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ABSTRACT. These lecture notes constitute an elementary introduction to the
theory and practice of ordinary differential equations
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Preface

These lecture notes were written during the spring 2012 session at McMaster
University in Hamilton, Ontario, and designed for use with Math 2CO3 given that
term. I would like to thank my tutorial assistant Chai Molina for several useful
comments regarding these notes.






Part 1

Solutions



We begin with some elementary techniques for solving some very special and
simple differential equations, and describe the type of equations we will actually try
to solve in these notes. We use Picard iterations to prove existence and uniqueness
of solutions to initial value problems, and then begin a more systematic investigation
of first order and higher order equations, especially linear equations, and derive the
method of variation of parameters for solving nonhomogeneous equations. After
computing elementary solutions to linear equations with constant coefficients, we
turn to the derivation of power series solutions when the coefficients are analytic
functions. Then we investigate applications of the Laplace transform to solving
linear equations, and end with a more systematic study of first order systems.



CHAPTER 1

Some simple differential equations

Given a function y (z) defined for x in an open interval (a, b) of the real line R,
the derivative y' (z) at = € (a,b) is given by

(0.1) Y (2) = % () = lim M

provided the limit exists.

0.1. Derivatives and continuity. If the limit in (0.1) does exist, then f
must be continuous at x. Indeed,

i
lim y (z + h)

i {30+ 2D =0(0), )

= (@) +y/ (@) mh =y ().

The converse however is false.

T COS % if x#0

0 if x=0"
rule and chain rule from elementary calculus show that y' (x) exists, and moreover
that y' (x) is given by the formula

d 1+ d 1
g )cos— +a| o cos—

1 . 1<d 1)
= cos— —xsin— | ——
T r \dx x

ExAMPLE 1. If y(x) = { then for x # 0, the product

y' ()
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On the other hand at © = 0, we see that y' (0) doesn’t exist since

y(0+ =) —y(0) B L cosnm —0
T = T

— cosmr — 1 if niseven
a Tl -1 if nisodd

I
Indeed, the difference quotients w are all equal to 1 on the sequence

nm

{%} of numbers that tend to 0, while the same difference quotients are all
LT I n even

equal to something else, namely —1, on the sequence {%}
also tend to 0.

n oqq O numbers that
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The graph of y = = cos

0.2. Exponential rates of change. Exponential growth and decay problems
from elementary calculus can be modelled by the differential equation

y = ky,

where k is a real number, referred to as a constant, or constant function. This
equation is shorthand for the more explicit formulation

(0.2) y'(z)=ky(z), x€(ad),

and we say that a function y (z) defined for = € (a,b) is a solution to this equation
if ¥’ (z) exists for all © € (a,b) and if ¥’ (z) = ky (z) for all x € (a,b). Note that
the specification of an interval (a, b) is part of the definition of a solution y.

In elementary calculus it is shown that the exponential functions

yo (x) = Cer?, x € (—00,00),

for C' a real constant, are solutions to the differential equation (0.2) when restricted
to the interval (a,b). In fact they are the only solutions since if y (z) is an arbitrary
solution to (0.2), and if we define C' = y (0), then assuming C # 0 (what happens
if C =07) we have

dy@) ye@y (@) —y@)ye(r)  Cehy(x) —y(x) Che _

dz yo (z) ye (z)? yo ()

This shows that -2(2)
yo(z)

conclude that y = yo.

y(0)
yc(0)

is constant, hence equals the constant

=1, and we

ExamPLE 2. Newton’s Law of Cooling says that a body cools down or warms
up at a rate proportional to the difference between the ambient temperature and the
temperature of the body. This means that if we define T (t) to be the temperature
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of the body at time t, and if the ambient temperature is T , then there is a constant
of proportionality k so that
d
dt

The solutions are thus given by

(T-T®)=k(T-T(), te(-00,00).

T T (t) = Ce, t € (—00,00),

for a real constant C.

For instance, if a body is discovered in a snowbank at 6 am and the temperature has
held steady at —5° C overnight, the medical examiner can determine the approrimate
time of death by taking two readings of the temperature T (t) of the body (where t
is hours since midnight), say at 6 : 15 am when T (6.25) = 13°C and again at
6 : 30 am when T (6.5) = 11°C. Then the two equations

—5-13 = T —T(6.25) = Ce"®?®
—5—11 = T —T(6.5)=Ce"",
determine the constant of proportionality k to satisfy

Cet5  —5-11 8

T Cek6 T 513 9’

ek

Al

and the real constant C' to satisfy
25 .32 — (=5 —-13) (=5 —11) = (2 F12.75

Assuming the temperature of the body was 37° C at the time of death toq, we calculate

that
25.32 /1y 4ted
~5-37 = T —T (tog) = Cet'ot = —\/;(ek“)
25 .32 (8>4tod 12\/§ <8>4t0d
= T\ 7svdzm) \ 9 T T s\55 |9 ’
(g) ( )\ 9 (%) 9
and hence
42(§)25,5
In2\s)
tog = —2V2  ~ 44516,

8
so the time of death was approzimately 4 : 27 am.

