
translates of these copies so that K =¢, S. It follows that

ACKjGSSNGSLCB,
and so A <q, B.






CHAPTER 6

Abstract integration and the Riesz representation
theorem

The properties of Lebesgue measure, as given in Theorem 21, are easily ex-
tended to a quite general setting of measure spaces, where a theory of integration
can then be established that includes the analogues of the monotone convergence
theorem, Fatou’s lemma and the dominated convergence theorem. It turns out
to be fruitful to abandon the completeness property (4) in Theorem 21 for the
abstract setting, and to include it as separate feature. The resulting abstract the-
ory of integration is one of the most powerful tools in analysis and we will give
several applications of it in the sequel. Fortunately, this abstract theory follows
very closely the theory of Lebesgue integration that was developed in the previous
chapter, which permits us to proceed relatively quickly here.

1. Abstract integration

Let X be a set and suppose that A C P (X) is a o-algebra of subsets of X,
i.e. A contains the empty set, and is closed under complementation and countable
unions:

(1) p€ A,
(2) A° € A whenever A € A,
(3) Up—; A, € A whenever A,, € A for all n.

The pair (X, .A) is called a measurable space and A is called a o-algebra on
X, although one usually abuses notation by referring to just X as the measurable
space, despite the fact that without A, the set X has no structure. There are lots
of o-algebras on a set X. In fact, given any fixed collection F C P (X) of subsets
of X, there is a smallest o-algebra on X containing F.

LEMMA 17. Given F C P (X), there is a unique o-algebra Ax on X such that

(1) FC Ag,
(2) if A is any o-algebra on X with F C A, then Ar C A.

PROOF. The power set P (X) is a o-algebra on X that contains F. Thus the
set
Ar = ﬂ {A: Ais a o-algebra on X with F C A}
is nonempty. It is easily verified that Az is a o-algebra on X that contains F,

and it is then clear that Az is the smallest such. This completes the proof of the
lemma. (]

A map p: A — [0,00] is called a positive measure on A if it is countably
additive, and nondegenerate in the sense that not every set has infinite measure:

61
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oo o0

(1) Un:1En € Aand p (Un_1En> = >0 u(Ey,) whenever {E,} " is a

pairwise disjoint sequence of sets in A,
(2) there exists A € A with p(A4) < oco.

The triple (X, A, ) is called a measure space. Again, one usually abuses nota-
tion and refers to such a set functional p as a positive measure on X, and often as
just a measure on X. Note that p () = 0 is a consequence of properties (1) and
(2) since

oo>u(A):u<AU(Z)U®U...> = 1 (A) + e (0) + p (0) + ...

and p (A) can be cancelled from both sides since p(A) < co. We say that u is a
complete measure on X or A if all subsets of sets of u-measure zero lie in A and
have zero measure, i.e.

(1) E€ Aand p(E) =0 whenever E C F and F € A with u (F) = 0.

EXAMPLE 4. We give four examples of measures.

(1) Lebesgue measure on the real line R is an example of a complete measure.
(2) A simpler ezample is counting measure v : P (X) — [0, 00] defined on the
power set P (X) of a set X by

| #E if E is finite
v(E) = { co if E is infinite
(3) Simpler still is the Dirac unit mass measure 6, : P (X) — {0,1} at a point
x in a set X defined by

(1 if zeE
6””(E)_{0 if ©z¢FE

(4) A wvery interesting example, and one which often arises as a counterez-
ample to reasonable conjectures in abstract measure theory, uses the well-
ordered set X that has w1 as a last element, and with the property that
every predessor of w1 has at most countably many predessors. Recall that
an ordered set (X, <) is well-ordered if < is a linear order on X such that
every nonempty subset of X has a least element. The axiom of choice
is equivalent to the assertion that every set can be well-ordered. To con-
struct X, let' Y be any uncountable well-ordered set and let wy be the least
element having uncountably many predessors - w1 is uniquely determined
up to order isomorphism and is called the first uncountable ordinal.

Now for a € X, let P, and S, be the predessor and successor sets of
a given by

P, = {peX:fB<a},

Se = {BeX:a=<p}.
Define a topology T on X by declaring that G C X belongs to T if G is
either a predessor set P,, a successor set Sz, an open segment P, N Sg =
(B, @), or an arbitrary union of predessors, successors and segments. Then

the topological space (X, 7) is Hausdorff (meaning that every pair of dis-
tinct points in X can be separated by disjoint open sets in X ) and compact.
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To see that X 1is compact, observe that every collection of closed subsets
{F;};c; with the finite intersection property has nonempty intersection,
Nicr Fi # 0, because every monempty subset of X has a least element.
Indeed, if it were the case that (\,c; F; = 0, then there is an infinite se-
quence {F;, }ZOZI of these closed sets, such that the least upper bounds a,
of the sets (\,_, Fi, form an infinite strictly decreasing sequence {a,} -,
in X, contradicting the existence of a least element in {ay,},. . To see
this, choose F;, arbitarily. Then ay = lub(F;,) exists and lies in F;,. In
fact, the set of upper bounds of any set F' is nonempty (w1 is an upper
bound), and so has a least element o because X is well-ordered. Every
open set containing o must contain a segment (58,v) with 8 < a < v (or
a predessor or successor set containing o - we leave these cases to the
reader), and since 8 cannot be an upper bound for F, there is an element
of F in the segment (3, ). If F is closed it thus follows that o € F. Neat,
we note that there is Iy, such that ay & F;, NF;, (otherwise (), F; #0),

and since Fy, N F;, is closed and nonempty, we have
ag =lub (Fy, NFy,) < ag.

We can continue in this manner to construct a sequence of sets {Fin}ff:l
such that the points a, = lub ((\p_, Fi,) are strictly decreasing.

Now define

AE{EGP(X):eitheTEU{wl} or E¢U{wy} }

contains an uncountable compact set
and define a set functional A : A — {0,1} by

AE) = 1 if FEU{w1} contains an uncountable compact set
T 10 if E°U{wi} contains an uncountable compact set

for E € A.

EXERCISE 2. With regard to Example (4) above, prove that A is a o-algebra on
X containing the open sets, and that X\ is a positive measure on A. Hint: Show that
every countable intersection of uncountable compact subsets of X is uncountable.
Recall that compact sets are closed in a Hausdorff space such as X.

1.1. Measurable functions. It is convenient to initially define the notion of
a measurable function for f : X — Y where X is a measure space and Y is a general
topological space. Recall that 7 C P (Y) is a topology on Y if it contains the empty
set, the whole set Y, and is closed under finite intersections and arbitrary unions:
(1) 0, X e,
(2) GiNGyN...NG, € T whenever G; € 7 for 1 <i <n < oo,
(3) Uaea Ga € 7 whenever G, € 7 for all a € A (here A is an arbitrary index
set).
The pair (Y, 7) is called a topological space, and the sets in 7 are called the
open sets in Y. As usual, we often abuse notation and refer to just the set Y as
the topological space, with the underlying topology being understood.

DEFINITION 14. Let (X,.A) be a measurable space and let (Y, T) be a topological
space. A function

f: X—>Y
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is said to be measurable (more precisely A-measurable) if
FHG)Y e A forallGer.

Note the similarity to the definition of a continuous function f : X — Y in the
case that (X, o) is a topological space: f is continuous if f~! (G) € o for all G € 7.
We have already seen in Example 3 that the composition of a continuous function
followed by a Lebesgue measurable function need not be measurable. On the other
hand the composition of a measurable function followed by a continuous function
is always measurable, even in this abstract setting.

PROPOSITION 5. Suppose that (X, A) is a measurable space and that (Y, )
and (Z,u) are topological spaces. If f : X — Y is measurable and g : Y — Z is
continuous, then the composition go f : X — Z is measurable.

PROOF. If H € yu is open in Z, then G = g~! (H) € o is open in Y and so the
measurability of f gives

(go ) (H)=f" (g7 (H) =/ (G) e A
for all H € p. This verifies the definition that go f : X — Z is measurable. O

We now consider the possibility that X is simultaneously a measurable space
and a topological space, i.e. there is a g-algebra A on X as well as a topology 7 on
X. If 7 C A, then every continuous function f: X — Y is also measurable.

LEMMA 18. Suppose that A is a o-algebra on X and 7 is a topology on X with
T CA. IfY is any topological space, then every continuous function f: X —Y is
also measurable.

PROOF. If G is open in Y, then f~1 (G) € 7 C A. O

If (X, 7) is a topological space, then Lemma 17 shows that there is a smallest
o-algebra B, on X that contains the topology 7. This important o-algebra B,
is called the Borel o-algebra on the topological space (X, 7), and the sets E in
B, are called Borel sets. A function f : X — Y that is measurable with respect
to the Borel o-algebra on X is said to be a Borel function on X. The previous
lemma shows that continuous functions are always Borel measurable, but there is
an important property that Borel functions have that is not shared by measurable
functions in general.

PROPOSITION 6. Suppose that (X,A) is a measurable space and that (Y,7) and
(Z, 1) are topological spaces. If f : X — Y is measurable and g :' Y — Z is Borel
measurable, then the composition go f : X — Z is measurable.

PRrROOF. Consider the collection of subsets of Y defined by
C={BeP(Y):f"(B) e A}.

It is a simple exercise to verify that C is a o-algebra on Y (no properties other than
A is a o-algebra and f is a function are needed for this). Indeed, the following
three properties hold since A is a o-algebra;

f7H0) = 0eA,
f7YBY) = [f'(B)°eA, ifBec,
f_1<ijk> = Gf‘l(Bk)eA, if B, €C,
k=1

k=1
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and they show by definition of C that

p e C,
B¢ € Cwhen BeC(,

o0
U Br € CwhenBec.
k=1
Moreover, the measurability of f shows that C contains 7, the open sets in Y. Thus
by Lemma 17, C contains the Borel o-algebra B, on Y.
Now if H € pu is open in Z, the Borel measurability of g shows that

g ' (H) € B, CC,

which gives
(go /)" (H)=f" (97" (H)) € A
for every H € u by the definition of g~ (H) € C. O

REMARK 13. For future reference we isolate one of the facts proved above: if
A is a o-algebra on a set X, and if f : X — Y is any function whatsoever, then
the set
C={BeP(Y):f'(B)eA}

is a o-algebra on' Y. Thus o-algebras can be pushed forward by arbitrary functions.

1.1.1. Product spaces. Given two topological spaces (Y1,71) and (Y3, 72), we
define the product topology 71 X T2 on the product space Y7 X Y5 to consist of
arbitrary unions of open rectangles Gi1 x Go where G; € 7; for i = 1,2. It is
easy to see that 77 X 75 is a topology - it is closed under finite intersections since
the intersection of two open rectangles is again an open rectangle. Let (X, o) be
another topological space. It is an easy exercise to show that if

f:X-=Y1xYy f(x)=(fi(x),f2(x) €Y xY; for x € X,

then f is continuous if and only if f; : X — Y; is continuous for both ¢ = 1 and
1 = 2. The same sort of phenomenon holds for measurability if the spaces Y; and Y5
each have a countable base. Recall that a topological space (Y, 7) has a countable
base {G,},—, if each G,, is open and if for every point z contained in an open set
G there is n € N such that x € G,, C G. For example, Euclidean space R™ has
a countable base, namely the collection of all open balls with rational radii having
centers with rational coordinates.

LEMMA 19. Suppose that (X, A) is a measurable space, and that (Y1,71) and
(Ya, 72) are topological spaces with countable bases. Then

f=1,1f): X =Y xY;

is measurable if and only if f; : X — Y, is measurable for both i =1 and i = 2.

PROOF. Suppose first that f is measurable. Since the projection map ; :
Y1 x Yy — Y; is continuous, Proposition 5 shows that f; = m; o f is measurable for
1=1,2.

Now suppose that both f; and f; are measurable. Then if R = G; X G is an
open rectangle,

(1.1) STHR) = f7H(G1 x Ga) = fi (G N f3 1 (Ga) € A
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IfJ= Uzozl Ry is a countable union of open rectangles Ry, we have

P =U @) ea
k=1

Finally, it is easy to see that every open set J in Y7 X Y5 is a countable union of
open rectangles because of our assumption that Y; has a countable base for i = 1
and ¢ = 2. Indeed, if B; is a countable base for Y;, then

BlXBQE{GlXGQIGiGBifOI‘].:].,Q}
is a countable base for Y7 x Y5. Then if J is open,
J=|J{G:GeBy xByand G C J},

and the latter union is clearly at most countable. This completes the proof that f
is measurable. O

COROLLARY 13. Let (X, A) be a measurable space and n > 2. Then

(1) f: X — R"™ is measurable if and only if each component function f; :
X —>Rin f(x)=(f1(z),..., fn(x)) is measurable, 1 <i <mn, and

(2) if f,g: X — R™ are both measurable, then so are f +g: X — R™ and
f-g: X —R.

PrOOF. Assertion (1) follows by induction from Lemma 19. Now define F :
X > R"xR" by F(z) = (f(x),g(z)) for z € X. Then the measurability of
f and g implies that of F' by Lemma 19. If ¢ : R” x R® — R" is defined by
¢ (u,v) = u+wv, then the continuity of ¢ and Proposition 5 imply the measurability
of (poF)(z) =f(z)+g(z)=(f+g)(x), z € X. Similarly, if ¢ : R"* x R” - R
is defined by ¢ (u,v) = w - v, then the continuity of ¢ and Proposition 5 imply the
measurability of (¢ o F) (z) = f(z) -g(z) = (f - 9) (z), z € X. O

The following lemma is proved exactly as in the case of Lebesgue measure on
the real line treated above.

LEMMA 20. Let (X,.A) be a measurable space. Suppose that f, fn,g : X —
[—o00,00] for n € N.

(1) If f is finite-valued, then f is measurable if and only if f~!(G) € A for
all open sets G C R if and only if f~! (F) € A for all closed sets F C R.

(2) If f is finite-valued and continuous, then f is measurable.

(3) If f is finite-valued and measurable and ® : R — R is continuous, then
® o f is measurable.

(4) If {fn},—, is a sequence of measurable functions, then the following func-
tions are all measurable:

sup fn (x), inf f,(z),..lim sup f, (z), lim inf f, (z).
n n n—00 n—00

(5) If{fn},2, is a sequence of measurable functions and f (z) = lim, . fn (2),
then f is measurable.

(6) If f is measurable, so is ™ for n € N.

(7) If f and g are finite-valued and measurable, then so are f 4+ g and fg.



1. ABSTRACT INTEGRATION 67

1.2. Simple, nonnegative and integrable functions. We now proceed al-
most exactly as we did in the case of Lebesgue measure on the real line R. We will
be brief and omit all proofs here as they are virtually verbatim the same as the
proofs we gave for Lebesgue measure.

Let (X, A, 1) be a measure space. A function ¢ : X — R is a simple function
if it is measurable and its range is finite. Such functions have the form

szakXEk, ar €RE € A

PROPOSITION 7. Let f : X — [—00, 0] be measurable.

(1) If f is nonnegative there is an increasing sequence of nonnegative simple
functions {cpk}gozl that converges pointwise and monotonically to f:

¢ () < @y (2) and klim o () =f(x), foralzeX.
(2) There is a sequence of simple functions {¢,}re, satisfying
lon (@) < @1 (2)| and lim @y (2) = f(z),  forallze X.

If ¢ is a simple function, then ¢ has a unique canonical representation

N
Y= ZakXEka
k=1

where the real constants ay, are distinct and nonzero, and the measurable sets Ej,
are pairwise disjoint. We define the integral of ¢ by

N
/sﬂdu = ak|Exl,,
k=1

where we are using the notation [Ey|, = p(E) for £ € A If E € Aand ¢ is a
simple function, then so is xpp, and we define

/Ecpdu=/(XE¢) dp.

LEMMA 21. Suppose that ¢ and v are simple functions and that E, F € A.

(1) If o= Zkle BrXr, (not necessarily the canonical representation), then

M
/wdu => By,
k=1

(2) [(ap+by)dp=a [@du+b [Ydu fora,be C,
(3) [pupwdn= [yedp+ [po if ENF =,

(4) [pdu < [Pdu if o <,

(5) [ wdp| < [ el du.

For f: X — [0, 00] measurable we define

/fdusup{/gpdu:()ggpgfandgoissimple}.
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We say that f is integrable if [ fdu < oo. For E measurable define

/E fdu= [ Gent)di

LEMMA 22. Suppose that f,g : X — [0,00] are nonnegative measurable func-
tions and that E, F € A.

1) [(af +bg)dp=a [ fdu+b [ gdu fora,be (0,00),
) Jpor fdn = [p fdp+ [ fdp if ENF = ¢,

) [ fdu < [gdpif0< f<g,

) If [ fdp < oo, then f(z) < oo for a.e. x,

)

(
(
E
( Ifffdu: 0, then f(x) =0 for a.e. x.

2
3
4
5
THEOREM 30. (Monotone Convergence Theorem) Suppose that {f,},-, is an

increasing sequence of nonnegative measurable functions, i.e. fn (x) < fnt1 (2),
and let

n—oo

f(z) =sup fn (2) = lim_fn ().

Then f is nonegative and measurable and

/ fdis = sup / fudu = lim / Fud.

COROLLARY 14. Suppose that ay () > 0 is measurable for k > 1. Then

/Zakdu: Z/akdu.
k=1 k=1

LeEMMA 23. (Fatou’s Lemma) If {fn},—, is a sequence of nonnegative mea-
surable functions, then
/lim inf f,dp <lim inf /fndu.

If f: X — [—00,00] is measurable, define

[ tin= [ rrau— [ s-an

provided not both [ f*du and [ f_du are infinite. We say that such an f is

integrable if
/|f\dM:/(f++f—)du:/f+du+/f_du<oo.

LEMMA 24. Suppose that f,g are integrable and that E, F € A.

(1) [(af +bg)du=a [ fdu+Db [ gdu fora,beR,
2) Jpopfdp=[pfdu+ [ fif ENF =6,

(3) [ fdu < [gduif f<g,

(4) | [ fdu| < [|f]dp.

We say that a property P (z) holds p — a.e. x € X if the set of x for which
P (z) fails has p-measure zero.
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THEOREM 31. (Dominated Convergence Theorem) Let g be a nonnegative in-
tegrable function. Suppose that {fn}ff:l s a sequence of measurable functions sat-
isfying

nh_{[;O fn () = f(2), p—ae xekX,

and
|fr ()] < g(x), uw—ae v€X.
Then
lim ‘f—fn‘du,:o’
and hence

/ fdp = lim / Fody.

Finally, if f (z) = w(z) + v (x) is complex-valued where u (z) and v (x) are
real-valued measurable functions such that

/\f|du:/\/u2+v2du<oo,

/fduz/udu—i—i/vdu.

The usual properties of linearity, additivity, monotonicity and the triangle inequal-
ity all hold for this definition as well.

then we define

2. The Riesz representation theorem

Suppose we have a measure space (X,.A, ) that is also a topological space
(X,7) with topology 7 C A. Then every continuous function f : X — C is
measurable. If in addition the measure pu is locally finite, i.e.

1 (K) < oo for all compact sets K C X,

and if the space X is compact, or more generally just if f has compact support, then
[ is integrable and the integral | fdu is a complex number. Now the set C, (X) of
continuous complex-valued functions on X with compact support is clearly a com-
plex vector space under pointwise addition and scalar multiplication of functions.
The map

A, Co(X)—C, given by A, f = /fdu,

is a linear functional on the vector space C. (X). Moreover it has a special property
due to the positivity of the measure p, namely that A, is a positive linear functional:

A, f > 0 whenever f € C. (X) satisfies f(z) > 0 for all z € X.

Remarkable fact: For many topological spaces (X, 1), every posi-
tive linear functional A on C, (X) is equal to A, for some positive
locally finite Borel measure p on X.

The condition we will impose on the space X in order to force this remarkable
fact is that X be locally compact and Hausdorff. A topological space (X,7) is
locally compact if X has a base of compact sets, i.e. for every x € G C X with G
open, there is H open with H compact and

reHCHCGCX.
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A topological space (X, 1) is Hausdorff if for every pair of distinct points z,y € X
there are open sets G and H such that

zx€G, ye Hand GNH =.

The key fact that we use about such spaces, and which connects measures to con-
tinuous functions is Urysohn’s Lemma.

2.1. Urysohn’s Lemma.

LEMMA 25. (Urysohn) Suppose that X is a locally compact Hausdorff space and
that K C 'V C X where K is compact and V' is open. Then there is a continuous
function with compact support f € C. (X) such that

(2.1) Xk (@) < f(z) <xv(z), =zeX
In particular f =1 on K and f =0 outside V.

The conclusion of Urysohn’s Lemma can be viewed as a strong form of the
Hausdorff property. It says that if K is a compact set and F' is a closed set, then
K and F can be ‘separated’ by a continuous function that is 0 on F' and 1 on K.
In particular, if singletons are closed in X, then given x and y distinct points in
X, we can take K = {z}, FF = {y}, G = {f>2}andH {f < %} to obtain the
Hausdorﬂ property x € G,y € H and GNH =

Proof of Urysohn’s Lemma: We give the proof in three steps.
_ Step 1: We first show that we can squeeze an open set U with compact closure
U between K and V as follows:

(2.2) KcUcUcV.

Here is how to construct such a set U. For each p € K we use the fact that X is
locally compact to choose an open set O, containing p and such that O,, is compact.
Since K is compact there is a finite collection {O,, }2[:1 of these open sets that cover
K. Then O = ngl O,, is open, contains K and O = ngl 0, is compact. In
the special case that V = X we can take U = O. Otherwise, F' = X \ V is closed
and nonempty.

Now we use the Hausdorff property of X to obtain that for every x € K and
y € F, there are open sets G, ,) and H(, ,) with

x € G(I’y), RS H(m’y) and G(z’y) N H(m’y) = 0.
M

m=1

Momentarily fix y € F. Since K is compact there is a finite subcollection {G(,, .}
that covers X. Then the open sets

M M
Gy = U G(zm;y) and HY = ﬂ H(xmvy)
m=1 m=1

separate K and y in the sense that GY and HY are disjoint open sets that con-
tain K and y respectively. Thus y ¢ GY and we see that the collection of sets
{Fnon Gy} satisfies

() (FNONGY) =0.

yeF
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Since the sets FNONGY are compact (O is compact and F and G¥ are closed), the fi-

— L
nite intersection property shows that there is a finite subcollection {F Nno NGy } 1

satisfying

L
() (FnONGw) =0.
(=1
Then the set

L
U=()(0OnaG")
(=1

is open with compact closure U = ﬂeLzl (ONG¥), and of course

UCX\F=V.

Step 2: We now iterate the squeezing process as follows. First rewrite (2.2)
with Uy in place of U:

KcUycUycV.

Then apply (2.2) to the pair of sets K C Uy where K is compact and Uy is open to
obtain an open set U; with compact closure satisfying

KcUycU cUycUycCV.

Next, apply (2.2) to the pair of sets U; C Uy where U; is compact and Uy is open
to obtain an open set U 1 with compact closure satisfying

KcUiclhcUyscUsCclUyClUyCV.
We continue with
KCU1C71CU%C@CU%C@CU%C@CUOCUT)CV,
and then

K cC UlcﬁlcUch?cU%cUi%
C UscUscULcULCcUs CUs
8 8 2 2 8 8

C UicU?cU%cU?cUocﬁocV.

This process can be continued indefinitely and produces a collection of open sets
{U},cp where D = {2% ck,leNwithf{>1and 0 <k < QZ} and that satisfies
the property

(2.3) KcU,cU.cUs;cUsCV

whenever r,s € D with r > s.

Step 8: We can now define our candidate for the function f : X — [0,1] in
(2.1). Given z € X we define

f(z)= sup rxy, (z).
0<r<1

Then we have

{zeX:f(x)> A= UU,.isopenforallng\gl.
>\
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We similarly have that the function g defined by
9(x) = O%Islfgl X(T)° (),
satisfies o
{reX:gx) <A} = U (US)C is open for all 0 < X\ < 1.
s<A
If we can show that f = g, it will then follow that f is continuous since

FH(ab) = {f>a}n{g < b}

will be open for all open intervals (a,b) with 0 < a < b < 1, and this is enough to
establish the continuity of f : X — [0, 1]. Now it suffices to show that f (z) = g (x)
for all x € Uy \ U; since both f and g vanish outside Uy, and both are 1 inside
Uy. Butif f(z) > g(z) and = € Uy \ Uy, then there is 7 > s such that z € U,
and z € (75)0, which implies U, D U, contradicting (2.3) which says U, C Us.
On the other hand, if f (z) < g(z) and x € Uy \ Uy, then there are t,v € D such
that f(z) <t <wv < g(z) withz ¢ U; and = ¢ (U,)°. Thus z € (a)c N U, which
implies v < t, contradicting our assumption that ¢ < v. This completes the proof
that f = g, and hence the proof of Urysohn’s Lemma.

Urysohn’s Lemma can be thought of as a continuous wnit function on the
compact set K that is subordinate to the open set V' covering K. A simple algebraic
trick permits us to obtain a far more flexible variant, namely a continuous partition

of unity on the compact set K that is subordinate to a finite open cover {Vn}fj:1
of K.

COROLLARY 15. Suppose that {Vn}nN=1 s a finite collection of open subsets of
a locally compact Hausdorff space X. If K is a compact subset of X that is covered
by {Vn}ﬁf:l, then there exist continuous compactly supported functions {fn}ivzl C
C. (X) satisfying

N
XK = an SXUnN:1V717
n=1
0 < fa<xy, 1<n<N.
In particular, ZnNzl fn=1o0n K and f, =0 outside V,.

Proof: For each « € K there is n = n () such that x € V,,. Since X is locally
compact, there is an open set W, , with compact closure satisfying € W, ,, C
Wan C Viz)- Then {me(ﬂﬂ)}zex is an open cover of K, and since K is compact,
there is a finite subcover {Gg}éLzl. Now for 1 < n < N let J,, be the union of all G,
that are contained in V,,. Then J, is a finite union of compact sets, so is compact
itself. Also, we have K C Uﬁ;l Jn. Indeed, every y € K lies in some Gy, and Gy
equals Wy, ,,(») for some x € X, and so y € J,(,) since

/S Gy = W:r,n(m) - Wr,n(r) C Vn(r)
Now apply Urysohn’s Lemma to the pair J,, C V,, to obtain g,, € C. (z) such that
X5, S9n<xv,, 1<n<N.

Now we use an algebraic trick motivated by the solution to a well known math-
ematical teaser of P. Halmos.
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Mathematical Teaser: A BARREL OF PICKLES THAT IS 99% WATER BY
WEIGHT IS OPENED AT SUNRISE AND LEFT OUT IN THE SUN ALL DAY.
AT SUNSET 1T 1S 98% WATER AND WEIGHS 500 LBS. HOwW MUCH DID
THE BARREL WEIGH AT SUNRISE?

Solution: Consider the complement of the water. Since the percentage of
nonwater in the barrel doubles during the day (it goes from 1% nonwater
to 2% nonwater), the weight of the barrel and contents must have been
cut in half by sunset (the weight of nonwater - the barrel and pickle pulp

- remains constant). Thus the barrel started the day at 1000 lbs.
To apply this principle of complementation to our partition of unity problem,
we observe that each continuous function 1 — g,, vanishes on J,, hence the product
Hﬁlzl (1 — gp) is continuous and vanishes on Uﬁ[:l Jp. Thus f=1- ngl (1—gn)

is continuous and equals 1 on K and vanishes outside Uf:[:l V. It remains only to

write f = ZnN:1 Jn where each f;, is continuous and satisfies 0 < f,, < xy, . But
this can be achieved by writing

N N-1 N—
[Ta-90 = —on [T 0—g0)+ H 1= gn)
n=1 n=1 n=1
N-1 N-2 N—
= 7gNH(1fgn)7gN—1H(1*gn H 1*gn
n=1 n=1

n=1
= *fN*fN—l 7...7f1+1,
where
fl = 41,
fo = (1—g1)92,
f3 = (1—g1)(1—g2)9s,
In = (I-g1)(1—g2)...(1—gn_1)9nN-

Of course we could have simply begun by defining f,, as above, and then using
induction on n to show that

1—ka_H (1—gr), 1<n<N.
k=1

However, this would have denied us the fun of finding the formulas in the first place.
In any event, the case n = N yields

N N
> fel@) =1 Hl_gk—l z €K,
k=1 k=1

since every = € K lies in Jj, for some 1 < k < N, and hence 1 — g; (z) =1—-1=0.
Finally x; < gn < xy, and 0 <JJ;_; (1 —gx) < 1 imply

0<{H 1_gk }XJ _{H 1—91: }gn:fnngn

foralll1 <n < N.
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2.2. Representing continuous linear functionals. In preparation for sta-
ting the Riesz representation theorem, we introduce some regularity terminology
that links measure and topology.

DEFINITION 15. Suppose that u is a Borel measure on a topological space X .
We say u is outer regular if

(2.4) w(E)=inf{u(V): ECV open}
for all Borel sets E. We say p is inner regular if
(2.5) w(E) =sup{p(K): K compact C E}

for all Borel sets E. We say p has limited inner regularity if (2.5) holds for all
open sets E, and for all Borel sets E with p(E) < oco.

Finally we say p is regular if u is both outer and inner regular; and we say
has limited regularity if u is outer reqular and has limited inner requlariy.

REMARK 14. The terminology surrounding reqularity and Borel measures is
not standardized. For example, many authors, including Rudin, say that a measure
1 is a Borel measure if it is defined on a o-algebra A that contains the Borel o-
algebra B - as opposed to identifying the measure p with its measure space (X, A, i)
and declaring it to be Borel if A = B. Rudin goes on to define p to be regular if both
(2.4) and (2.5) hold for all Borel sets E € B. Other authors insist that a regular
measure satisfy the stronger requirement that (2.4) and (2.5) hold for oll E € A.
Of course, if every set E € A has the form BUN where B € B is Borel and N € A
is null (n (N) = 0), then the two notions of regular coincide.

We introduced the notion of limited regularity in order to clarify the uniqueness
assertion in the Riesz representation theorem, whose statement follows.

THEOREM 32 (Riesz Representation Theorem). Suppose that X is a locally
compact Hausdorff space, and that A : C.(X) — C is a positive linear functional
on C.(X). Then there is a unique positive Borel measure p on X with limited
regularity such that

(2.6) Af = /X fdu,  feC.(X).

Moreover, there is a o-algebra A on X that contains the Borel sets in X, and an
extension of p to a measure on A, which we continue to denote by u, and which
satisfies the following properties:

Local finiteness: p(K) < oo for all compact K C X,

Outer A-regularity: p(E) =inf{u (V) : E CV open} for all E € A,

Limited inner A-regularity: u(F) = sup {u(K): K compact C E} for
E open, and for E € A with u(E) < oo,

Completeness: Ac Aif ACE € A and u(FE)=0.

We will see later that inner regularity may fail for a measure p arising in the
Riesz representation theorem. On the other hand we will also see later that in
nice topological spaces X, in particular those locally compact Hausdorff spaces in
which every open set is a countable union of compact sets, every locally finite Borel
measure g is regular.
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REMARK 15. If A is a positive linear functional on C.(X), where X is locally
compact and Hausdorff, and if p is a positive Borel measure satisfying (2.6), then
1 must be locally finite. Indeed, if K is compact, then by Urysohn’s Lemma there
is f € Co(X) with xg < f<xx =1, and so

u(K)=/Xdeu§/de/~L=Af<oo'

Proof (of Theorem 32): We begin with the uniqueness of a positive Borel
measure g on X with limited regularity that satisfies the representation formula
(2.6). Suppose that p; and p, are two such Borel measures. First we observe that
because each of p; and 5 has limited regularity, they are determined on Borel sets
by their values on compact sets. Thus it suffices to prove that u, (K) = p, (K) for
all compact sets K in X.

Fix K compact and € > 0. By outer regularity of u, there is an open set V'
satisfying

e (V) < pg (K) +e.
By Urysohn’s Lemma there is f € C.. (X) such that

xx < f <xv.

Altogether we thus have

p (K) /Xdem S/deul =Af=/deu2

/X Xy iy = pg (V) < py (K) + €.

IN

Since € > 0 is arbitrary, we conclude that p; (K) < u, (K), and hence also py (K) <
i1 (K) by symmetry.

In order to establish the existence of a positive Borel measure i that satisfies
the representation formula (2.6), we must work much harder. However, it turns
out to be no harder to obtain the measure y on a o-algebra A with the additional
properties listed in the statement of the theorem. So we now turn to proving
the existence of such A and p in eleven steps. Parts of the arguments below are
reminiscent of some of those used in the construction of Lebesgue measure above.

We define the support of a complex-valued function f to be the closure of the
set of z where f (z) # 0, and we denote it by suppf; thus

suppf ={z € X : f(x) # 0}.

Step 1: For every subset E € P (X) we define

A (E)=  inf sup A
( ) ECV open {0<f<va f} ’
where the infimum is taken over all open sets V' that contain F, and the supremum
in braces is taken over all nonnegative f € C,(x) such that f is subordinate to V.
We first observe that for G open we have the simpler formula,

A (G)= sup Af,

0<f<x¢
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and hence also

(2.7) A(B)=, inf AT(V),  EeP(X).

Step 2: We claim that A* : P (X) — [0,00] is an outer measure, i.e. that A* is
monotone and countably subadditive.
Clearly A* is monotone since if £ C F', then

A(B)=, inf AT(V) S inf (V) = A (F)

FCV open

follows since every open set V' containing F' also contains E. To see that A* is
countably subadditive, i.e.

(2.8) A ( U E) < iA* (E,), forall {E,}>°, CP(X),
n=1

n=1oc0
we first show that
(2.9) A UUV) <A (U)+ A (V),
for all open sets U and V. Let f € C.(X) satisfy 0 < f < xyuy- Apply the
partition of unity Corollary 15 with K = suppf to obtain g,h € C. (X) with

Xk < g9+h<xypuvs
0 < g<xpand0<h<yxy.

Then we have
Af=A[f(g+n)]=A(fg) +A(fh) <A (U)+A"(V)

since 0 < fg < xyy and 0 < fh < xy,. Since this holds for all 0 < f < xy0y, We
can take the supremum over such f to get (2.9). Induction then yields the more
general statement,

N N
(2.10) A* <U Vn> < Z A (V,),  for all V,, open.

n=1 =1

We may suppose that A* (E,) < co in (2.8), and then given ¢ > 0, we can find
open sets V, such that A* (V,,) < A*(E,) + 5 foreach n > 1. Set V =J,~, Vp
and choose f € C. (X) with 0 < f < xy,. Since suppf is compact there is N < oo
such that 0 < f < XUN_, v, Altogether we have

N

Af < A* (U Vn> YA M) Y (A B+ 5y ) <o+ YA (B),

n=1

and taking the supremum over such f, we obtain
A (V) <e+ D A (E).
n=1

Since A* is monotone and € > 0 is arbitrary, we thus have

A ([] E) < (fj vn> A <3N ().
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Step 8: We now define A and . Let
Ainner = {EEP(X) A (E) < ocoand A" (E) = sup A* (K)},
compact KCFE
and
A={E P (X): ENK € Ajnner for every compact set K}.
Then we define p : A — [0, 00] by

w(E)=A(E), EecdA

We will eventually see that A;,ne- consists exactly of those sets ' € A such that
w1 (E) < oo. In the steps below we establish that A is a o-algebra on X containing
the Borel sets, and that p is a positive measure on A.

It will be convenient to use the shorthand notation K < f (read K is subordi-
nate to f) to mean K is compact, f € C. (X) and xx < f < 1; and to use f <V
(read f is subordinate to V') to mean V is open, f € C.(X) and 0 < f < xy,.

Step 4: If K is compact, then K € A and
2.11 K) = inf Af.
(2.11) p(K) = inf Af

That K € A is trivial, and to see (2.11) suppose that K < f and 0 < o < 1. Then
with V,, = {f > a} we have

1 1
p(K) < A*(V,) = sup Ag = — sup A (ag) < —A(f),
g=<Va & g<V, o

since ag < f whenever g < V,,. Letting a — 1 we obtain p (K) < A (f).

If now ¢ > 0 there exists an open set V' containing K such that A* (V) <
w1 (K) 4+ e. Urysohn’s Lemma yields f so that K < f < V, and so altogether we
have

p(K) <A(f) <A (V) <p(K) +e
Since € > 0 is arbitrary, we obtain (2.11).

Step 5: If G is open, then
(2.12) A (G) = sup w(K).

compact KCFE

In particular, if G is open and A* (G) < oo, then G € Ajpner. To see (2.12), let
a < A*(G) so that there is f < G with « < Af < A*(G). Now K = suppf is
compact and if W is an open set that contains K, then f < W and hence

Af <A (W).
Since this holds for all such W we obtain

< i * = .
Af - KCII/I];lf;)penA (W) H (K)

Altogether we have
a<Af<p(K) <A (G),

and since a was any number less than A* (G) and K is compact, the proof of (2.12)
is complete.
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Step 6: Suppose that {E;}.2, is a sequence of pairwise disjoint sets in A;pner.
Then

(o) o0
(2.13) A <U E) =Y A (E;).

i=1 i=1
If in addition A* (J;2, Ei) < oo, then ;2 E; € Ainner. We begin by proving
(2.13) for a finite union of compact sets,

(2.14) L (K U L) =p(K)+u(L), K,L compact.

Given ¢ > 0 there is by Urysohn’s Lemma a function f € C. (X) with 0 <
1separating K and L in the sense that f = lon K and f =0 on L. From (2.1
Step 4 we obtain g such that K UL < g and

f<
1) in

Ag < p(KUL)+e.
From (2.11) applied to K < fg and L < (1 — f) g the linearity of A gives
p(K)+p(L) <A(fg) +A[A—-flgl=Ag<p(KUL)+e.

Now we use that € > 0 is arbitrary, together with the subadditivity of A* in (2.8)
of Step 2, to obtain (2.14).

Now we turn to proving (2.13) in full generality. By the countable subadditivity
in (2.8) we may assume that A* (E) < oo where E = [J;2, F;. Recall that E; €
Ainner- Thus given ¢ > 0 there are compact sets H; C F; satisfying

€
AT (Ei) < p(Hi) + o,
Now set K, = J;—_, H; and use (2.14) repeatedly to obtain

1 <3< o0.

zn:A* (E;) < iu(Hi)+€:ﬂ(Kn)+a <A (E)+e.
i=1 i=1

Letting first £ — 0 and then n — oo we obtain Y~ A* (E;) < A* (E), which when
combined with the countable subadditivity in (2.8), yields (2.13).

Step 7: Suppose that E € A;pper and € > 0. Then there is a compact set K
and an open set V such that
KCcEcCcVand A*(V\K)<e.

Indeed, the definition of A* in (2.7) shows that there is an open set V' such that
E CV and A* (V) < A* (E) + §; while the definition of A, pner shows that there is
a compact set K such that K C £ and p(K) > A*(E) — 5. Now V \ K is open
and A*(V\ K) < A* (V) < o0, so that (2.12) in Step 5 implies V \ K € Ajpner-

Then (2.13) applied to V = K U (V \ K) gives

AT (VA K) = A" (V) = u(K) < A" (B)+ 5 — (A"(B) - £ ) ==,

Step 8: If A, B € A;pner, then
A\ B, ANB, AUB € Ainner-
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Given ¢ > 0, the previous step shows that there are compact sets K and L and
open sets U and V such that

KcAcUandLCBCYV,
AN U\NK), A*(V\L)<e.
Then monotonicity and subadditivity (2.8) give
A" (A\ B) AT (UN\L)
AN UN\NK)+ A" (K\V)+A"(V\L)
e+ A (K\V)+e.

VAN VANVAN

Now J = K \ V is a compact subset of A\ B, so we conclude that

N(AVB) = s AT(),
compact JCFE

which implies that A\ B € A;uner by the definition in Step 3.
Now

A\ (A\B)=AN(ANnB)"=AN(A°NB)=ANB

shows that AN B € Ajpner. Finally, (2.13) applied to AU B = (A\ B) U B yields
AUB € Anner-

REMARK 16. In the special case that X is compact, we have at this point in the
proof established that A = Aipner 18 a o-algebra on X containing the Borel sets, and
that A* is a measure when restricted to A. Indeed, Step 5 shows A;jpner contains
all open sets, Step 8 shows that Aipner 18 closed under complementation, and Step
6 then shows that Ainner 18 closed under countable unions - after expressing a
countable union as a countable union of pairwise disjoint sets in Aijpper. It now
follows that A = Ajpner- The countable additivity of u = A* on A follows from
Step 6.

Step 9: A is a o-algebra on X containing the Borel sets. First we show that
A is closed under complementation. If A € A and K is compact, then both K and
AN K are in A;p,er and so by Step 8 we have

ACQK:K\(AOK)EAinneT»

and this shows that A° € A.
Now suppose that A = |J;=; A; where each A4; € A, and let K be compact. We
now write AN K as a pairwise disjoint union by setting
B = AINK,
By, = (A2NK)\ By,

: n—1
B, = (A,NK)\ (U Bi> :
i=1
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By Step 8 and induction on n we have B,, € Ajpner for all n > 1. Then Step 6
yields

ANK = U By, € Ainner-
n>1
Since this holds for all compact K we have A € A.

Finally, if F' is a closed set, then F' N K is compact, hence FF'N K € A;pner-
This proves that ' € A and it follows that A contains all the Borel sets.

Step 10: Ajpner = AN{E € P(X) : A*(F) < oo} and p is a measure on A. If
FE € Ajpner then EN K € Ajpper for all compact K by Steps 4 and 8. This shows
that

Ainner CAN{E : A" (E) < co}.

We can now write u (E) = A* (E) for E € Ajyner, and in particular by Step 5, for
E open and A* (E) < 0.

Conversely, suppose that E € A and p(E) < co. Given € > 0 there is an open
set VO F with u(V) = A*(V) < oo, hence V € A;pper. Now by Steps 5 and
7 there is a compact set K C V with u(V\ K) < . Since EN K € Ajpper by
definition of A, there is by definition of A;,ner, & compact set H C EN K with

p(ENK)<p(H)+e.
By subadditivity we thus have
p(E) < p(ENK)+p(V\K) <p(H)+ 2,

which implies that F € A;pner-
Finally, Step 6 shows that p is countably additive on A, i.e.

vl U EBEi ZZM(Ei),

1<i<oco
since if one of the sets F; has infinite measure, there is nothing to prove, and

otherwise F; € Ajpner for all 4.

Step 11: For every f € C. (X) we have

Af = / fdp.
X
Since A (f) = —A (—f), it suffices to prove the inequality

(2.15) Af < / fdp,  for all real f € C, (X).
X

So let f € C. (X) be real with support K = suppf, and let the interval [a, b] contain

the compact range of f. Given ¢ > 0 choose points {y;},_, C R such that
Yo < a<y1 <y <..<Y,=>,
Ay = Yy —yi-1 <&, 1<e<n.
Define sets E; by
E;

I
~
L

s
|

=

s
D

=
—
A
s
A
3
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1

Now f is continuous, hence Borel measurable, and thus the sets {E;}_, are
pairwise disjoint Borel sets with union K. By Step 9, the definitions of A;, - and
A, and the continuity of f, there are opens sets V; with

pVi) < M(Ei)+%, 1<i<n,
f(z) < yi+e, forzeV,1<i<n.

The partition of unity Corollary 15 yields functions h; < V; satisfying
Zhi(x)zl, x e K.
i=1

Thus we have f =" | h;f and (2.11) in Step 4 shows that

n n
p(K) <A <Zhi) = ZAhi-
i=1 i=1
We also have
A <p(Vi) <p(E)+=, 1<i<n.
n
Finally, we use that

hif < (yi+e)hi,
yi—e < f(x) for x € E;,

to obtain

3

3 n

Af = D AMf) <) (yi+e)An;
i=1
i=1

= llaf po (K]

1=

1
=[S (al + i + ) Ak,
=1

?

M=

(lal + s +2) (1 (B) + =)

i=1

n

= (lal + i +e)

i=1

|

(yi — &) p(Es) | + [2ep (K)] +

i=1

/ mu+Em4KyHM+b+ﬂ.
X

IN

Since ¢ > 0 is arbitrary, we obtain (2.15), and this completes the proof of the Riesz
representation theorem 32.

3. Regularity of Borel measures

Recall the fourth example in Example 4, where the set X was a well-ordered
set with last element w1, the first uncountable ordinal. A positive measure \ : A —
{0,1} was defined on X there by

)

ME) = 1 if FEU{wi} contains an uncountable compact set
1 0 if E°U{wi} contains an uncountable compact set
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for £ € A, and where A was the o-algebra given by
A:{ E € P(X) :either EU{w1} or E°U{w1} }

contains an uncountable compact set
Then V = P, = X \{w1} is an uncountable open set with A (V') = 1. On the other
hand, if K is a compact subset of V, then K is closed and hence o = lub (K) € K
and it follows that K C P,11. Thus K¢ D> S, = [a + 1,w;] where [a + 1,w;] is an
uncountable closed, hence compact, subset of X. It follows from the definition of
A that A (K) = 0. In particular, the measure A does not have limited regularity:
A(V)=1#0= sup MEK).
compact KCV

We thus see that the measure A\ cannot arise as one of the measures p in
the conclusion of the Riesz representation theorem 32. However, X is a compact
Hausdorff space, so C.(X) = C(X), and Ay : C(X) — C is a positive linear
functional on C (X), where

AAfE/de)\.

By the Riesz representation theorem 32, there is a positive Borel measure p on
X with limited regularity such that Ay = A,. Thus we see that A # u and the
question arises as to what the measure p with limited regularity looks like. We
claim that

o= 6w17
where 0, is the Dirac unit mass at the point wy in X (see the third example in
Example 4). To see this we must show that

/fdxszl):/fdam, fec(x).
X X

The second equality here is trivial so we turn to proving the first equality. Given
e>0,let G=f"1((f(w1)—¢, f(w1)+e)) be the set of & € X such that

[f (@) = fw)] <e.
Then G is open and so contains a successor set Sg for some 3 < wj. Since Sg =
[B 4+ 1,w1] is compact and uncountable, we have A (G) =1 and A (G¢) = 0. Thus

/fd/\ /fd/\+/cfd)\ /fd)\
where

f(wn—s:/G<f<w1>—e>dAg/GfdxgL<f<w1>+s>dxzf<w1>+s.

Since € > 0 is arbitrary, we obtain [, fd\ = f (w1). Note that d,, (V) = 0.

It turns out that the main topological obstacle to regularity in this example is
the existence of an open set that is not a countable union of compact sets (since
every compact set K in the open uncountable set V = P,,, is at most countable).
Indeed, our main theorem in this section is that if every open subset of X is a
countable union of compact sets, then every locally finite Borel measure on X is
regular! In order to prove this we will first give a mild topological condition on
X that forces the measures arising in the Riesz representation theorem 32 to be
regular. Note that when X is compact, regularity follows immediately from limited
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regularity since p (X) < co. The mild topological condition we impose is that X
be o-compact.

NOTATION 1. Let X be a topological space. We say that X is o-compact if
X =2, K, is a countable union of compact sets K,,. More generally, we say that
a subset E is o-compact if E is a countable union of compact sets. We say that a
set A is an F,-set if A is a countable union of closed sets. We say that a set B is
a Gs-set if B is a countable intersection of open sets.

THEOREM 33. Suppose that X is a locally compact, o-compact Hausdorff space.
If A and p are as in the conclusion of Theorem 32, then we have the following
properties:

(1) Suppose E € A. Given & > 0 there exist sets F closed and G open such
that
(3.1) FCECGand p(G\F) <e.

(2) w is a regular measure, i.e. (2.4) and (2.5) hold for all Borel sets E, in
fact for all E € A.
(3) If E € A, there is an F,-set A and a Gs-set B such that

ACECBand u(B\A) <e.
In particular, every E € A is the union of an F,-set and a null set.

Proof: Let X = U2, K,, where K, is compact for all n > 1.

(1) Suppose E € A and ¢ > 0. We first claim that there is an open set
G D E with p(G\ E) < 5. Indeed, pu (K, NE) < pu(kK,) < oo and so the outer
A-regularity conclusion in Theorem 32 gives us an open set G,, O K, N E with

p (G \ (K1 E)) = 1 (Go) — (KN E) < o5

Thus with G = U5, G, we have

g

p(G\ E) gi (Gu \ (KN E)) < 5.

Applying the same reasoning to E° yields an open set U with p (U \ E¢) < §. Then
F =U¢ is closed and the sets F' and G satisfy (3.1) since

W(G\F) = p(G\E)+u(E\F)

= nG\E)+n(U\E) <+ =¢
(2) To see that u satisfies (2.5) for all E' € A, we note that every closed set F’
is o-compact; F = U2, (K, N F'). Thus (1) implies (2.5).
(3) Finally, for each n > 1 choose F,, C E C G,, where F,, is closed and G,, is
open and u (G, \ Fy,) < % Then A = J;, F,, is an Fy-set and B = ()7, G, is
a Gg-set with AC F C B and

p(B\A) < p(G\F) <> n>1
Thus p(B\ A) =0.

Now we can prove that on nice topological spaces, every reasonable Borel mea-
sure is regular.
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THEOREM 34. Let X be a locally compact Hausdorff space satisfying
every open set ts o — compact.
Suppose that X is a positive Borel measure on X that is locally finite, i.e.
A(K) < oo for all compact sets K.
Then X\ is regular.

Proof: The map Ay : C. (X) — C, given by A\f = [ fd\ for f € C.(X), is
a positive linear functional on C, (X). Thus Theorems 32 and 33 yield a positive
regular Borel measure p satisfying (1) of Theorem 33 such that

Axfz/xfdm fec.(x).

It remains to show that A = p under the hypotheses of our theorem. We will use
Urysohn’s Lemma and the Monotone Convergence Theorem for this.

Let V be open in X. By hypothesis, V is o-compact, so V = U3, K,, where
each K, is compact. Urysohn’s Lemma yields a function f,, € C. (X) such that

XKnanSva n > 1.

Let gm = MaXi<n<m fn Then Im € Cc (X) and Im / Xv monotonically as
m — 00. Thus the Monotone Convergence Theorem can be applied twice to obtain

32)  A(V)

/de)\: lim gmdX = lim Axgm,
X m—00

m—0o0

X
lim A,gm = lim /gmd,u:/ xyvdp=p (V).

m— 00

Now fix a Borel set E. Let € > 0. Since u satisfies (1) of Theorem 33, there
is a closed set F' and an open set G such that F C E C G and 4 (G\ F) <e. In
particular,

(33) 1(G) = i (F) + u(G\ F) < (B) +=.
Now V = G\ F is open and so (3.2) gives the same sort of inequality for A:
(3.4) AMG)=AF)+AXG\F)=X(F)+p(G\F)<A(F)+e.

REMARK 17. Quter regularity of u is all that is needed to obtain p(G) <
w(E)+ e in (3.83). However, we have no such regularity information regarding A,
and in order to obtain (3.4), it is necessary to know that A coincides with p on an
open set G\ F of small u-measure where F and G ‘sandwich’ E. This is why we
need assertion (1) of Theorem 33 for u, which is stronger than regularity of p.

Using (3.2) for the open set G, it follows that both

AME) = MG)=p(G) < pu(E)+e,
p(E) < p(G)=A(G)<A(E)+e,

and since € > 0 is arbitrary, we conclude that A\ (E) = u (E).
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4. Lebesgue measure on Euclidean spaces

We can use the Riesz representation theorem 32 to construct Lebesgue measure
on the real line R, and more generally on Euclidean space R™. The idea is to define
a positive linear functional A on C, (R") using the Riemann integral [p, f (z) da:

Af= [ fl@)de, feC.(RY).
-

It turns out that for this purpose we don’t need the full theory of Riemann integra-
tion, but just enough to define the integral of a function f € C. (R™). The following
is sufficient.

4.1. Limited Riemann integration. Let D, = {[j2k7(j +1) 2k)}jeZ be
the collection of right open left closed intervals of length 2 and left endpoint in
2F7. In R™ we consider the corresponding cubes

D = (8] = {TT izt G102} ,
J=(j1,.--»Jn)EL"

i=1

obtained by forming products Qé“jl i) = ;?1 X ;‘?2 X ... X Q?ﬂ of intervals Q?i

in Dy. A cube @ € D} has volume |Q| = (2%)" = 2*" and so for f € C. (R"), we
define upper and lower sums at level k by

U(f;k) = Y, 27" sup f(a),
QeDn TEQ

L(f;k) = 2R inf f (z).
Q;Z T€EQ

Clearly we have for £ > k,
(4.1) U(fik) > U(f;6) = L(f;6) = L(f;k).

Now K = suppf is compact, hence contained in a large cube P that is a union
of unit sized cubes in Dff. Moreover, f is uniformly continuous on K, hence on R",
and it follows that

(4.2)  U(f;k) = L(f;k)

DR FTYIBE It

QeDIQCP TEQ
< 1P| sup {supf(x) ~ inf f<x>},
Qepr \zeQ zeQ

which tends to 0 as k — oo. Thus from (4.1) and (4.2) the limits of upper and
lower sums exist and coincide. We define the Riemann integral of f € C. (R") to
be

[ flayde = lim U(f:K) = lim (7).
It follows easily that this integral has the elementary properties
| ertin@dr = of f@ies [ g@a.
for f, g C.(R") and o, 8 € C,
A f(z)dx / g(x)dz, for f <g.

m

IA
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Thus the map A : C. (R") — C given by Af = [,, f (z)dz is a positive linear
functional, and Theorems 32 and 33 apply to show that there is a o-algebra L,
containing the Borel sets, and a positive measure A, on L,,, called Lebesgue measure,
that satisfies

4.3) (1) Af= [ fdx, forall f € C, (R™);

R’IL
(2) A (K) < oo for all compact K C R™;

(3) Given E € L,, and ¢ > 0, there is K compact and G open such that
KCcFECGand \, (G\K) <e¢;
(4) AeL,if ACE €L, and x(E) =0.

It is now an easy matter to establish the additional properties expected of Lebesgue
measure A\, on R™:

(44) (5) )\n ([al,bl] X [ag,bg] X ... an, n f[ b — aJ

j=1

(6) E4xz€Lyand A\, (E+2)=M,(F) if E€ L, and z € R".
EXERCISE 3. Prove both (4.3) and (4.4).

We have already produced in Theorem 20 an example of a subset E of the
interval [0, 1) that is not Lebesgue measurable, i.e. E € P (R)\ £;. We can lift this
example to higher dimensions simply by considering the set E,, = E x R~ ! in R"
since it is easy to see that E, € P (R™)\ L,,.

Let B,, denote the Borel o-algebra on R™. Then B, C L,, and the question
arises as to whether or not £,,\B,, is nonempty. In fact, we have already produced in
Example 3 a subset B of the unit interval [0, 1] that is not measurable, and with the
additional property that there is a homeomorphism G : [0, 1] < [0, 1] with inverse
® = G such that ® (B) is contained in the Cantor set. Since Lebesgue measure
is complete, ® (B) € £;. But ® (B) cannot be a Borel set since a homeomorphism
takes Borel sets to Borel sets! Indeed, if we extend the bijection G : [0,1] —
[0,1] to a bijection G : P ([0,1]) — P ([0,1]) in the natural way, £ — G (FE),
then the pushforward of a o-algebra is again a o-algebra by Remark 13. Since a
homeomorphism takes open sets to open sets, it follows that B, the smallest o-
algebra containing the open sets, is taken under the map G to the smallest o-algebra
containing the open sets, B;. Thus we have shown that £ \ B # 0.

However, it turns out that the set of Lebesgue measurable sets has much larger
cardinality than the set of Borel measurable sets, and we now turn to establishing
this.

4.2. Cardinality of Borel sets. Recall that B,, is the Borel o-algebra on R™.
Here we show that the cardinality |B,,| of B,, is at most 2¥° = |R| = |P (N)|, the
cardinality of both the real numbers R and the power set of the natural numbers
N. On the other hand, the cardinality of the Lebesgue o-algebra L, is at least the
cardinality of the power set P (E) of the Cantor set (since A, (F) = 0 and A, is
complete). But E has cardinality 2*°, and so

(4.5) 1L, > 2% > 290 > |B,|.

In particular, this shows that £,, \ B,, # (. In fact there are many more Lebesgue
measurable sets than Borel measurable sets in the sense of cardinality.
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It turns out that |£,| = 22°° and |B,| = 2*°, but we will content ourselves
with proving only the inequalities used in (4.5). The first two inequalities are easy.
To show that |B,,| < 2¥°, we start with the fact that R™ has a countable base B of
balls, e.g. the collection of all balls with rational radii and centers having rational
coordinates. Since every open set G in R” is a union of balls from 9B, namely

G=|J{Be®B:BCG},
we see that G = {G € P (R") : G is open} has cardinality |G| < 2“°, and so also
|F| < 2%, where F ={F € P(R") : F is closed} .
Now we consider the o — § operator AY that maps P (R™) to itself by

AZSE{ﬂ UEﬁ:E,ﬁegforauk,e>1}.
£=1k=1

We apply AX iteratively to the set F to obtain larger and larger ‘sets of sets’:
Fo=F, F1=AXF, Fn=(AX)"F=AYF, 1, form>1.

At this point we assume minimal familiarity with ordinal arithmetic. Then we
can continue with transfinite induction to define F,, inductively for every ordinal
a < wy, where wy is the first uncountable ordinal:

Fo o= AYF,_1 if «is a successor ordinal
‘T Uﬁ<a Fs if o is a limit ordinal ’

One easily sees that |F,| < 2¢° for all o < w; by transfinite induction. Then we
have

a < wi.

(4.6) |]-'wl‘ = <y - 290 < QWO L QW0 — QWO

U 7

a<wi

Cram 5. Fy,, = B,.

It follows immediately from (4.6) and the claim that |B,| < 2¥°, and this
completes our proof of (4.5).

Proof of Claim: We first use transfinite induction to show that F,, C B,.
Indeed, fix a < w; and suppose that Fz C By, for all § < . If o is a successor
ordinal, then F,_1 C B,, and

Fo=AYF,_1 CAYB, C B,.
If o is a limit ordinal, then F3 C B,, for all 8 < o implies that
Fo=|J Fs CB..
B<a

Conversely, we begin by showing that the collection F,,, is closed under count-
able unions. Suppose that {E,,} ~_, C F,,. Then for each m, the set E,, € F,,,
for some a,, < wi. Now

O = sup oy, < Wi,
m>1

and so F,, € F, for all m > 1, hence

U Em € ASFs = Foy1 C Fusy.

m=1
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Next we show that F,,, is closed under complementation. For this we use the
complementation operator © : P (R") — P (R™) defined by

O ={E°:Ecé&}.

Suppose now that F' € Fy = F. Then F¢ € AYXF since F€¢ is open and every
open set is an F,-set. Thus we have ©F; C F;. We can now prove by transfinite
induction that

(4.7 OF. C Fout1, for all ordinals o < wy.

Indeed, fix an ordinal o < w; and make the induction assumption that ©Fz C
Fogyr for all B < a. Let E € F,. If a is a successor ordinal, then £ =
Niey Ui, Ef where Ef € F,_ for all k,¢ > 1. The induction assumption ap-
plies to @ — 1 and we obtain

B = (ﬁ G E’l;) - G ﬁ (Ef)" € (AR)?0Fa
l=1k=1 k=1¢=1

- (AE)2«7:2(a71)+1 = (AY)® Fono1 = Faat1

If o is a limit ordinal, then ¥ € Fjg for some 8 < a. The induction assumption
applies to 8 and we obtain E¢ € ©Fg C Fapq1 C Faqr1. This completes the proof
of (4.7). Finally, if F € F,,, then E € F, for some a < wy and since 2a+ 1 < wy,
we have from (4.7) that

E° € F2a+1 C fwl.

Altogether, we have shown that F,,, is a o-algebra on R" containing the closed
sets F. Thus F,, D B, since B, is the smallest o-algebra on R" containing F.
This completes the proof of the claim.

5. Littlewood’s three principles
A valuable quote from J. E. Littlewood is this:

Quote: "The extent of knowledge required is nothing like so great as is some-
times supposed. There are three principles, roughly expressible in the fol-
lowing terms: FEuvery [measurable] set is nearly a finite union of inter-
vals; every [measurable] function is nearly continuous; every convergent
sequence of [measurable] functions is nearly uniformly convergent. Most
of the results of [the theory] are fairly intuitive applications of these ideas,
and the student armed with them should be equal to most occasions when
real variable theory is called for. If one of the principles would be the ob-
vious means to settle the problem if it were ‘quite’ true, it is natural to ask
if the ‘nearly’ is near enough, and for a problem that is actually solvable
it generally is."

In this quote, Littlewood is referring to Lebesgue measure on the real line, but
the principles apply with little change to regular measures as well.

Littlewood’s first principle is embodied in Theorems 33 and 34 for regular
measures. In the case of Lebesgue measure, it is explicitly contained in property
(3) of (4.3):

(3) Given E € £ and ¢ > 0, there is K compact and G open such that
KCFECGand \ (G\K) <e.
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(o]
Indeed, since G is an open subset of R, it follows that G' = Un 1In is an at
most countable union of pairwise disjoint intervals I,,. Choose N < oo such that

1 (G\K) + Z Ar (I

n=N+1

Then if we define the symmetric difference of two sets E and F by
A(E,F)=(E\F)U(F\E),

(Unr) = ((Ue)r2) (2 (Um)

c (G\K)U (U v n),

we have

and so

N
1 <A <E7U _1In>> <M (G\K)+ Z A (In) <,
= n=N+1
which is what Littlewood meant by "FEvery [measurable] set is nearly a finite union
of intervals”.

Littlewood’s second principle is embodied in Lusin’s theorem.

THEOREM 35 (Lusin’s Theorem). Suppose that X is a locally compact Haus-
dorff space, and that p is a measure on a o-algebra A that satisfies the four prop-
erties in the conclusion of the Riesz representation theorem 32, namely local finite-
ness, outer A-regularity, limited inner A-regularity, and completeness. Suppose
also that f : X — C is measurable and that f vanishes outside a measurable set E
of finite measure. Then given € > 0, there is g € C.. (X) such that both

(5.1) pH{zeX:fz)#g(@)}) <e
sup |g ()| < sup |f ()]
zeX reX

The following theorem of Tietze, whose proof is deferred until after we have
used it to prove Lusin’s theorem, is the key to our proof of Lusin’s theorem.

THEOREM 36 (Tietze extension theorem). Suppose that X is a locally compact
Hausdorff space, A is a closed subset of X, and that f : A — R is continuous with
compact support. Then there is a continuous extension g : X — R satisfying both

(CL’) = f(.f(:), T €A,
|

sup |g (z)] < sup|f(z)].
zeX z€A

We may take g € C.. (X).

Proof (of Lusin’s Theorem): We first claim that it suffices to prove Lusin’s
theorem for real-valued functions. Indeed, suppose Lusin’s theorem holds for real-
valued functions, and let f = u+iv where v and v are real-valued. We may assume
that 0 < R = sup,cx |f (z)] < oo since otherwise the complex-valued case follows
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immediately from the real-valued case. Now u and v are both measurable, and so
there are real-valued functions ¢, v € C. (X) with

p{z e X iu(@) £ p@h+ (o e X o) £ @)} <e.
Now define

Je@ (@) it o)+ (@) <R
g(x) =

LD R i o () + it (2) 2 R

Then g € C. (X) and satisfies (5.1).

Now suppose that f is real-valued and measurable on X. By outer A-regularity
and limited inner A-regularity of u we can choose K compact and G open such that
K CFECGand

(G K) = p(G) = p(K) < <.

Let {B,},, be a countable base of open intervals for R\ {0}. Then for each n > 1,
f~1(B,) is a measurable subset of E and so by outer A-regularity and limited
inner A-regularity of pu, there are open sets G,, and compact sets K, such that

K, C f71(By) C G,

w(Gu\Ky) <
Now let
A:GCU{K\ (U (Gn\Kn)>}.

Then A is a closed set and the restriction f4 : A — R of f to A is continuous and
has compact support. Indeed, suppfa is contained in K, and hence is compact.
Moreover,

(fa) H(Bn)=f 1 (B.)NA=G,NA
is relatively open in A for each n > 1, and
Lo NA=G=KnA

is relatively open in A as well. It follows easily that f4 is continuous. The Tietze
extension theorem now yields g : X — R continuous with compact support, and
such that f = g on A and supy |g| < supy4 |f|- Moreover,

M(Ac)<u(G\K)+u<U <Gn\Kn>> <zHY g =e

Proof (of the Tietze extension theorem): Let R = sup,¢c 4 | f ()|. Then R < o0
since suppf is compact, and f is continuous. We may suppose that R > 0 as well
and, upon replacing f with %, we may suppose that R = 1. Thus f: A — [-1,1]
is continuous. Define

B:{xeA:f(a:)<—;} andC:{xeA:f(a:)>;}.

Then B and C' are compact sets since suppf is compact by hypothesis. Urysohn’s
Lemma now yields g1 € C.(X) with x5 < ¢1 < x¢e, and so f; = %(gl —1)is
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continuous (but no longer compactly supported) and satisfies |f1 (z)| < & for all
z € X, as well as

-1 if xeB
_ 3 1
fl(x)_{ + if zeC
It follows that we have
2
If (x) — f1(z)] < gfor all z € A,
1
|f1(z)] < gfor all z € X.

Indeed, to see the first inequality, simply consider the three cases x € B, x € C and
x € A\ (BUC) separately. In order to iterate this construction, it is important
to be able to take fi € C. (X). To achieve this, use Urysohn’s Lemma to obtain a
function h € C¢ (X) satisfying Xqupps = P < Xx, and then replace f1 with hf;.

We now repeat this construction, but applied and rescaled to the continuous
function

r-ma- |23,

that has compact support since both f and f; do, to obtain a continuous function
f2 : X — R satisfying

2\ 2

3 for all x € A,

1 2
(3) (3) for all z € X.

Once again we can assume that f € C.(X) upon multiplying it by a function
h € C. (X) satisfying Xsupp(r—f1) = P < Xx. We continue by induction to obtain
for each n > 1 a continuous function f, : X — R with compact support satisfying

(;) for all x € A,

n—1
fo(@)] < (;) @ for all z € X.

Now the infinite series Z;’il f; converges uniformly on X to a continuous func-
tion g on X that satisfies

fx) = g(x) foralze A,

sl < 3 (3)(2) =1=mir@l

zeX n—1 z€A

(f = f1) (2) = fa (@)

IN

[f2 ()]

IN

IN

HOEDIFIC

If g is not compactly supported we may multiply it by a ‘Urysohn’ function h €
C. (X) satisfying Xg,pps = P < Xx- This completes the proof of the Tietze extension
theorem.

Littlewood’s third principle is embodied in Egoroff’s theorem.

THEOREM 37 (Egoroff’s theorem). Suppose that (X, A, p) is a finite measure
space, i.e. p(X) < co. Let {fn},, be a sequence of complez-valued measurable
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functions on X that converges pointwise at every x € X. For every € > 0, there is
a measurable set & € A satisfying

(5.2) p(X\E)<e,
{fn}y—y converges uniformly on E.
Proof: For every n, k € N define the set
1
sek)= () {foe Xl - Hl<q}.
ij>n
Momentarily fix & > 1. The sequence of sets {S (n k:)} _, is nondecreasing, i.e.

S(n,k) C S(n+1,k)for alln > 1. Moreover, |J,—_, S (n,k) = X since {f,, ()},
is a Cauchy sequence for every x € X. It follows that

n—oo

lim p (S (n (USnk:) w(X),  for each fixed k > 1.

We now construct a sequence {ny},., of positive integers such that

E= ﬂ S (ng, k)
k=1

satisfies (5.2). For each k > 1 choose ny, so large that

B XS (s k) = g (X) = (S (i, ) < 5.

Note that the first equality above uses our assumption that 1 (X) < oo. Then we

have
M(X\(msm,m)):ﬂ(us<nk,k>c)
k=1 k=1

oo

oo
< Zu (ng, k Z%:a
k=1

Finally, given n > 0 choose k > % Then for all 4,5 > ny and for all z € E C
S (ng, k) we have

1(X\ B)

fi@) = fr @l < ¢ <

which shows that {f,} -, converges uniformly on E.



CHAPTER 7

Lebesgue, Banach and Hilbert spaces

Let (X, A, i) be a measure space. We have already met the space of integrable
complex-valued functions on X:

2 ={rix s [ 1fldn< oo,

Here the superscript 1 in L' (1) refers to the power of |f| in the integral [ |f|dpu.
Using linearity and monotonicity of the integral, we see that L' (1) is a complex
vector space:

/Xlozf+ﬁg|duS/X(Iallf|+lﬁ\lgl)du:Ia\/x\flduﬂﬁl/xlgldu

is finite for all f,g € L' (p) and «, 8 € C. In fact, the integral [, |f|dy defines a
norm on the vector space L' (11) provided we identify any two functions f and g in
L' (p) that differ only on a set of measure zero. More precisely, we declare f ~ g if

p({ze X f(z)#g(x)}) =0

It is easy to see that ~ is an equivalence relation on L! (u) and that the map

] — /X |fldu

defines a norm on the quotient space

LH(p) =LY (w) ) ~.
For f € L' (i), we are using the notation [f] € £! (1) above to denote the equiv-

alence class containing f. Recall that a norm on a complex vector space V is a
function

[] : V= [0,00) by & — ||zl
that satisfies

[lovz| af[lz]l,  acCazeV,
le+yl < i+,  =zyeV
Every norm gives rise to an associated metric d on V' defined by
d(@,y) =llz—yl, =zyeV

If the metric space (V,d) is complete, we call V' a Banach space.

In the next section, we will extend these considerations to the Lebesgue spaces
LP (u) defined for each 0 < p < oco. We will see that for 1 < p < oo, LP (p) is a
complete normed linear space, referred to as a Banach space. Moreover, the special
case L? (u) has many remarkable additional properties, and is the prototypical
example of a Hilbert space.

93
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But first we use the Dominated Convergence Theorem together with Lusin’s
Theorem to make a connection between the spaces C. (X) and L! () in the case
that p and X are related as in the Riesz representation theorem 32. In the special
case that

(0.3) w1 (V) > 0 for every open set V,

C. (X) can be considered to be a subset of the space L! (1) of equivalence classes
of integrable functions. Indeed, if f, g € C. (X) differ only on a set of measure zero,
then they differ nowhere at all. This is because {x € X : f (z) # g (x)} is an open
set, and if it has p-measure zero, then by (0.3) it is empty. On the other hand,
without assuming (0.3), we can still consider the collection of equivalence classes
[f] of functions f € C. (X), and we will show that this subspace is dense in L' (11).

LEMMA 26. Suppose that X is a locally compact Hausdorff space. If a o-algebra
A and a positive measure p are as in the conclusion of Theorem 32, then C. (X) is
dense in the metric space L' ().

ProoF. Fix f € L' (u) and € > 0. For n € N let
_ fx) if Lf@<n
f”(x)—{ 0 it |f@f<Lor |f(@)>n

Then p({z € X : |f(x)]=00}) = 0 and so lim, . f, (z) = f(x) for p-almost
every z € X. Also |f, (z)] < |f(z)| for all n € N and z € X where f € L' (n).
Thus the Dominated Convergence Theorem shows that

lim |f fnldp =0,

n—oo
and there exists n so that

1>
/X |f_fn|d,u < 5

Now f, vanishes outside the set {| fl> %}, which has finite measure, and so
we can use Lusin’s Theorem to obtain a function g € C, (X) such that

e € X ful@) #9(@) < -
sup |g (2)] < sup | f, (@)].
reX zeX

Then

sup | fr (2) — g ()] < sup [fy ()| + sup |g ()| < 2sup [fn ()] < 2n,
reX zeX reX rzeX

and we have

distys (f.g) = /If gldu</|f fn|du+/|fn gl du
< n — d
: /{IEXM o @) =g @)
< SH+mpreX:ful@) £g@))
< %+2n@ .
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1. LP? spaces

Let (X, A, 1) be a measure space. For 0 < p < oo and f: X — C measurable

define
|mmwz(émw@

We denote by L” (u) the set of measurable functions f satisfying || f[|,,) < oo
Just as in the case p = 1 above, we identify functions that differ only on a set of
measure zero. We will sometimes write || f[|, instead of || f[|,,, when no confusion
can arise. The next two inequalities are called Holder’s inequality and Minkowski’s
inequality respectively.

LEMMA 27. Let (X, A, 1) be a measure space and 1 < p,p’ < oo, % + pi =
Suppose that f,g: X — [0,00] are measurable functions. Then
/mwsnmwmmw

1+ 9oy < Mflleogy + 19150 -

Proof: The geometric/arithmetic mean inequality says
11 1 1
(1.1) A»B¥ < -A+ —B, A, B> 0.
p p

; _f@)P —

We may assume 0 < || fll 1o, 5 19] 1o () < 00. Substitute A = T and B =
q(w)
lall®’,

LP()

in (1.1) and then integrate with respect to the measure p on X to obtain

9@) 4 ) S/‘1f<:c>”+1g<>' d ()
X

x Wl po gy 19l zer () 4 Hf”ip(#) P’ ||g||Lp )

1 H.f”Lp(H l HgHiP'(u)
/ p’
p Hf”L?’(u p HgHLp (1)

)

which proves Holder’s inequality.
Now we apply Holder’s inequality to obtain

/X (f+9)du
/ ﬂf+gV*du+/Qﬂf+gV*du
X X

< (”fHL”(,u) + HQHLP(u)) H(f +g)p71‘

However, (p —1)p’ = p and so

H(f+g)p71HLp,(u) (/X (f+9"] /du>

1
7

(/q+ﬁw>nw9m@
X

P
(1.2) ||f+g||Lp(u)

A

LY ()

.
'Y
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Since we may assume 0 < ||f + g||5(,) < oo we can divide both sides of (1.2) by

H(f + g)pilum,(u) =[f+ QHE(IH) to obtain Minkowski’s inequality.

For 1 < p < oo, the subadditivity of ||-[| ., shows thatL? () is a linear space,
that the function
f— ||f||Lp(#)

defines a norm on LP (i), and that

dLP(;L) (f;g)E Hf_g”LP(/_L)u f,gELp(M),
defines a metric on LP (). When 0 < p < 1, LP (u) is still a linear space, but

||f||Lp(M) is no longer a norm, nor is dr»(,) (f,g) a metric. However, in this case
the pt* power
Orey (f,9) =N = alliny.  frg€ Ll (n),
defines a metric on the linear space LP (i) since for A,B>0and 0 <p < 1,
(A+ B)P < AP + BP.

Indeed, with B > 0 fixed, the function F (A) = AP + B? — (A + B)" is increasing
since F' (A) = p [Apfl —(A+ B)”‘l} > 0.

EXERCISE 4. Under the hypotheses of Lemma 26, show that C. (X) is dense in
the metric space LP ().

A key result in measure theory is the completeness of the metric space LP (u).

PROPOSITION 8. Let (X, A, 1) be a measure space and 0 < p < oco. The metric
space LP (p) is complete.

Proof: We prove the case 1 < p < oo. The case 0 < p < 1 is proved in the
same way and is left to the reader. Suppose then that {f,} -, is a Cauchy sequence
in L? (). Choose a rapidly converging subsequence {f,, },-;, by which we mean
Sy || frnir — Jne Hp < 0o. This is easily accomplished inductively by choosing for
example {ny},- , strictly increasing such that

1
1= Frall, < 570 2 M
Then set
9= |fn1| +Z ‘fnk+1 - f’ﬂk‘ :

k=1
By the Monotone Convergence Theorem and Minkowski’s inequality we have

N NS
||ng ngﬂ {/ <|fn1| + Z |f”k+1 — fre |> dﬂ}
/X k=1

N
lim;up <|fn1 I, + Z | frsn — fnka> < 00,

k=1

IN

and it follows that

0<g(@)=fu @)+ [farar @) = far (2)] <00
k=1
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for p-almost every z € X. Thus the series

fn1 +Z{fnk+1 fnk( )}

converges absolutely for p-almost every = € X to a measurable function f (x).
We claim that f € L? () and that lim,, o fr, = f in L? (u). Indeed, Fatou’s
lemma gives

/ 1 @) = fo ()P dpt ()

[t (£ @) = Fo, @F du(2)

< lim inf / g (@) = fy (@) dp ()
= hmkli)lgonnk - fne”Z —0

as £ — oo by the Cauchy condition. This shows that f — f,, € L? (u), hence
f € LP (u), and also that f,,, — f in LP (i) as £ — oco. Finally, this together with
the fact that {f,},-, is a Cauchy sequence, easily shows that f, — f in L (u) as
n — oo.

Porism 1: If {f,} ~, is a rapidly converging sequence in L? (p),

o0
Z | frt1 — anp < o0,
n=1

then

T f (2) = fi (@) + D {ss () = fu ()}
n=1
exists for p-almost every x € X.

The completeness of LP (u) shows that LP (i) is a Banach space for 1 < p < oo.

2. Banach spaces

Three famous results, namely the uniform boundedness principle, the open map-
ping theorem and the closed graph theorem, hold in the generality of Banach spaces
and depend on the following result of Baire.

THEOREM 38. If X is either (1) a complete metric space or (2) a locally com-

pact Hausdorff space, then the intersection of countably many open dense subsets
of X is dense in X.

Proof: Let {Vi},—, be a sequence of open dense subsets of X, and let By be
any nonempty open subset of X. Define sets By, inductively by choosing B,, open
and nonempty with B, C V,, N B,,_1 and in addition,

1
diam (B,) < — in case (1),
n

B, is compact in case (2).

Let K = N2, B,. Then in case (1), if we choose points x, € B, the sequence
{z,},2, is Cauchy and converges in K since each B, is closed. Thus K # ¢. In
case (2), K # ¢ since the sets B, are compact and decreasing, hence satisfy the
finite intersection property. Thus in both cases ¢ # K C By N (Mg, V%), and this
shows that N72,V} is dense in X.
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REMARK 18. A subset V' of X is open and dense if and only if X\V is closed
with empty interior. Thus the conclusion of Baire’s Theorem can be restated as
“every countable union of closed sets with empty interior in X has empty interior
in X7

DEFINITION 16. Let E be a subset of a topological space X. We say that E
is nowhere dense if E has empty interior, that E is of the first category if it is a
countable union of nowhere dense sets, and that E is of the second category if it is
not of the first category.

Thus F is of first category if and only if it is a subset of a countable union of
nowhere dense subsets; equivalently if and only if its complement E° is a superset
of a countable intersection of open dense subsets. If X is a complete metric space
or a locally compact Hausdorff space, then X is of the second category. Indeed, if
X C US, F,, where F,, are closed sets with empty interior, then

¢ =X = (Ul Fn)" =MLy Fy
where the F)¢ are open dense sets, contradicting Baire’s Theorem. Of course, the
countable union of first category sets is a first category set in any topological space
X, and so cannot be X if X is a complete metric space or a locally compact
Hausdorff space.

2.1. The uniform boundedness principle.

THEOREM 39. (Banach-Steinhaus uniform boundedness principle) Let X, Y be
Banach spaces and T' a set of bounded linear maps from X toY. Let

B= {x € X :sup ||Az|y < oo}7
A€l

be the subspace of X consisting of those x with bounded T'-orbits. If B is of the
second category in X, then B =X and T’ is equicontinuous, i.e.

sup ||A]] < oo,
Ael
where ||A]| = SUP)||4(|<1 |Az]]y .

Proof: Let E = NperA™! (By (0, %)) where By (0,r) is the ball of radius r
about the origin in Y. Then ' C B and F is closed by the continuity of the maps
A. If z € B, then there is n € N such that Az € nBy (07 %) for all A € T'. Thus
B =U;2 nE and since B is of the second category in X, so is n& for some n € N.
Since £ — nz is a homeomorphism of X, we have that E is of the second category
in X. Thus E has an interior point « and there is r > 0 so that « — E' D Bx (0, 7).
Then we conclude

1 1 _
A(BX (O,T)) C Az — AFE C By (O7 2) — By (0, 2) C By (07 ].),

which implies [|A]| < % for all A € T; thus I' is equicontinuous and B = X.
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2.2. The open mapping theorem. A map f : X — Y where X,Y are
topological spaces is open if f(G) is open in Y for every G open in X. A famous
“open mapping theorem” is that a holomorphic function f on a connected open
subset €2 of the complex plane is open if it is not constant. Another is the Invariance
of Domain Theorem that says f : U — R™ is open if it is a continuous one-to-one
map from an open set U in R" into R™. If we consider continuous linear maps
A: X — Y where X,Y are Banach spaces, then A is open if it is onto. Note that
for a linear map A : X — Y from one normed linear space X to another Y, A is
open if and only if A (Bx (0,1)) D By (0,r) for some r > 0.

THEOREM 40. (Open mapping theorem) Suppose X,Y are Banach spaces and
A: X —Y is bounded and onto. Then A is an open map.

REMARK 19. More generally, if A : X — Y is a bounded linear operator from
a Banach space X to a normed linear space Y, and if AX is of the second category
Y, then A is open and onto Y, and Y is a Banach space. The proof is essentially
the same as that given below.

)), and thus by Baire’s

1
)
i)) must have nonempty

Proof: Since A is onto we have Y = U2 | A (kBX (0
0

Theorem, one of the sets A (k:BX (0, i)) = kA (BX ( ,

interior, and hence so must A (BX (0, i)), say

1
By (y(),?") CcA (BX (0, 4))
Then we have

o SR TR )
S5 A (BX (0, i)) A (BX (0411))
D By (yo,7) — By (y0,7)
D> By (0,r).

It remains only to prove that A (Bx (0,3)) C A(Bx (0,1)). For this, fix y; €
A (BX (O7 %)) Now the argument above shows that A (BX (07 %)) contains an
open ball By (0,r1) about the origin as well. There is z; € Bx (O, é) such that
Az € A (BX (0, %)) satisfies |[Az1 — y1|ly < ri. Then we have

—1
Al‘l S By (yl,rl) C {yl —A <BX (0, 4>)}
1
Y2 = Y1 *Axl S A (BX <0, 4>>

Now define
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We can repeat this procedure inductively to obtain sequences {z,} -, C X and

{yn},oq C Y satisfying
1
T, € Bx <0’ 2n> )

Yn+1 = Yn — Axna

for all n > 1. Then x = limy, oo Y1y Ty, € Bx (0,1) since |jz]| < Y07 |lzn|| <
>nei zw = 1, and since ||y, || < [|A]| 27",

n=1 27
m m
Az = W}gnoo Z:le" = "}gnoo 221 (Yn = Yns1) = y1 — n}gnoo Ym+1 = Y1-
n= n=

2.2.1. Fourier coefficients of integrable functions. Here we apply the Open
Mapping Theorem, together with Lusin’s Theorem and the Dominated Conver-
gence Theorem, to answer a question regarding Fourier coefficients of integrable
functions on the circle group T. Recall that for f € L' (T), its Fourier coefficients

-~

f (n) are defined by

F= [ fwem® nez
n) = ; e 5 )

Then ) p
~ & p t
Fol = | [ 10| < Wl

for all n € Z, i.e. F =" is a bounded linear map from L' (T) to ¢*° (Z) of norm
1 (1 = §p). More is true because of the density of trigonometric polynomials
SN ~ Cn€™ in L' (T), namely the Riemann-Lebesgue lemma:

n=

lim. ‘f(n)) =0, feL'(T).

REMARK 20. The set of trigonometric polynomials P is a self-adjoint subalgebra
of C (T) that separates points in the compact set T, and is nonvanishing at every
point of T. Thus the Stone-Weierstrass Theorem shows that P is a dense subset of
the metric space C (T) with metric d(f,g) = sup,er |f (z) — g (x)]. Combining this
with the density of C (T) in L' (T), namely Lemma 26, we obtain that P is dense in
LY (T). Indeed, given f € L' (T) and e > 0, choose g € C (T) with [ |f —g| 2 < £
and then choose P € P such that supy|g — P| < §. Altogether we have

do df df
it P — _plZ < _ql 22 _plZ=
distpiry (f, P) /1r|f |27T _/T\f gl 27T+/1r|g |27T
5

<
2

e €
—Pl<<+4:=c
+S%p|g | 2+2 €

To prove the Riemann-Lebesgue lemma, simply let £ > 0 be given and choose
P(z) = YLy ene™® such ||f = Pl (p) < & Since P(n) = 0 for |n| > N, we
have R .

Fo)| = [F=P )| <1f = Pllpary <

for [n| > N. Thus F : L' (T) — ¢3° (Z) with norm 1 where ({° (Z) is the closed sub-
space of £>° (Z) consisting of those sequences with limit zero at +oo. The following
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application of the open mapping theorem shows that not every such sequence arises
as the Fourier transform of an integrable function on T.

THEOREM 41. The Fourier transform F : L'(T) — (3°(Z) is bounded and
one-to-one, but not onto.

Proof: To see that F is one-to-one, suppose that f € L' (T) and ]?(n) =0 for
all n € Z. Then if P (z) = Z:L_N € is a trigonometric polynomial,

(22) f( Z Cn/ ﬂ-f zntdt

0

and since trigonometric polynomials are dense in C' (T), we have

27

; f(t)g@)dt=0

for all g € C (T). Now let E be a measurable subset of T. By Lusin’s Theorem
there is a sequence of continuous functions {gn};"f’:1 such that g, = xp except on
a set of measure at most 27" and where /g, ||, = 1 for all n > 1. Thus g, — xg
almost everywhere on T, and the dominated convergence theorem shows that

[Ef(t)dt=

With E equal {t: f(¢) >0} and {¢t: f () < 0}, we see that f =0 a.e.
Now we prove that F is not onto by contradiction. If Rz = £3° (Z), then the
open mapping theorem shows that there is § > 0 such that

(2.3) 1z = Wiy, Fe LM

But (2.3) fails if we take f = D,, for n large, since

=1

R NN
H 0°(Z) {mnd=nn=lnt g )

while || Dy | 1 gy /0.

2.3. The closed graph theorem. If X is any topological space and Y is
a Hausdorff space, then every continuous map f : X — Y has a closed graph
(exercise: prove this). A statement that gives conditions under which the converse
holds is referred to as a “closed graph theorem”. Here is an elementary example.
Suppose that X and Y are metric spaces and Y is compact. If the graph of f
is closed in X x Y then f is continuous. Indeed, for metric spaces it is enough
to show that every sequence {z,},., in X converging to a point z € X has a
subsequence {z,, }r- Ly such that f(z,, ) — f(z) as k — oco. However, since YV
is compact, {f (z,)},—, has a convergent subsequence, say f(z,,) — y € K as
k — oo. Thus (z,y) 15 a limit point of the graph G = {(z, f (x)) : € X}, and
since G is assumed closed, we have (z,y) € G, i.e. y = f(z). The next theorem
gives the same conclusion for a linear map from one Banach space to another. Note

1 .
that linearity is needed here since f : R — R by f(z) = { 5 ifoz0

if gy hasa

closed graph, but is not continuous at the origin.
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THEOREM 42. (closed graph theorem) Suppose that X andY are Banach spaces
and A : X =Y is linear. If the graph G = {(z,A (x)) : @ € X} is closed in X XY,
then A is continuous.

Proof: The product X x Y is a Banach space with the norm |[|(z,y)] =
llzll x + llylly- Since A is linear and the graph G of A is closed, G is also a Banach
space. Now the projection 71 : X XY — X by (z,y) — z is a continuous linear
map from the Banach space G onto the Banach space X, and the open mapping
theorem thus implies that 71 is an open map. However, 71 is clearly one-to-one and
so the inverse map 77 ' : X — G exists and is continuous. But then the composition
maom; ' : X — Y is also continuous where 73 : X x Y — Y by (z,y) — y. We are
done since my o 7yt = A.

As a consequence of the closed graph theorem, we obtain the automatic conti-
nuity of symmetric linear operators on a Hilbert space.

THEOREM 43. (Hellinger and Toeplitz) Suppose that T is a linear operator on a
Hilbert space H satisfying (Tx,y) = (x,Ty) for allz,y € H. Then T is continuous.

Proof: It is enough to show that T has a closed graph G. So let (z,z) be a
limit point of G. Then there is a sequence {x,} -, C X such that z,, — x and
Tx, — z. For every y € H the symmetry hypothesis now shows that

(T(@n —=),y) = (20 —2,Ty) — 0
as n — 0o. But we also have

(T (xn —2),y) = (Ten,y) — (Tz,y) — (2,y) — (Tz,y)
as n — oo. Thus (z — Tz,y) = 0 for all y € H and so z = Tz, which shows that
(z,z) € G.

3. Hilbert spaces

There is a class of special Banach spaces that enjoy many of the properties of
the familiar Euclidean spaces R™ and C™, namely the Hilbert spaces, whose norms
arise from an inner product. We follow the presentation in Rudin ([3]).

DEFINITION 17. A complex vector space H is an inner product space if there
is a map (-,-) from H x H to C satisfying for all z,y € H and ) € C,

(,y) = (y,2),
(x+zy = (z,9)+(zv),
Az,y) = Ma,y),

(z,xz) > 0and (z,x) =0<=z=0.

Then ||z|| = \/{(z,x) defines a norm on H (see below) and if this makes H into a
Banach space, i.e. the metric d(x,y) = ||z —y|| is complete, then we say H is a
Hilbert space.

A simple example of a Hilbert space is real or complex Euclidean space R™
or C" with the usual inner product. More generally, the space ¢? (N) of square
summable sequences a = {a,},., with inner product (a,b) = > oo, anby is a
Hilbert space. Both of these examples are included as special cases of the Hilbert

space L? (1) where p is a positive measure on a measure space X and the inner
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product is (f,g) = [y fgdu. Note that an inner product (-,-) on an inner product
space H can always be recovered from its norm ||-|| by polarization:

4Re(z,y) = llz +y|* — o —ylI*.  z,ycH.

LEMMA 28. Let H be an inner product space and define ||z|| = +/{x,z) for
x € H. Then ||| is a norm on H and for all x,y € H,

[z, < =l iyl
lyll < lXz+yll forall X € Ciff (x,y) =0,
2 2
lz + yll* + [l — y]* 2||=[]” + 2 lyll”
Proof: For z,y € H and )\ € C,
(3.1) 0 < [[Az+yll* = AP 2] + 2Re (A (z,9)) + [ly]|*-

Thus {(x,y) = 0 implies ||y|| < ||Az +y| for all A € C. Conversely, if x # 0 we
minimize the right side of (3.1) with A = —{&% to get

(R

[, )

2 2
0 <Az + vy :—W‘HHJH .

This shows that ||y|| < ||A\x + y]| fails for some X if {x,y) # 0, and also proves the
Cauchy-Schwarz inequality |[(z,y)| < ||z| [ly||. With A =1 in (3.1) we now have

lz+ylI* = llz|* +2Re (z,y) + [ly]|*
< 2l + 22 Iyl + lly?
= (llzll + llyl)*,
which shows ||-|| satisfies the triangle inequality, and ||-|| is now easily seen to be a

norm. Finally, the parallelogram law follows from expanding the inner products on
the left side.

The next easy theorem lies at the heart of the great success of Hilbert spaces
in analysis.

THEOREM 44. Suppose E is a nonempty closed convex subset of a Hilbert space
H. Then E contains a unique element x of minimal norm, i.e. ||z|| = infycg ||yl

Proof: Let d = inf,cp ||y||, which is finite since F is nonempty. Pick {z,} -, C
E with ||z,|| — d as n — co. Since E is convez, %= € E and so has norm at
least d. The parallelogram law now yields

2 2

Tm — Tn meH2 + HanQ ||Em tTn
2 2 2
| + llzall” _ o
< V——-d
- 2
2 | g2
_ d+d =0

2

as m,n — oo. Thus {z,} -, is Cauchy and since H is complete and E closed,
z = lim, o ¢, € E. Since ||-|| is continuous, we have ||z|| = d. If 2’ € E also
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’
T—T
2

satisfies ||2’|| = d, then using the parallelogram law as above yields

2
<0, hence x = z'.

242> || ata’
2 2

Let H be a Hilbert space. We say that « and y in H are perpendicular, written
x Ly, if (x,y) = 0. We say subsets E and F of H are perpendicular, written
E L F,if (x,y) =0for all z € E and y € F. Finally, we define

Et={yc H:(x,y)=0forall z € E}.

The next theorem uses Theorem 44 to establish an orthogonal decomposition of H
relative to any closed subspace M of a Hilbert space H.

THEOREM 45. Suppose that M is a closed subspace of a Hilbert space H. Then
H=MaoM*,

which means that M and M+ are closed subspaces of H whose intersection is the
smallest subspace {0}, and whose span is the largest subspace H. The representation

x:ermJ‘,

where m € M and m* € M*, is uniquely determined for each x € H.

Proof: M+ is a subspace since (z,y) is linear in x, and is closed by the Cauchy-
Schwarz inequality. The fact that (z,2) = 0 < z = 0 gives M N M+ = {0}.
Finally, to show M + M+ = H, let x € H and set E =  — M, a nonempty closed
convex set. Thus there is a unique element m* € 2 — M of minimal norm having
the form = — m with m € M. Thus for all z € M and A\ € C,

[[m ]| < fm™ + 22|

and Lemma 28 implies that <z,mJ-> = 0 for all z € M, which yields m* € M=,
Thus © = m+m* € M 4+ M~*. If there is another such representation x = n +n',
then

m—n=nt—-m>-eMnM*-=/{0},

and so n = m and nt = mt.

COROLLARY 16. (ML)L =M.

Proof: M C (ML)L is obvious, and since M @ M+ = H = M*+ & (MJ-)J',
we cannot have that M is a proper subset of (MJ-)J'.
DEFINITION 18. Let M be a closed subspace of a Hilbert space H. Define
Py :H — M and Py;. : H— M*
by Pxr = m and P2z = m* where x = m +m* withm € M and m* € M+*.
LEMMA 29. Py and Py are linear maps satisfying
1Pyl + || Pagrel|” = [|=]*, @€ H,
(Py)? = Py and (Pyyi)? = Py

DEFINITION 19. The element Pyrx is called the orthogonal projection of x onto
M.
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3.0.1. Bases. A subset U = {uqn},c4 of a Hilbert space H is orthonormal if
(U, ug) = 65, Given U = {ta} e 4 orthonormal in a Hilbert space H, and = € H,
define the Fourier coefficients of x (relative to U) by
(3.2) Z(a) =(z,uq), «a€A

THEOREM 46. Let U = {ua},c4 be an orthonormal set in a Hilbert space H,
and suppose {a1,...,an} is a finite subset of A. Then

(1) =N, cota, implies that ¢, =7 (ay,) and ||lz]* = SN 17 ()]
(2) x € H implies

N N
x — E Z (o) Ua, x— E Anla,
n=1 n=1

for all scalars A1, ...A\N, and morever, equality holds if and only if A, =
Z (o) for1<m < N.
(3) The vector Efj:li?(an) Uq, 1S the orthogonal projection of x onto the

<

linear space spanned by {uan}g:l.

Proof: Statement (1) is a straightforward computation using orthonormality,
and (2) is equivalent, after squaring and expanding, to the inequality

N N N
2 ~ 2 2 ~ S 2
21" = > & ()l < ll2* —2Re Y & (an) X+ D Al
n=1 n=1 n=1

< VSN ()PS0 . Fi

nally, (3) follows from (2) and the definition of orthogonal projection.

which in turn follows from ‘Zﬁ;l T (an) A

THEOREM 47. (Bessel’s inequality) If U = {ua},c 4 is an orthonormal set in
a Hilbert space H, then ) 4 Z (a)” < ||z|? for allz € H.

Proof: Let F be a finite subset of A and let M be the subspace spanned by
{ta}yep- It is an easy exercise to use (1) of Theorem 46 to see that M is closed,

and then (3) of Theorem 46 shows that Pyxz = an:1 Z () Uq, - Then by (1) of
Theorem 46 and Lemma 29, we have

Yo lE(@) =

acF

N

Z T (an) Uqy,,

n=1

2 2 2 2
= [1Pazl]” < [|Parel]” + [ Pagel|” = [l

Now take the supremum over all finite subsets F' of A.

THEOREM 48. (Riesz-Fischer) If U = {ua},c4 i85 an orthonormal set in a
Hilbert space H and ¢ € €% (A), then there is x € H such that T = .
Proof: There is E = {a,},-; C A such that ¢ (a) =0 for « € ANE. Then

TN = 25:1 ¢ () U, is Cauchy in H, hence convergent to some z € H, and
continuity now yields & = ¢.

The following fundamental theorem regarding orthonormal sets is an easy con-
sequence of the above results.

THEOREM 49. Suppose U = {ua},c 4 is an orthonormal set in a Hilbert space
H. Then the following statements are equivalent:



106 7. LEBESGUE, BANACH AND HILBERT SPACES

(1) equality holds in Bessel’s inequality, i.e.

1
2
~ 2 —~
el = {Z 2 ()] } @l pn), @€ H,

acA

(2) the linear map A : H — (2 (A) defined in (3.2) is a Hilbert space isomor-
phism of H onto (% (A),

(3) U is a maximal orthonormal set (called an orthonormal basis)

(4) The linear span

Span U = {Z Callg : Cq Scalar, F a finite subset of A}
acF

is dense in H.
PrROOF. We prove (1) = (2) = (3) = (4) = (1). If (1) holds, then

(2) follows by the Riesz-Fischer theorem, which shows A is onto, and polarization,
which shows that A preserves inner products:

1

2 2 . -2 . -2
(o 9) {lle+ 9l — o = w3, +illo+ iyl — illo — iyl }

NN

~ ~12 ~ ~12 TP ~12 TP ~12
{12 + 90 ay = 1 = Bl ) + 017 + a0y — 017 = G0 )}

E7y>£2(A)7 mayeH'

~  ~

Now assume (2
such that

holds Then (3) holds since otherwise, there is v € H with |[v||; =1

v(a) = <@75>ZQ(A) = (ua7U>H =0, aE€ A,

i.e. U =0, contradicting [[v]|; = [|0][y2(4)-

Next, assume that (3) holds. Then Span U is dense in H since otherwise,
Span ut # {0} by Theorem 45, and so there is z € H with ||z||; = 1 such
that (z,2); = 0 for all « € Span U. In particular, (z,u.)y = 0 for all o € A,
contradicting maximality of U.

Finally, assume (4) holds so that Span U = H. The linear isometry

A:Span U — 2 (A),  Z(a) = (r,us),a € A,

has a unique continuous extension (isometries are trivially continuous) to Spanid =
H, and this continuation is easily seen to be a linear isometry. But this is precisely
(1). O

COROLLARY 17. If U = {ua},eq s an orthonormal basis for a Hilbert space
H, then for each x € H, the set {a« € A : T () # 0} is at most countable, i.e.
{ae A:F(a)#0} = {a, )20 finite

n=1 ’

and
oo or finite

T = Z Z (o) U, ,

n=1

with convergence of the series in H.
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PRrOOF. Theorem 49 (1) implies that ) . 4 Z (a)|” = ||z||* < oo, and it follows
that
{a€ A:2(a) # 0} = {an )7y ™™
is at most countable. Theorem 49 (4) shows that given € > 0, there is an element
er\le Anlq, in Span U such that Hx - ZnM:1 Antla, || < €, and then with A, =0

for M < n < N, Theorem 46 (2) shows that

N M
T — Z Z (an) ta, || < ||z — Z Anla, || < &
n=1 n=1
for all N > M. O

The axiom of choice shows that there are lots of orthonormal bases in a Hilbert
space.

THEOREM 50. Ewvery orthonormal set U in a Hilbert space H is contained in a
maximal orthonormal set V.

Proof: Following the standard transfinite recipe, we let I' be the class of all
orthonormal sets containing U, partially ordered by inclusion. By the Hausdorff
Maximality Theorem, I' contains a maximal totally ordered class §2. It is straight-
forward to show that V =U{W : W € Q} is a maximal orthonormal set in H.

EXAMPLE 5. Here are two examples of orthonormal bases in the Hilbert spaces
L?(T) and L? (R, 1) respectively.

(1) The setU = {emt}nez is an orthonormal set in L? (T), i.e.
2T .
; ; it At 0 ifm#n
imt int\ __ mt int 7
(e e >_/0 e e 271—_{1 ifm=n

The Stone-Weierstrass Theorem, together with Ezercise [, shows that
Spanld is dense in H = L?(T), and thus by Theorem 49 the map F :
L2 (T) — ¢ (Z) given by

Ff(n)= f(n) — <f, ei”t> _ " £(t) eiintﬁ

; 9 n €z,

is a Hilbert space isomorphism of L? (T) onto ¢ (Z). Thus {emt}nez is

an orthonormal basis for L? (T).
(2) Let D =gy Di be the union of the collections Dy, = { 2%, (j + 1) 2¥) }jGZ

of right open left closed intervals of length 2% having left endpoint in 2¥Z.
We refer to the intervals in D as dyadic intervals. For each dyadic inter-
val I, the left half I_ and the right half I, are referred to as the children
of I. Now suppose that u is a positive measure on R, and for convenience
we suppose that

w(I) >0 for every I € D.
Then for every I € D we define the Haar function hY by

Ul (1 (@) | 1 @Y
(D) (u(f) um))’ eR

hy (z) =
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Here we are writing 11, (x) for the indicator function x;, (z). Thus the
Haar function hYf is supported in I and is constant on each childIy of
I. In the special case j is Lebesque measure A1, and I has length 2%,
h}\l takes on the value 7% on the left half of I, and the value \/Q}Eﬁ
on the right half of I (draw a picture!). The collection of Haar functions
{hf}ep has the following elementary properties:

supphf C I,

u _ pU)py) )1 1 _
/hldu B n(l) { M(I)/p(z)du+/ﬁ(f+) /u(u)dﬂ} 0

pp g, — M) [ L
/|h1| = (1) {M(I)2 /uu)leM(IH2 /WH(W}
oIy 1 L\ ply) +p-)
T {uu_) Um)}‘ an "

Moreover, there follows the crucial orthogonality property:
/h?h’jduz(), ifI,Je€Dand I # J.

Indeed, this follows simply from (1): [hYdp = 0, and (2): if J is a
proper dyadic subinterval of a dyadic interval I, then hY is constant on
the support of h';.

Altogether we have shown that {h7},.p is an orthonormal set in L? (u).
It can be shown, using the differentiation theory two chapters below, that
{h}}cp is actually an orthonormal basis for L* ().

REMARK 21. In the special case that p is Lebesque measure on the real line R,
the set of Haar functions {hr};.p is generated by translation and dilation of the
single function

hoy = ~1o,) T30y
Thus the Haar basis {h1};cp is the simplest example of a wavelet basis, an or-
thonormal basis that is generated by translations and dilations of a fized ‘mother
wavelet’. Such wavelet bases have been characterized, and their properties cata-
logued, by Daubechies and others.

Next we give an application of Hilbert space theory and the uniform bounded-
ness principle to nonconvergence of Fourier series.

3.0.2. Nonconvergence of Fourier series of continuous functions. Recall the
orthonormal basis {emt}n ez of L?(T) in the example above. Now consider the

symmetric partial sums S, f of the Fourier series of f € L (T):
n n

Z J/c\(k) eike _ Z /0271— f (t) efikt;ii;eika:

k=—n k=—n

2 = ik(x—t dt
[ oz ee)e

k=—n

Snf (z)

2
f(t)Dn(m—t);l—;:f*Dn(a:),

0
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where
n (eig _ eﬂ-g) S ikt
ko ==
D,(0) = g e’ = — —7
k=—n ez —e "2
. 1 . 1 .
¢i(nt3)0 _ o=i(n+3)0 gin (n+1)0
ei% — e_i% sin g
satisfies

27 T | 1
/ D, () i& - 2/ |51n (n—|— 2) 9‘ i@
0 0

2

and so tends to oo as n — co.
From the Hilbert space theory above, we obtain that S, f converges to f in
L?(T) for all f € L*(T):

18 = 117 = > |7 (k)

|E|>n

’QHOaanoo, feL*).

For f € C(T) we ask if we have pointwise convergence of S, f to f on T. How-
ever, the property sup,,>, [|Dull1(p) = oo of the Dirichlet kernel D,,, when com-
bined with the uniform boundedness principle, implies that there are continuous
functions f € C(T) whose Fourier series Y ;o f(kz) e’ fail to converge at
some points z in T. In fact there is a dense Gs subset E of C(T) (a set is a
G5 subset of X if it is a countable intersection of open subsets of X) such that

{z €T:8S,f(x) fails to converge at z} contains a dense Gs subset of T for every
feE.

To see this, set Apf = S, f(0) = 027r f@) Dy (t) 4. Then A, € C(T)" and
ALl = 0277 Dy, (t)] &£ 0o as n — oo. By the uniform boundedness principle
we cannot have
(3-3) sup [A,, f| = sup S, f (0)] < o0

n>1 n>1

for f in a dense G subset of C (T). In particular, there exists a continuous function
f on T whose Fourier series fails to converge at 0. However, since B is a subspace,
we cannot in fact have (3.3) in any open set, and it follows that

Fo - {f € C(T) : sup|Anf] = oo}
n>1

is dense. Since the map sup,,~; |A, f| is a lower semicontinuous function of f, we
also have that Fy is a G4 subset.
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Now choose {z;};-, dense in T = [0, 27), and by applying the above argument

with z; in place of 0, choose E; to be a dense G subset of C (T) such that

sup [Sp f (zi)| =00, fEE;, i>1

n>1
By Baire’s Theorem, E = NI | FE; is also a dense G4 subset of C'(T). Thus for
every f € E we have sup,~; |Snf (7;)| = oo for all i > 1. Now we note that
sup,,>1 [Snf (z)] is a lower semicontinuous function of z (since it is a supremum of
continuous functions), and thus the set

{:c e T:supl|S.f (z)| = oo}
n>1

is a Gy subset of T for every f € C (T). Combining these observations yields that

there is a dense G5 subset F of C (T) such that for every f € E, the set of 2 where

the Fourier series of f fails to converge contains a dense G subset of T.

REMARK 22. In a complete metric space X without isolated points, every dense
G5 subset is uncountable. Indeed, if £ = {xk},;“;l =NoL Vo, Vi, open, is a count-
able dense G5 subset of X, then W,, = V;,\\_ {xk}zzl 1s still a dense open subset of
X, but N5 W, = ¢, contradicting Baire’s Theorem.

REMARK 23. A famous theorem of L. Carleson shows that for every f € L% (T),
lim, oo Snf (z) = f (x) for a.e. x €T.

4. Duality

Given any normed linear space X we define X* to be the vector space of all
continuous linear functionals on X, i.e. continuous linear maps A : X — C (or into
R if the scalar field is real). We recall that a map L from one normed linear space
X to another Y is linear if L (A\x +y) = ALz + Ly for all x,y € X and X\ € C.
Recall also that L is said to be bounded if there is a nonnegative constant C such
that | Lz|y < C|lz||y for all z € X. The proof of the next result is easy and is
left to the reader.

LEMMA 30. Let L : X — Y be linear where X,Y are normed linear spaces.
Then L is bounded <= L is continuous on X <= L is continuous at 0.

By Lemma 30 a linear functional is continuous on X if and only if it is contin-
uous at the origin, or equivalently bounded. If we set
(4.1) IAlI" = sup |Az],

llzll<1

then it is easily verified that ||| is a norm on X*, and since the scalar field is
complete, so is the metric on X* induced from |-|*. Thus X* is a Banach space
(even if X is not).

REMARK 24. Note that ||A||" is the smallest nonnegative constant C' which
exhibits the boundedness of A on X in the inequality |Az| < C'||z]|.

Now we specialize this definition to a Hilbert space H. An example of a con-
tinuous linear functional on H is the linear functional A, associated with y € H
given by

(4.2) Ay =(z,y), xe€H.
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The boundedness of A,, follows from the Cauchy-Schwarz inequality [Ayz| < |ly|| ||z
In fact, this together with the choice z = HZ—H in (4.1) yields ||A,[|" = [|y||. It turns
out that there are no other continuous linear functionals on H and this is the first
major consequence of Theorem 45, and hence also of Theorem 44.

THEOREM 51 (Riesz representation theorem for Hilbert spaces). Let H be a
Hilbert space. Every A € H* is of the form A, for some y € H. Moreover, there
is a conjugate linear isometry from H to H* given by y — A, where Ay is as in

(4.2).

Proof: We've already shown that A, € H* with ||[A,]|" = |ly|, and since
Ay, = AA, we have that the map y — A, is a conjugate linear isometry from H into
H*. To see that this map is onto, take A # 0in H* andlet N' = {x € H : Ao =0} =
A~1{0} be the null space of A. Since A is a proper closed subspace of H, Theorem
45 shows that N+ # {0}. Take z # 0 in A+ and note that

(Az)z — (Az)z € N for all z € H.

Thus
0= ((Az)z — (A2)x,2) = (Az) |12]* = (A2) (x, 2)
yields
_ (A @) < A> CAe zel
2] 12
with y = lzz

5. Essentially bounded functions

Suppose that (X, A, 1) is a measure space with u (X) = 1. Then Holder’s in-
equality shows that for f measurable, || f[|,,) € [0,00] is a nondecreasing function
of p € (0,00). Indeed, if 0 < p; < pa < 00, Hf||Lp2(H) < oo and p = p2 , then
1 < p < o and it follows that

(Lir@r aue ) <([r@r )’ 11 (/Xdu@))p'l’”
([ 1@ au )) gy

o = lim p(y) = SUu p(y) € 10,00].
£l i 1L (1) 0<pfoo £l (1) [ ]

171 s o

IN

Thus

The question now arises as to what || f||y actually measures. The answer lies
in the following two observations. If A > || f||z, then

M{ISI > Mg < (/{ﬂ»} prdu> < Ml

which implies

171> A}, < lim sup (”fk'*)p _o.
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Conversely, if [{|f[ > A}, = 0, then

1
”fL”(u):</ |f\pdu+/ |f|pd,u> < Ap(X)
{IF1<A} {IfF1>2}

which implies A > || f||,z. Thus we conclude that

1l = in {x >0 {11 > A}, =0,

which suggests we define the essential supremum of a measurable function in the
following way.

=

:)\’

DEFINITION 20. Suppose that (X, A, i) is a measure space and that f : X — C
is measurable. The essential supremum of f is defined to be

1l = it {3 > 05 {171 > A, =0}

We set
L™ () = {f measurable : || f|| ., < oo} .

It is easy to show that L (p) is a linear space and that || f|| <,y = [l
defines a norm on L™ (u) (after identifying functions that agree outside a set of
measure zero). It is surprisingly easy to show that L* (u) is complete. Indeed, if
{fn},—, is a Cauchy sequence in the metric space L™ (u), then {f,} -, converges
uniformly outside the exceptional set

E= |J Bun= | {zeX:1(fu—fu) @ > 1fm = fall o},
m,n=1 m,n=1

to a measurable function f: (X \ E) — C. Since

p(E) < Z N(Em,n): Z 0=0,
m,n=1 m,n=1

we may view f as belonging to L> (u). It is now evident that ||f — fu|l., =
limy, oo || frn — fullo tends to 0 as n — oo.
We have already established the first assertion in the following exercise.

EXERCISE 5. Suppose that 11 (X) =1 and || f|[;-(,) < oo for some 0 <r < occ.
Then

(1) limp oo [[fll 2o () = [1f oo
(2) limp—o ||f||Lp(#) = €xp {fX In | f] dﬂ}-



CHAPTER 8

Complex measures and the Radon-Nikodym
theorem

We now wish to extend the notion of a positive measure to complex-valued
functionals. We begin with an example.

EXAMPLE 6. Given a positive measure v on a measurable space (X, A), and a
complex-valued function h € L' (v), we can define a set functional p by

u(E):/ hdv, EcA
E

It is easy to wverify that p is a complex measure on A, i.e. that the countable
. 00

additivity in (0.1) below holds. Indeed, Corollary 14 shows that if E =, _,Fn,

then
/ |h| dv,
En,

/Eh|dz/§:

n=1

and it follows that

s hdv §/oo hdz/:/ Xg. |hldv = /hdl/—>0
I~ G > xemdv= 3 [

n=N+41En n=N+41n n=N-+1 n=N+1

as N — o0o. Now for each N > 1 we have

N
Z/ hdz/:/N hdy
n=1 En U E

n=1"-"7

= /E (UW E)hdu

(]
=

=
I

n=N+41"-"7

= /hdl/—/oo hdv,
E U E

n=N+1Ln
and taking limits as N — oo, we get Y~ | u(Ey,) = [, hdv = p(E).

More generally, we have the following definition. Consider a measurable space
(X, A) and a functional

w:A— C.
Note that we do not permit u to take on infinite values here.

113
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DEFINITION 21. We say that i is a complex measure on A, or on X, if for every
sequence {E,},"_ | of pairwise disjoint measurable sets, the series y ., pn(Ey) con-
verges and we have

0.1) " ( | _E) =S (B
n=1

1. The total variation of a complex measure

The first observation we make is that the convergence of the series in (0.1) must
be absolute, i.e. Y o |1 (Ey,)| < oo. Indeed, for 0 < k < 2, let

, 27k
S, = re’ eC:0<r < ooand —ISH—L<z
3 3 3
denote the sector of aperture %’r centred at the angle % Then with A =

{n:p(E,) € Sk} we have
2

DSEN=Y" |n(E)l,

k=0neAy
and so if Y07 | |n (E,)| = oo, there is k such that
Z [ (En)| = oo.
neAyg

Without loss of generality we take &k = 0 and note that for z € Sy we have
1
3 |z <Rez <|z|.

Thus we conclude that

0o =Y Re(u(E,)) =Re ( > u(En)> :

n€Ag neAp

and so the series D, 4 11 (Ey) does not converge, contradicting (0.1) and the fact
that the sets {Ey,}, c 4, are measurable and pairwise disjoint.
The above observation suggests the possibility that there exists a closely related

positive measure associated with p, namely the nonnegative set functional |u| : A —
[0,00) defined by

[e'e) . o0
=S5 n)| = i ) > .
|| (E) = sup {z_:l | (En)|: E Un:lE” with E, € A for all n > 1}
This set functional || is referred to as the total variation of p, and turns out to be
a positive measure on A with |u| (X) < oco.

THEOREM 52. Let (X, A) be a measurable space, and suppose u is a complex
measure on A. Then the total variation |p| of p is a positive measure on A with
|l (X) < oo.

Proof: To prove the inequality

(1.1) Wl (B) < 3 (B,
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let £ = U:::lAWl' Then
ZlN(AMN = Z ZM(AmmEn) SZZWA NE,)|
m=1 m=1 |n=1 m=1n=1
= ZZW(AmmEn)‘SZLUJ‘ (En)
n=1m=1 n=1

B ]
and if we take the supremum over all decompositions £ = (J,,_;Am we obtain

(1.1).

Now we turn to proving

(1.2) | (£ Z ae

Since at this point |u (E,,)| could be infinite, we cannot use |u (E,)| —e < |u (E,)]
for a small positive ¢, and instead we let ¢,, be any nonegative real number satisfying
. 00

tn < | (Ey)|. Then there is a decomposition E, = J,,_, A, satisfying

(1.3) tn <> |n(An)

It follows that
Dot <303 (AR < (),

and taking the supremum over sequences {t,} -, satisfying (1.3), we obtain (1.2).

Finally, we prove that |u| (X) < co. Suppose, in order to derive a contradiction,
. o0

that |p| (X)) = co. Then there is a decomposition X = |J,,_, E, with

ZIM n)| > 6(lp(X)[+1).

Using the notation introduced before the statement of the Theorem 52 we have

6 (| (X Zlu ZZ:{ > Iu(En)I},

k=0 \neAy

and so there is k € {0,1,2} such that > , |p(En)| > 2(|u(X)|+1). Without
loss of generality, k = 0 and using 3 [2| < Rez < |2] for z € Sy we have

2001 +1) < 3 ) €2 3 Rl =2k | 3 )

neAg n€Ag neAg

and thus

>%<Zu@»>WW%H
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NowsetA:UnerEn and B = X\ A so that
(A = | D p(E)| > (X)) +1>1,
neAy
lw(B)| = [u(X)—p(A)] = [p(A)]—|pX)]

V

(X +1 = |p(X)] = 1.
Now oo = |u| (X) = |u|(A) + |u| (B) implies that at least one of A and B has
infinite |p|-measure, say B. Then we define A; = A and By = B so that
X = A1U31 with |z (A1) > 1 and |u| (B1) = 0.
Now iterate this construction with By in place of X to obtain measurable sets
Ay and By such that
By = AQUBQ with |u(Ag)] > 1 and || (B2) = cc.
Continuing by induction we obtain sequences {A4,} - ; and {B,},-, of measurable

sets satisfying

B,_1 = AnUBn with |p(Ay)| > 1 and |p| (By) =00, n>2.

. 00
Now let A ={J,,_; A be the union of the pairwise disjoint sets {A,}
must have

o0

ne1- Then we

12 (A) = Z 12 (An) s
n=1

but this is impossible since the series on the right is divergent: |u (A,)| > 1 for all
n.

DEFINITION 22. Let (X, .A) be a measurable space. If i, v are complex measures
on X, then so is au + B for a, B € C where

(o + ) (B) = an(B) + Bv (E),  Ec A
Denote by M (X) the normed linear space of complex measures on X with norm
given by
lpll = [ul (X)), peM((X).

EXERCISE 6. Show that M (X)) is complete, hence a Banach space.

2. The Radon-Nikodym theorem

Every complex number z has a representation in polar coordinates as z = (|z|
where |z| > 0 and |¢| = 1 (we usually write ¢ = €'? as well). It turns out that there
is a similar representation of a complex measure p on a measurable space (X,.A)
as (see Example 6 above)

(2.1) p=Clul,

where |u| is the total variation of x4, and ( is a measurable function on X satisfying
| (z)| =1 for all z € X. This representation of a complex measure p is often called
the polar representation of p.
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In the special case that p takes on only real values, we call i a real measure, and
in the polar representation (2.1), we have ( (x) = %1 for all z € X. In particular,
if

P11 = X{zex:c(a)=1} 1 and fiy = =X {zeX:¢(2)=—1} M
then both p, and py are positive measures on X whose difference p; — 5 is g, and
1, and py are carried by disjoint sets. We say that a positive or complex measure
pwon Ais carried by a set Aif p(E) =0 for all E € A such that AN E = 0.

This decomposition g = p; — fi9, where the u, are positive measures carried
by disjoint sets, is called the Hahn decomposition of the real measure p. Note also
that |p] = g4 + po. A much simpler decomposition is the Jordan decomposition

(2.2) u=%(Iu\+u)—%(\ul—u)5u+—u77

where p, are easily shown to be positive measures, but no claim is made regarding
p4 being carried by disjoint sets. It turns out that pu; = p, and py, = p_ so that
t4 are indeed carried by disjoint sets. But this is hard to prove, and we will obtain
it from a much more general, and significantly deeper, decomposition of a complex
measure; namely the Radon-Nikodym Theorem. To state this most important of
the theorems in measure theory, we need some definitions.

DEFINITION 23. Let (X,.A) be a measurable space. Suppose that p,v are mea-
sures (complex or positive) on A and that X is a positive measure on A. Then
(1) p is said to be concentrated on (or carried by or lives on) a measurable

set Ae Aif
pw(E)=p(ENA) forall E € A,
equivalently,
w(E) =0 for all E € A with EN A = ()

(2) p and v are said to be mutually singular if there are disjoint measurable
sets A, B € A such that p is concentrated on A and v is concentrated on
B. In this case we write p L v;
(3) w is said to be absolutely continuous with respect to the positive measure
Aif
w(E) =0 for all null sets E of A.
In this case we write p < A.

Note that if in the first definition, the measure p is a positive measure, then
i is concentrated on a set A if and only if u(A4°) = 0. Of course this simple
characterization doesn’t extend to complex measures p. The following properties
of these definitions are easy to prove.

PROPOSITION 9. Let (X, A) be a measurable space. Suppose that p,v are mea-
sures (complex or positive) on A and that X is a positive measure on A. Then

(1) the connections with the total variation of a measure are these:
(a) w is concentrated on A if and only if |p| is concentrated on A;
(b) p L v if and only if |u| L |v|;
(¢) p << Xif and only if |p| < A;

(2) the connections with the additive structure of measures are these:
() pLAandv LN = (p+v) LA
b) pArandrv KX = (p+v) <A
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(3) the connections between < and L are these:
(a) p<Aandv LA = pu L.
(b) p<Arand p L X = p=0.

EXERCISE 7. Prove this proposition.

DEFINITION 24. A positive measure A on a measurable space (X, A) is o-finite
if X =U;—, X, is a countable union of measurable sets X,, with A (X,,) < co.

Now we can state the most important of the theorems in measure theory. It
gives, under certain conditions, a decomposition of a complex measure p into one
piece that is absolutely continous with respect to a given positive measure A, and
another piece that is mutually singular with respect to A. Moreover, it describes
completely the nature of the absolutely continuous piece, and shows that the mea-
sures in Example 6 are the only such pieces!

THEOREM 53 (Radon-Nikodym Theorem). Let (X,.A) be a measurable space.
Suppose that p € M(X) is a complex measure and that \ is a positive o-finite
measure on A.

(1) There is a unique pair of complex measures pi,, i, € M (X) such that
W= p, + iy where p, <K X and pg L A.

If in addition p is positive (and thus finite), so are p, and p.
(2) There is a unique h € L' ()\) such that

(2.3) f (B) = / hdX\,  for all E € A.
E

The function h € L' (\) in part (2) of the theorem is called the Radon-Nikodym
derivative of p with respect to A and is usually denoted

dp
h=—.
X
This function will be obtained using the Riesz representation theorem 51 for an
associated Hilbert space L? ().

Proof: We begin with the proof of uniqueness. If
fq + By = Ho + 1y
where u,, u), < A and pg, g L X then
W=, — L, = pl — pg satisfies w < X and w L A,

hence by Proposition 9 (3)(b) we have w = 0. The uniqueness of h € L' (\) in
part (2) is simply the fact that [, hdX = 0 for all E € A implies h = 0 A-almost
everywhere.

Conversely, we first prove the special case where both p and A are positive
finite measures. Then the sum ¢ = 1+ A is also a positive finite measure, and the
Cauchy-Schwarz inequality gives

] / fdu‘ < [aus [is1a < ( / |f|2dso)é Ve = Vo £l 2o

for every f € L? (). Thus we see that the map
Af= [ fdu fer).
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defines a bounded linear functional on the Hilbert space L?(p)! By the Riesz
representation theorem 51 for Hilbert spaces, there is a unique g € L? (¢) such that

[ fode =492 = A = [ ddn 1),

We now claim that g (z) € [0, 1] for p-almost every 2 € X. To see this, consider
a ball B (z,r) in the complex plane that doesn’t intersect [0,1], i.e. B (z,7)N[0,1] =
0. Let E = g~'(B(z,7)) and assume, in order to derive a contradiction, that
¢ (E) > 0. Then we have

pE) 1 /Edu

1 1
o) ~ 9@ 2 (B) X = o) / xegde
1

1
= ot | et g et
= Z"‘@(IE)/XE(Q_Z)d‘Pv

which shows that

'LL(E)—Z L —z L rde =r
2 (E) '%(E)/“'g "’*”%(E)/X”“” :

since |g (z) — z| < r for € E. Thus we have shown that % € B(z,r). Since
% € [0, 1], we have the desired contradiction to B (z,r) N [0,1] = 0.

Now let {B (zn,7n)}.o; be a countable collection of balls satisfying

o0
= U B,

It follows that

H( 71 (C\ 0 1 Z# ZTHT’VL))) = 0=0,

NE

n=1

which says that g (z) € [0, 1] for @-almost every © € X.
Thus we may assume that g (z) € [0,1] for all z € X. We then have

ed [ a-ora = [ au— [ godn= [ tado= [ soan
[ sodtusn = [ fodu= [ poan,

for all f € L% (p). We can now define y, and p,. Formally, we expect that

d
(1—g) fdu = fgd, henceﬁ—lfg,

and this suggests that p, should live where g < 1 and that p, should live where
g=1. So let

A
S

{reX:0<g(z) <1},
{reX:g(@) =1},
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and set

1e (E) = p(ENA), EeA
p(E) = p(ENS), EcA

It is easy to see that p, L A. Indeed, since g =1 on S we have

A(S) = [xsir= [ xsgdr= [ (1= g)xsdu =0,

which means that A is concentrated on A = S¢, while by definition u, is concen-
trated on S. To see that p, < A is not much harder. If £ € A satisfies A (F) = 0,
then with f = xgn4 in (2.4) we have from (2.4) that

0:/ gd/\:/fgd/\:/(lfg)fdu:/ (1—g)du.
ENA p's X ENA
Since 1 — g > 0 on A we conclude that p(ENA) =0, ie. pu,(E)=0.

Finally, to see that there is h € L' ()\) satisfying (2.3), we note that for £ €
A and n > 1, equation (2.4) with f = (1+g+ ...+ ¢") xg and the Monotone
Convergence Theorem applied twice yields

w(ENA) = /E{lim (1—g”+1)}du

n—oo

= lim (1-g¢""")dp= lim / 1-9{Q+g+..+¢")xptdp
n—oo X

n—oo E

n—o0

= lim [ {1+g+..+9") xp}gd)
X

= lim [ (94+¢°+..+¢""")dA

n—oo E
g
= —7 A\,
/E l-g
g

(1 — gn+1) /"1 and (g +g2 + ... +g”+1) /! q
pointwise as n — oo. Thus h = ﬁ € L' ()\) and (2.3) holds. Note that both 1,
and p, are positive measures, and that h is nonnegative.
Now we remove the additional assumptions on p and M. First, we consider

the case where pu is positive and finite, and A is positive and o-finite. It is easy
. N or oo

to construct a pairwise disjoint decomposition X = |J
A(Xp) < oo for all n. Then define

since both

X, such that 0 <

n=1

N or oo

g
If

1
n; 27 (1 + A (X)) X
Then we have both
0<w(z)<1forall z e X,
and

N or oo )\(Xn)
0</de)\: > ma.

n=1
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If we let Ao be the finite positive measure given by
Xo (E) = / wd\, B e A,
E

then from what we have already proved we obtain
b= g+ where pu, < Ao and pu, L Ao,
ty, (E) / hd)g,  forall E € A, where 0 <h e L' ()\).
E

Clearly p, < A and g, L A both hold, as well as
u, (F) = / hodXo = / howd\,  for all E € A,
E E

so that h = how € L' () satisfies (2.3). Indeed, [, fdXo = [, fwd) for all f = xp
with F' € A, hence for all f simple, hence for all f nonnegative including f = hyg.
Finally, to remove the restriction that u is positive, write p = v —v_+iws—iwy
where v and w are the real and imaginary parts of g and v = vy —v_ and w =
wy —w_ are the Jordan decompositions of v and w respectively as defined in (2.2).

REMARK 25. The o-finiteness of A\ cannot be dropped from the hypotheses of
the Radon-Nikodym theorem. For example, if p is Lebesgue measure on [0,1] and
A is counting measure on [0,1], then p < X\ but if there were h € L' ()\) such that
1 (E) = [, hdX, then we’d have h(x) = f{x} hd\ = p({z}) =0 for all x € [0,1],
yielding the contradiction p = 0.

We can now obtain as corollaries, both the polar representation of a complex
measure and the Hahn decomposition of a real measure. We note that p < ||
holds trivially where |u]| is the total variation of p.

COROLLARY 18 (Polar representation). Let 11 be a complex measure on (X, A).
Then the Radon-Nikodym derivative h = % satisfies |h (x)] = 1 for |u|-almost
every x € X.

Thus for a complex measure, we can write du (z) = e**®d |u| (x), explaining
the term polar representation.
Proof: We first claim that if 0 < r < 1 and E, = {z € X : |h(x)| < r}, then

oo

|u| (Er) = 0. Indeed, if E, = J,,_; Fn then

S tE =3 /F hdw\ S;/Fnlhldlul < 3l () = ).

Taking the supremum over all decompostions E, = Unlen we obtain 0 < |u| (E,) <
7 |u| (E,), which implies |u| (E,) = 0 since 7 < 1. It follows that

(o € X @)l < 1) = Jimn Jul ({a e Xsn@l <1- 1) =0,

To show that |u| ({x € X : |h(x)] > 1}) vanishes, we apply the averaging argu-
ment used in the proof of the Radon-Nikodym theorem. It suffices to show that if
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B (z,7)NB(0,1) = 0, then the subset E = h~! (B (z,7)) of X satisfies |u| (E) = 0.
But if |p| (E) > 0, then we obtain

wE 1 1
W(E) IMI(E)/ Xl Iul(E)/ xphdy
1 1
= @ / Xp2de + g / xp (h=2)dp

= ZJlel(E)/XE(QZ)d%

which shows that
1 (E) ‘ 1 / 1

—z| < Xglh—zld|p| < ——— [ xprd|ul=r,
‘ ul () ul (B) ] *F lul (E) ] *F

contradicting B (z,7) N B (0,1) = 0.

COROLLARY 19 (Hahn decomposition). Let u be a real measure on (X, A). If
= py —p_ is the Jordan decomposition of p, i.e. py = & (|u| £ p), then py L pu_.
Moreover, if h = A s the Radon-Nikodym derivative of p with respect to its total

dfpl
variation |u|, then |h (z)| =1 for |u|-almost every x € X, and for E € A we have
py (B) = |pl(EN{h=1}),
o (B) = |ul(En{h=—1}).

REMARK 26. Using the Radon-Nikodym theorem it is easy to see that if p is a
complex measure and X is a o-finite positive measure, then u < X if and only if for
every € > 0 there is § > 0 such that

(2.5) lw (E)| < € whenever A (E) < 6.

Indeed, if f = g—’; € L' (\) is the Radon-Nikodym derivative, and if e > 0, the Domi-
nated Convergence Theorem shows that there is M < oo such that f{|f|>M} |f]dX\ <
5. Then with § = 557 > 0, we have

2
/fdA s/ If\dA+/ FldA
E {IfI>M} En{|fI<M}
< %+M)\(E)<%+M6:s,

n(B) =

if AM(E) < 4.

In fact, even for general positive measures A, it is true that p < A if and only if
(2.5) holds. To see this, suppose there is € > 0 and sets {E,} " | with A(E,) < 5+
but |u (En)| > € for alln > 1. Then

o0 o0
/\<U En> < 227”—>O as m — 00,

n=m n=m
and so the set E =\ ~_, Uo—,, En yields the desired contradiction to Proposition

9 (1) (C)' n=m
AME) = lim A ( G En> =0,

ul(B) = lim | { [ En> > lim inf |u| (Em) > e
n=m



CHAPTER 9

Differentiation of integrals

In this chapter we investigate to what extent we can differentiate the Lebesgue
integral fRn fd\, in order to recover the integrand f. In one dimension we have for
f € C. (R) the two familiar statements of the Fundamental Theorem of Calculus:

d x
£ - R
=] o= t@. aer

/ fax = blim F () — lim F(a),

where F' is any antiderivative of f. The first of these statements can be rewritten
in the equivalent forms

+h T AN — [T fdX

1 :
W, ST h Fe.

and

1
li — d\ =
|I|—>IOI:nchI | /If /=),

for all f € C.(R) and = € R. The latter limit is taken over all intervals I that
contain the point x and the assertion is that for € > 0 there is § > 0 such that
‘ﬁ J; fAx—f (w)‘ < ¢ whenever z € I and |I| < §. This suggests the following
analogue in higher dimensional Euclidean space R".

PROBLEM 4. To what extent is it true that
1
0.6 li — d\ =
(06) |I|~>%)I:nwel 7] /If 1 (@)

for f € L* (R™), x € R", and a family {1}, ¢; of subsets of R™ containing x?

Of course, for continuous functions f, the above limit (0.6) holds at every
x € R”, provided only that the sets I have diameters that shrink to 0 as their
measures || tend to zero. More generally, we will see that for integrable functions
f, and for sets I which are sufficiently like balls, the above limit (0.6) holds for
almost every = in R™. The proof follows these lines:

The limit (0.6) holds for every z if f is continuous.

The space of continuous functions is dense in L (R").

The oscillation of the limit in (0.6) is near zero except on a small set when
Hf”Ll(R“) is small.

The connection between the oscillation of the limit of averages of f in
(0.6), and the L' (R™) norm of f, is governed by the maximal function
Mf and a weak type inequality.

123
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1. Covering lemmas, maximal functions and differentiation
Let
_ fok(: n — [k
D= {2 (] + [07 1) )}jGZ”,kEZ = {Qg }jEZ",kEZ

be the grid of dyadic cubes in R™, and define the dyadic mazimal function M f
of a locally integrable function f on R™ by

1
& r)= sup — T n
MIf (@)= sup |Q|/ F@ldy, zeR

We say that f is locally integrable, written f € L}, (R"), if IXBo,r) € L' (R™) for

all R < co. Clearly, M f is measurable since it is the supremum over m of the
functions

fu@ = > (Baplfl) xop (@), weR,
JEL™
Eqg = @/di)\n.

Thus M f (z) is the least upper bound of all the dyadic averages Eq |f| of |f| at
x. In order to study the convergence of the dyadic averages of f, we consider the
limit superior of the dyadic averages of |f| at z:

I f(z )—hmsup \Q|/ lf (yldy, =ze€R",

where it is understood by the expression Q — z that @ is a dyadic cube containing
x whose side length is shrinking to zero in the limit. Clearly we have

(L) T fE)@=0 = Jm @/u ) dy =0

= f) clzlglwm/f
Of course we have
(1.2) T f(z) < MWF (),

and the key properties of the maximal operator M are that it is bounded on
L% (R™) and of weak type 1 — 1 on L' (R"):

(1.3) [{z e R" - MWf (2) > A}| < /Rn|f(y)|dy, A 0.
To see (1.3) define
A = {zeR":MYf(z)> A},

3y = {QeD:w'/Qlf(y)ldy>/\},

and let {@Qn},, be the set of mazimal dyadic cubes in ®5. Then the cubes Q,, are
pairwise disjoint and we have

- e-= UQm

QEP A
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This is the most successful of covering lemmas: namely we have covered a union
Q) of dyadic cubes with a pairwise disjoint subcollection. Unravelling definitions

yields
=S @nl <35 [ r@lar <y [ 17wl

The weak type inequality (1.3) for M% yields the Lebesgue Differentiation
Theorem for dyadic averages.

THEOREM 54. For f € L} . (R™) we have

1
)= lim — dy, a.e.x € R™,
I () |Q|—0: xeQeD |Q) /Qf(y) 4
in fact,

. 1 -
odm /Q 1 () — f ()] dy = 0.

Proof: Since the conclusion of the theorem is local it suffices to consider
felLl (R™) with compact support. Given € > 0, we can use Lemma 26 to choose
g € C.(R") with [ |f — g| < e. However, T% (g — g (z)) (z) = 0 for every z € R"
since g is continuous. It follows from the subadditivity of I'®” and (1.2) that

MY (f—f@)(x) < T —f(@)—[g—g@)]) () +T¥(g—g(2)) ()
< T (f—g)(x)+T%(f (z) — g (2)) (z)
< MY (f—g) (@) +|(f—9) ().
Now we have
{x eR":TW (f — f(z)) (z) > A}
A A
C {xeR":Mdy(fg)(m)>2}u{x€R”:|(fg)(x)| > 2}

and so

{e e R":TW (f - f(2)) (z) > A}| <

{eerrimng-g@ >3}

tfeer - wi> 3|

2 2 4
< Z — z - e
< )\/If g|+A/|f 9|<)\€

Now let ¢ — 0 to obtain [{z € R™ : T% (f — f ()) (x) > A}| = 0 for all A > 0.
This proves that % (f — f (z)) (x) = 0 for a.e. z € R™, and (1.1) now concludes
the proof of Lebesgue’s differentiation theorem for dyadic averages.

We now wish to extend Lebesgue’s differentiation theorem to more general av-
erages, namely to the collection of almost-balls in R". Fix a large positive constant
C. Then we say that a subset I of R™ is an almost-ball of eccentricity C if there is
r > 0 and two balls, B (z,r) and B (y,Cr), with

(1.4) B(z,r)CIC B(y,Cr).

Note that we do not require = or y to belong to I, nor must = equal y. Thus an
almost-ball contains an ordinary ball, and is contained in another ordinary ball of
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C times the radius. In order to prove this more general differentiaion theorem,
we will use the notion of shifted dyadic grids to reduce matters to what we have
already proved.

Define a shifted dyadic grid to be the collection of cubes

(1.5) Do = {Qk (j + (-1 a+ [0,1)") L keZje Z"}, ae {02},
The basic properties of these collections are these: In the first place, each D, is
a grid, namely for Q,Q’ € D, we have Q N Q" € {0, Q, @'} and Q is a union
of 2™ elements of D, of equal volume. In the second place, and this is the novel
property here, for any cube @@ C R™, there is a choice of some « € {0, %, %}” and
some @' € D, so that

QCQ and Q< C,Q|.

Here C, is a positive constant depending only on dimension n. We prove that C; <
4 in dimension n = 1, and leave the general case to the reader. So suppose that [a, b]
is an interval. Let k € Z be the unique integer satisfying 21 < b —a < 2F. Now
choose j € Z and o € {0, 5, 2} so that (j + (—1)F! a) 2F+1 is the largest such ex-
pression satisfying (j + (=) a) 2F+1 < q. Then a < (j + (=D o+ %) 2k +1
and so
1 5 .
b<2F4a<2F4 <j + (=D o+ 3) 2kt < (j +ot (—1)F*t a) k1,
It follows that

la,0] C K] +(—1)FH! a) gh+1 (j F14(=1)" a) 2’““) ,

where the latter interval belongs to the grid D, and has length 281 < 4 (b — a).
We now define the D,-analogs of the dyadic maximal operator, namely

1
. MW = — .
(16) @)= S T /Q ]

Just as for M we have that M% is weak type 1 — 1 on L! (R"),

]{xeR”:Miyf(x)>/\}]§%/ F@)ldy,  A>0.
R’!L

Now fix C > 0 and let A = A denote the collection of all almost-balls of eccen-
tricity C in R™. Consider the corresponding maximal function
1
MAf ()= sup —/|f(y)|dy, x € R"™.

I€A: z€l |I| I
For each almost-ball I € A and ball B (y,Cr) as in (1.4), there is a cube @ D
B (y,Cr) with |Q| < (2Cr)". Then the properties of the shifted dyadic grids yield
the existence of a € {0, %, %}n and Q' € D, such that

IcB(y,Cr)ycQcq,
and

Q' < CnlQl < C (2CT)" < €, B (z,1)] < C,, 1]

It follows that

1 c
m/[f(y)|dy§ |Q/|/Q/ |f(y)|dy§0;/\/1iyf(x)’ for each z € I,
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and hence that
MAf(z) <C! max  MWf(z).

ae{O,%,%

This proves that M is also weak type 1 — 1 on L! (R"):

Hz e R": MAf(z) > A} < {22 erR”:Mg}’f(x)>32,,H
ae 0,§,§

9C!,

< 2 [ 1wl aso

As a result we can prove the following theorem in exactly the same way as Theorem
54 above.

THEOREM 55. Let A = A¢ be the collection of all almost-balls of eccentricity
C > 0. For f € L}, (R") we have

loc
fz)= lim i/f()d a.e.x € R"
1—0: sereA |1 J; v/ ey, o ’
in fact,
1
li — - dy=20 .e.x € R,
i [ - r@la=0. aea

COROLLARY 20. Suppose that p is a complex Borel measure on R™ and that
<K A\, where Ay, is Lebesgue measure. If f = ;f\—‘; is the Radon-Nikodym derivative

of p with respect to A\, then f can be obtained as a limit of ratios of measures:

. p (1)
= | —_— .e. R™.
f (@) upo;lrfeIeA 7|~ aer €

Proof: Apply Theorem 55 using p (1) = [, fdA, = [; f (y) dy.

COROLLARY 21. Let E be a Lebesgue measurable subset of R™. Then almost
every point in E is densely surrounded by points of E in the sense that
. |[ENB(z,7)]

lim

" B ()] =1 for almost every x € E,

while almost every point not in E is densely surrounded by points not in E in the

sense that

lim |[EN B (z,r)]

e T T PST =0 for almost every x ¢ E.

Proof: Apply Theorem 55 using I = B (z,r) and f = xp so that

BB (2,7) :/

B(z,r)

Xk (y)dy = /If(y) dy.

This last corollary gives a surprising insight into the structure of measurable
sets, which provides yet another illustration of Littlewood’s first principle: measur-
able sets are almost open sets. Of course it is trivial that every point in an open
set F is entirely surrounded by points of E at a small enough scale.
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2. The maximal theorem

Our next theorem will require an expression of the LP norm of a function f in
terms of its distribution function

{IFl >t} = {z e R™ : [f (@) > £},  £>0.

We could appeal at this point to the following special case of Fubini’s theorem,
proved in the next chapter. Suppose that g : R™ — [0, 00) is measurable. Then

g(x)
(2.1) / g(x)dx = / {/ ptpldt} dx
n n O
/ {/ X{g>t} (z) ptpldt} dzx
™ | /[0,00)
X x ptp_ldac} dt
‘/[0700) {~/]R” {g>t}( )

- / g > 1} ptr—dr.
[0,00)

However, we only need the following easy approximation to (2.1):
(2.2)

[ o@ra= 3 | gaydr<w 3 9| {oF < g <oty

k=—oo / {2F<g<27+1} k=—o0

THEOREM 56. For 1 < p < oo we have

([ ) < ([ 1) rer@,
R~ R"

Proof: The following argument is from Marcinkiewicz interpolation. Define
Fx=X{jp)> 3 so that M (f — f1) < 3 by the boundedness of M% on L (R"):

||./\/ldngLm(Rn) < HgHLOO(R,L). Consequently, by the subadditivity of M% we have
A
MPF <M (f = fr) + MW f < B + MY [y,
and thus

(2.3) {zGR":Mdyf(a:)>)\}C{xER”:Mdyf)\(a:)>;\},
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for any A > 0. Now use (2.2), (2.3) and then (1.3) applied to fy with A = 2* to
obtain

/ MW (@) de < 20 Y 2 [{zeR": MWF(z) > A}
R™ k=—oc0
< 21”;_: okp {mER":Mdyfzk (x)>2}‘
= 1
< 2° Z Qkp{2k1/ | for (m)|dm}
k= —o0 Rn
= ortl ok(P—1) / |f (z)| dz
k;oo {weR™:| ()| >2k -1}
- 2p+1/ |f (z)] > 2k by
k: 2k <2|f(a)]
S 22]771 ]'

W/Rn |f (z)]” da,

o -1
since Zk: 2k <2| ()| 2k(P—1) < % Note that we have used Corollary 9 in
order to interchange summation and integration in the penultimate line above.

EXERCISE 8. Prove the maximal theorem with M replaced by the larger maz-
imal operator M.

2.1. The Haar basis. In our second example of an orthonormal set in Ex-
ample 5 of Section 3 of Chapter 7, we showed that the collection of Haar functions
{hY};cp is orthonormal in L? (i), but deferred the proof that it is a basis until we
had Lebesgue’s Differentiation Theorem at our disposal. We assumed there that p
is a positive Borel measure on the real line R satisfying p (I) > 0 for every I € D.
For convenience we now assume a bit more:

(2.4) w(I) > 0forevery I €D,
[eS) 0
dp = / dp = oo.
0 —00

We will need the analogues of dyadic differentiation theory for a positive mea-
sure u in place of Lebesgue measure. The following two theorems are proved in
exactly the same way as the corresponding results for Lebesgue measure above.
For these two theorems we assume that p is a positive Borel measure on R™ satis-
fying pu (I) > 0 for every I € D, and u(J) = oo for each of the 2" ‘octants’ of the
form J =[]\, J; where J; is either (—o0,0) or [0, c0).

THEOREM 57. For f € L} _(R"™) we have

loc
1
= fim 0] d ) — a.e.x € an
/@) 1Q|—0: 2€QeD |Q|H/Qf(y) 1 (y) m

in fact,

. 1
l@iﬂol:”?e@ep [Ql, /Q |f (y) = f ()| dp(y) = 0.
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DEFINITION 25. Define the dyadic py-maximal function szf of a locally -
integrable function f on R™ by

1
M f(z) = sup |Q|H/Q|f(y)|du(y), zeR"

reQED

THEOREM 58. For 1 < p < oo we have

([ st an)” <o, ([ uran)"s rerm.
Rn R"

Now we return to dimension n = 1. Recall that D = |J, ., Dy is then the set of
dyadic intervals, where Dy = {[j2k, G+1) 2’“) }jeZ' We defined the Haar function

Y for I € D by

hy (z) =

POy (1 (@) 1, @Y
(1) (M(I) u(m)’ <%

where I_ and I, are the left and right halves of I, referred to as the children of
I. The collection of Haar functions {h}'},., was shown to satisfy the elementary
properties

supphf C I, /h‘;du:(), /|h?|2du:1,
and most importantly, the crucial orthogonality property,

/h‘;hf}d,u:(), if I,JcDand I #J.

To see that {h}}, p is actually an orthonormal basis for L (u), it suffices
by Theorem 49 to establish that Span {hf}; ., is dense in L?(u). For this we
introduce the expectation functions,

EZf(m)EZ<f,|Il|11> 17 (2), z€R, kcZ,
L2(p)

IeDy, H

which for a given k € Z, are simply the functions that are constant on dyadic
intervals I of length 2¥, and where the constant is the p-average of f on I. We
make three elementary observations regarding the functions E. f for f € L? (u):

Eif(x) — 0ask— oo forevery z € R,
Eif(z) — f(z) as k — —oo for p-almost every z € R,
Eif (z)] < Mﬁyf (z) for every x € R,
and the crucial observation,
(2.5) Efy f (x) —BR f (2) = > (Fo ) pa P (),
I€D: 2M+1<||<2N

for all x € R, and for all integers M < N.

The first observation follows from
1 / 9 1
<\ o [ fPde) =——=—=|fllp-
<|I|H I /7|I|# L2(p)

1 1
<f7|1|1[> = W/fd/i
S ) u ol

[N
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and our second assumption in (2.4). The second observation follows directly from
Theorem 57. The third observation is immediate from Definition 25 since

<f’|| > |I| /‘f|d“<Mdy (), forzel.

We now turn to the verification of the crucial observation (2.5). It suffices to prove
the cases N = M + 1, and then add them up. So for I € D we must prove that

1 1
(26) f,i]_[_ 1, (x)+ f,71]+ 1[+ (.’E)
LEPR IRy
©) L2(p)
1
- f)i]-l 11 (l’)
|I|# L2(
©)
= (f; h%m(#) by (), rel,
where

@ |I—| |I+|M 1; (z) 1, (o)
"=\, (‘ o, L, )

This is an elementary but tedious calculation. For « € I_ the left side of (2.6) is

1
fv > _<fa1[>
< =1, () ™/ g
B (u Bl )/ Ja= /fd”
Ll ) 1 1
= d
<||>|I| fai |I|/I+f“’

and the right side is

[, e, 1
1, 1],

L5, 1 [ [5G, |
- d
1, |f|ﬂ{ 11, [ )7 ’”/u 1, ™
114,
= d .
i, {u IR T, /f“}

Thus (2.6) holds for € I_, and the case « € I is similar. This completes the
verification of (2.5).

- <fa h/IL>L2(H)
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With these observations in hand, we can apply the Dominated Convergence
Theorem with umbrella function g = 3Mﬁy f to obtain

(27) Mﬂfooliéflrlld N—oo f B Z <f’ hlIL>L2(p.) h’ﬁ;
TeD: 2M+1<|T|<2N L2(p)
2
= i — I ©
Tl N_m/]R /() Z (Fi ) o Iy ()| dp(2)

IeD: 2M+1<|T|<2N
- / f ()= Mﬁfoohzglld N—o0 Z (f hl;>L2(l‘) Wy (x)) du (z)
IeD: 2M+1<|T|<2N

f (2) = [f (z) — 0] duu () = 0.

R

Note that by Theorem 57 we have |f (z)| < M f (x) for p-almost every z € R,
and so for these =z,

f (:L‘) - Z <fa hl[L>L2(#) hl; (37)

IeD: 2M+1<|1|<2N

|f (&) — [B f () — By f ()]

|f ()] + [BY, f (x) — BN f ()]
BMYf (x),

IN N

where Mﬂy f € L? (1) by Theorem 58. Thus the umbrella function g = SMﬁy f can
be used in the above application of the Dominated Convergence Theorem.

Equation (2.7) shows that Span {h}},_ is dense in L? (1), and Theorem 49
now shows that {h'},;_,, is an orthonormal basis for L? (1).

REMARK 27. We can avoid the use of Theorems 57 and 58 if we appeal to the
density of C. (R) in L? (11). Indeed, we then need only establish (2.7) for f € C.. (R).
This is easy since BY f (x) — f(x) as k — —oo for every x € R by continuity of f,
and if f is supported in a dyadic interval I, then

M (@) < | flloe MY (1) (2)

and it is easily verified that MY (17) € L (u). For example, if I = [0,1) then

M (1)) (z) = (0.2 k-l <p <ok k>1,
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and we have

/ M (1) (@) dps ()

= [ an @ aue + 3 (L
0 k=1

0,1

0,2

k))))) ([Qk—172k))

L o 1y 0P d 2o i ([0,24) = ([0,2571))
= [ 1M @ e+ (0.1) 2 u([0,25))°

IN

w((0,1) + 1 (10,1)°Y /

o0

W) 1

— u([O or-1y) 12

< w0 +r@VP [ = ou(o1),






CHAPTER 10

Product integration and Fubini’s theorem

In this chapter we investigate to what extent the order of integration can be
reversed in a product integral, i.e. when do we have an equality

/X{/yf(x’y)dy(y)}dﬂ(x):/},{/)(f(‘x’y)dﬂ(x)}dV(y)?

An important example of this question arose at the end of the previous chapter.
However, much preparation needs to be done in order to even ask the general ques-
tion intelligently. For example, what sorts of functions f (z,y) have the property
that for enough fixed points x, the function y — f (x,y) is measurable on Y; and
for enough fixed points y, the function = — f (z,y) is measurable on X7 This
question brings to light the fact that we will be dealing with three o-algebras of
sets here, one in X, another in Y, and a third in the product set X x Y. Thus we
begin with an investigation of product o-algebras.

1. Product o-algebras

Suppose that (X, .A) and (Y, B) are measurable spaces. A measurable rectangle
is any set R € P (X x Y) having the foorm R = A X B where A € A and B € B.

DEFINITION 26. A X B is the smallest o-algebra on X XY containing all mea-
surable rectangles.

An elementary set E € P (X x Y) is any finite pairwise disjoint union of mea-
N

surable rectangles, i.e. FE = Un:lAn x B, where A, € A and B, € B. The
collection of all elementary sets is denoted &.

DEFINITION 27. A monotone class M on a set Z is a collection of sets in P (Z)
that is closed under both monotone unions and monotone intersections, i.e.

o0
UE” € MifE,eMandE, C E,yy foralln > 1,
n=1

ﬂ E, € MifE,eM and E, D E,y1 for alln > 1.
n—1

Clearly every o-algebra is also a monotone class. Since A x B contains the
elementary sets £, it follows thus A x B is a monotone class containing £. It turns
out that in order to define the notion of product measure independent of iteration,
it is important that A x B is the smallest monotone class containing £. Note that
for any given collection of sets F, the smallest monotone class containing F always
exists - it is simply the intersection of all monotone classes containing F.

135
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THEOREM 59. A x B is the smallest monotone class on X X Y containing the
collection £ of elementary sets.

Proof: From the remarks made prior to the theorem we have
(1.1) ECMCAXB,

where M is the smallest monotone class containing £. Now the intersection of two
measurable rectangles is again a measurable rectangle, and the complement of a
measurable rectangle is a union of three pairwise disjoint measurable rectangles,
namely

(Al X Bl) n (AQ X BQ) = (Al n Ag) X (B1 n BQ),
(A1 x B1)® = (A$ x By)U (A x BS) U (A5 x BS).

From this we see that the collection £ of elementary sets is closed under finite
unions, intersections and differences, i.e.

(1.2) PUQ, PNQ, P\Q, Q\Pefforal PQeE.
Indeed, this is obvious for PN Q, and so then for P\ Q = PN Q°, and finally then

for PUQ = (P\Q)UQ.
Now for every P € P (X xY) let

Mp={QeP(XxY):P\Q, Q\P, PUQ € M}.

It is clear that Mp is a monotone class for every P € P (X x Y'), and moreover
that

(1.3) QeMp<=PecMgy, forallP,QeP(XxY).
We now claim that
(1.4) P\Q, Q\P, PUQ € M for all P,Q € M.

Indeed, suppose first that P € £. Then by (1.2) we have that Q € Mp for all
Q € E. Thus £ C Mp and hence also M C Mp since Mp is a monotone class
containing £, and M is the smallest such. Now fix Q € M. We just proved that
for P € £ we have @) € Mp, hence by (1.3) we also have P € M. Thus £ C Mg,
and hence also M C Mg since Mg is a monotone class. This completes the proof
of (1.4).

We next claim that M is a o-algebra. Indeed, M is closed under complemen-
tation by (1.4) since if P € M, then P¢ = (X x Y) \ P where both X xY and P
are in M. Finally, M is closed under countable unions since if {P, },-; C M, then

UrP.=J{PvRU..UP}eM,
n=1 n=1
since the latter union is monotone and P, U P, U ... U P, € M for each n > 1 by
(14).
In particular, we have proved that M is a o-algebra containing the measurable
rectangles. Since A x B is the smallest such we obtain A x B C M, which when
combined with (1.1) gives A x B = M.

DEFINITION 28. Given a function f : X x Y — C (or [0,00]), and a point
x € X, we define the slice function f, : Y — C (or [0,00]) by

fo) =f(zy), yev
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Similarly, for y €Y, we define the slice function f¥ : X — C (or [0,00]) by

f'(z)=f(zy), =zeX
Finally, for E € P(X xY), we define the slices E, and EY by

E, = {yeY:(v,y) € E}, x € X,
EY = {zeX:(z,y)€E}, yev.

Note that
(Xg)e = x&, and (xg)” = Xgv-

The minimality of the product o-algebra A X B turns out to imply that measurability
of f (z,y) with respect to A x B is passed on to measurability of the slice functions
fz and fY with respect to B and A.

THEOREM 60. Let f be A x B-measurable on X XY, and let E € Ax B. Then

(1) for every x € X, fy is B-measurable on' Y, and E, € B;
(2) for everyy €Y, fY is A-measurable on X, and EY € A.

Proof: Let V be an open set in C (or [0,00]) and let G = f~1 (V). Then

(fo) T (V)={yeY:(xy) eCG} =G
Now let
C={FeAxB:F,eBforallze X}.

Since B and A x B are o-algebras, it follows easily that C is a g-algebra. Moreover,

if F = A x B is a measurable rectangle, then F, = B }f ved , and so
0 if =xe A°

C is a o-algebra that contains all the measurable rectangles. We conclude that

C=AxB. Since G € AxB=2C, wehave (f,) (V) =G, e Bforall z € X,

which shows that f, is B-measurable for all 2 € X. In particular, xp = (xg), is

B-measurable and E,, € B for all z € X. Similarly, f¥ is A-measurable and EY € A

forallyeY.

2. Product measures

Let © be a positive measure on (X, .A), and let v be a positive measure on
(Y, B). In this section we consider the equality of the two natural candidates for
defining a product measure ;1 X v on A X B, namely for F € A x B,

en [ {] e wareface ma [ { ] q @ fao.

We note that Theorem 60 shows that the functions (x ), and (x )" are measurable,
and hence that the inner integrals [, (xz), (v)dv (y) and [y (xg)? () dp (z) in
(2.1) exist for all z and y. But we don’t yet know that the functions

:H/ (i) () dv ( )andye/ (xg)! (@) dyt ()

are measurable, and so we can’t yet make sense of the iterated integrals in (2.1).
However, even when we can make sense of both iterated integrals, they may
not be equal! For example, if p is Lebesgue measure on (R, £;), and v is counting
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measure on (R, P (R)), and E = {(z,2) : 0 <z < 1} is a diagonal segment in R? =
R x R, then

/X {/y (X&), (y) dv (y)} dp () = /[071] {Vdp(z)=1-1=1,
/y {/X Ocw)” () dy (x)} dv (y) = /[071] {0} dv (y) =000 =0.

The following theorem resolves these difficulties when the measures p and v are
e el . 00

both o-finite, i.e. X = J,_;X; with p(X;) < oo for all i, and YV = J;_,Y; with
v (Y;) < oo for all j. The proof will use the Monotone and Dominated Convergence
Theorems in conjunction with Theorem 59 on monotone classes.

and

THEOREM 61. Let (X, A, u) and (Y,B,v) be o-finite measure spaces, and let
E e AxB. Then

o(a) = /Y (xp)e W) v () = v (E,),  z€X,

is A-measurable, and

b (y) = /X (xs) (@) du(z) = p(BY),  yev,

is B-measurable. Moreover, we have the equality

| e@au) = [ v ).

Proof: If both measures p and v were finite, we could use the Monotone and
Dominated Convergence Theorems to show that the class of all sets E € A x B
that satisfy the conclusions of the theorem, is a monotone class containing the
elementary sets. We could then apply Theorem 59 to complete the proof of the
theorem. Since the measures p and v are only o-finite, we must be a bit more
careful.

Let C be the class of all sets E € A x B that satisfy the conclusions of the
theorem. We claim that C has the following four properties:

(1) Every measurable rectangle A x B € A x B belongs to C,

(2) If {E,},2, is a nondecreasing sequence of sets in C, i.e. E,, C E,1; for
allm > 1, then E=J,~, E, €C,

(3) If {E,,},~, is a pairwise disjoint sequence of sets in C, i.e. E,,NE, =0
for all m,n > 1, then E=J,2 |, E, €C,

(4) Suppose that A x B is a measurable rectangle with p (A) < oo and v (B) <
oo. Then if {En}zoz1 is a nonincreasing sequence of sets in C, i.e. E, D
E,iqforalln>1,and if A x B D FEj, then E = ﬂ;ozl E, eC.

With these four properties established for C, it is easy to finish the proof of the
theorem. Indeed, we simply define

M={FeAxB:EN(X; xY;)eCforallij>1},
where X; and Yj are as in the definition of o-finiteness of X and Y. Properties (2)
and (4) show that M is a monotone class. Properties (1) and (3) show that the

elementary sets £ are contained in M. Theorem 59 now shows that M = A x B,
and the theorem is proved.
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So it remains only to establish properties (1) through (4) for the class C. If
E = A x B, then

(Xp), ) = xa (@) x5 (¥) = (xg)" (2),
is B-measurable for each x, and A-measurable for each y, and so

o () = /Y xa () x5 (1) dv () = v (B) x4 () is measurable,

¥ (y) = /X xa (@) X5 () dis (£) = 1 (A) xp (y) is measurable,

| e@du@ =utyvm = [ vty

This establishes property (1).

To prove property (2), we let ¢,, and 1, correspond to E, in the same way
that ¢ and 9 correspond to E above. We are assuming that ¢,, and v,, satisfy the
conclusions of the theorem, so they are both measurable and

/gon(x)du(z):/wn(y)du(y), n>1.
X Y

Since the sequence of sets I, is nondecreasing, the sequence of functions ¢,, is
nondecreasing, and so is the sequence of functions ¢,,. The Monotone Convergence
Theorem applied twice gives

[ e@dn) = tm [ @ dutz)
X

n—oo X

= lim U, ( / Y (y)dv (y

n—oo Y

This completes the proof of property (2).

Property (3) is obvious for finite pairwise disjoint unions, and the general case
then follows using property (2).

Finally, the proof of property (4) is similar to that of property (2), except
that we can use the Dominated Convergence Theorem instead of the Monontone
Convergence Theorem because both p (A) and v (B) are finite.

We can now define the product measure p x v on A x B that is associated with
wand v.

DEerFINITION 29. If (X, A, ) and (Y,B,v) are o-finite measure spaces, and if
E € A x B, define
(2.2)

wxv® = [ { [ b warefaw = [{ ] cor @,

where the equality of the two iterated integrals follows from Theorem 61.

Corollary 14 applied twice shows that pxv is a positive measure on (X x Y, A x B),
and it is of course o-finite. With the definition of product measure in hand, we are
more than half way to proving the equality of iterated integrals in Fubini’s theorem.
Indeed, taking finite sums of scalars times indicator functions in (2.2) shows that

(2.3) /X(/deu)du:/xxyfd(uxy):/y(/deu)dz/
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for all simple functions f. Five applications of the Monotone Convergence Theorem
then show that (2.3) holds for nonnegative measurable f. The integrals on the far
left and far right in (2.3) are called iterated integrals, and the integral in the middle
is called a double integral. In the next section we give a precise and more general
statement, along with a detailed proof. The cases where f is [0, co]-valued and
C-valued are treated separately.

3. Fubini’s theorem

THEOREM 62. Let (X, A, ) and (Y, B,v) be o-finite measure spaces, and let f
be A x B-measurable on the product set X x Y.

(1) If0 < f(z,y) < oo forall (z,y) € X XY, and if
pz) = /fo(y)dV(y), z € X,
vw = [ P@dee). yey,

then ¢ is A-measurable and ¢ is B-measurable and

/sodu=/Xnyd(u><V)=/Ywdu~

(2) If f(x,y) € C for all (x,y) € X XY, and

/Ifl reX,
/Mm d(uXV):/Yw* av,

and so f € L' (u x v) if [, ¢* dv < c0.

(3) If f € L' (u x v) then f, € L' (v) for p-almost every x € X, f¥ € L' ()
forv-almost everyy € Y, the functions ¢ and v defined almost everywhere
by

then

/fx(y)dy(y), uw—ae x€X,
Y

AS)
&
I

b(y) = /Xfy(x)du(fv), v—aeycY,

are in L* (1) and L' (v) respectively, and

Jean=[ sawxn=[ v

The first assertion (1) is often called Tonelli’s Theorem, while the third assertion
(3) is then referred to as Fubini’s Theorem. The point of assertion (2) is that if
at least one of the iterated integrals of |f| is finite, then f € L' (1 x v) and so (3)
holds.

Proof: We first prove assertion (1). If E € A x B, then Theorem 61 shows
that assertion (1) holds for f = x . By summing scalar multiples of such indicator
functions, we see that (1) holds for all simple functions f. Now if f is [0, oc]-
valued, Proposition 7 shows that there is a nondecreasing sequence {s,},., of
nonnegative simple functions satisfying 0 < s, < s,41 < f for all n > 1 and



3. FUBINI’'S THEOREM 141

such that lim, . s, (z,y) = f (x,y) for every (z,y) € X x Y. Since assertion (1)
holds for s,, if we let ¢,, and v,, correspond to s, in the same way that ¢ and
correspond to f, then we have

/(pndu:/ snd(uxu):/wndu, for all n > 1.
X XxY Y

We now apply the Monotone Convergence Theorem five times. Two applications
show that ,, increases pointwise to ¢, and that 1),, increases pointwise to ¢. Three
more applications show that

lim [ ¢, dp = / ® du,
lim Snd(pxv) = / fdpxv),
=0 JXxY XxY

T T

and this completes the proof of assertion (1).
Assertion (2) is an immediate consequence of applying assertion (1) to | f].
Finally, assertion (3) is easily reduced to the case that f is real-valued. As-
sertion (1) then applies to both the positive f; and negative f_ parts of f to

give
/widuz/ fid<u><u)=/widu,
X XxY Y

where ¢ and 1 correspond to fi in the same way that ¢ and ¢ correspond to
f. Now we add the two equations corresponding to £ to obtain that

Jvelau= [ il dtux) = [ ol a

Thus the functions ¢, fi,%, are finite almost everywhere, and all have finite
integral. Thus we can take the difference of the two equations corresponding to £

to obtain
/wdu=/ fd(u><V)=/¢dV-
X XxY Y

Note that the indeterminate expression co — oo will only arise on sets of measure
zero in the differences taken above. This completes the proof of Fubini’s theorem.

The next two examples show that assertion (3) of Fubini’s theorem may fail if

e f is not integrable, even if all other hypotheses hold,
e fis not A x B-measurable, even if all other hypotheses hold.

EXAMPLE 7. Fven if X andY are finite measure spaces, f is AXB-measurable,
and both iterated integrals for f exist, it may happen that the iterated integrals are
not equal, due to the fact that f fails to be integrable. For example, let X =Y =
[0,1), let uw = v be Lebesgue measure on [0,1), and define f by

Fy) =Y {2 X ) @) = 2X iy @} 2 Xy ()

onF1°27 27 on—1 27 on—1
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Then if x € [%,1), we have f, (y) = —4)([%’1) (y) and [ fz (y)dy = —2, while if

T € [ﬁ, 2%) for somen > 1, then

Fo () =2""12" 1y () =272 (),

g1

and [ fu (y)dy = 0. Altogether we have

/(/fx(y)d?J)dx:/[l1)(—2)dx+7§:1/[ 1 I)Odwz—l.

27 on+1 727

On the other hand, we have [ f¥ (z)dz =0 for all y € [0,1) and so

/(/fy(w)dx>dy:/0dyzo_

EXAMPLE 8. Even if X and Y are finite measure spaces, and both iterated
integrals exist for a nonnegative bounded function f, it may happen that the iterated
integrals are not equal, due to the fact that f fails to be A x B-measurable. For
example, let both (X, A, n) and (Y, B,v) be Lebesgue measure on [0,1]. Assume the
aziom of choice, and in addition the continuum hypothesis, which asserts that the
cardinality of the real numbers is the first uncountable cardinal. Then there is a
one-to-one mapping

r:[0,1] - X\ {w1},
where (X, <) is the well-ordered set whose last element is the first uncountable
ordinal wi. See the fourth instance of a measure space in Example 4 near the
beginning of Chapter 6. We note in passing that Cohen’s famous theorem shows that
the continuum hypothesis is independent of ZFC set theory, the Zermelo-Fraenkel
axioms together with the axiom of choice. Now define

E= {(w,y) €[0,1%: T (2) < F(y)}.

Recall that there are at most countably many predecessors of « for any o € X \{w1 }.
Thus for each x € [0, 1], the slice E, contains all but at most countably many of the
points in [0,1], and so is Borel measurable with measure 1. Also, for each y € [0,1],
the slice EY contains at most countably many of the points in [0,1], and so is Borel
measurable with measure 0. Thus the iterated integrals of x g both exist and we

compute that
/ (/ (Xe). (¥) dy) dx / ldz =1,
[0,1] \/[0,1] [0,1]
/ (/ (xg)! (x) dac) dy / 0dy = 0.
0,11 \J0.1] [0.1]
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