0.3. Classification of differential equations. The function y = xe” satis-
fies ' = (1 + z) e® and so also the equations
2
y = ey i g)
T x
2y’ —v,
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The graph of y = ze”®

e The first equation is an example of a nonlinear differential equation since
the right hand side of 3y’ = e‘wy—; + £ is not a linear function of the
variable y; to be linear it would have to be of the form f (z)y+ g (x), but
there is y? in the formula.

e The second equation is an example of a second order differential equation
since a derivative of order two appears in it. More generally, the order of
an equation is defined to be the largest order of a derivative appearing in
it.

e The third equation involves a composition yoln 1’1—’1 of the unknown func-
tion and a function of its derivative, and is therefore considered ‘out of
bounds’ for us - such equations will not be considered at all in these notes.
The equation yIn A y' — £ is of course acceptable - it is a first order

142
nonlinear equation.

1. Explicit and implicit families of solutions on intervals

We start with a metaphor. The problem of ‘solving’ for the solutions x to a
polynomial equation

P(z)y=a"+ 12"+ Faz+ag =0,

begins with solving the ‘pure’ case 2" +ag = 0, in which we get z = {/—aq by taking
nt" roots. This is called solution by radicals, and motivated the classical attempt
to solve all polynomial equations by radicals, using clever tricks and substitutions.
For example, the general quadratic equation

x2+a1$+a020,
can be solved by the trick of completing the square
aq aq

2 2
rarsn = (e 3 (§) 0
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and then taking square roots to get the quadratic formula,

ai ar\?
T = 2 + ( 5 ) agp.
Cubic equations were solved in a similar spirit by del Ferro (1515) and quartic
equations by Ferrari (1545). It was Abel who finally showed that this is impossible
for quintic equations, and Galois who gave an alternate proof using one of the most
beautiful arguments ever constructed in mathematics.

The problem of ‘solving’ for the solutions y to a differential equation

y™ = f (:v,y,y’,m,y(”*l)) :

also begins with solving the ‘pure’ case y(™ = f (z), in which we get y = [ ... [ f (2) dz,
the n'" antiderivative of f. One now hopes to solve more general equations by an-
tidifferentiations, using clever tricks and substitutions. We will begin with some
special cases of the first order equation y' = f (x,y).

Consider now the differential equation % =y?+1,ie.

(L1) Y (@) =y (@) +1.

We can compute the solutions y (x) to (1.1) explicitly by antidifferentiation using

the following trick. Since 4 tan~! () = ﬁ, we have
y' (z) d -1
l=——=+-—=—tan x)),
and then integrating from 0 to x gives
(1.2) z = tan~l (y(2)) — tan~! (y 0)),
y(z) = tan(z+tan"'(y(0)), =z>0.

But the tangent function blows up at +7, and so we have blowup when x approaches
Too = 5 —tan' (y(0)) for any of the infinitely many values of tan™" (y (0)) (which
differ from each other by an integer multiple of 7).

1.1. Families of solutions. The constant y (0) in (1.2) can be taken to be
any real number. It is often labelled ¢ and we say that the general solution of (1.1)
is given by

y(z) =tan (z+tan"'(c)), c€R.

Here tan~! (c) is a multi-valued function whose values are all the angles whose
tangent is c. By a general solution we mean a family of functions that are solutions,
and moreover includes all solutions. Since the constants tan=! (c) cover all of the
real numbers for ¢ € R, we can replace tan~! (c) by C and write the general solution
as

yo (x) =tan(z+C), CE€eR.

This general solution is called a one-parameter family {y. (z)} g of solutions. How-
ever, we must be careful about the domain of definition of solutions.
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The graph of y = tan (z + 1)

1.2. Intervals of definition of a solution. The solutions yc (z) are not
defined at the singular points o = 5 —tan™! (¢) if C' € tan™" (¢). Now tan~' (0) =
{n7}, e, and so when ¢ = 0 the singular points are

xm:gftanfl(()):gfmr, n €7,
and the mazimal intervals of definition of the solution yo () = tan (x) are the open
intervals {(nm, (n 4 1))}, oy, L.

oy (=m,0), (0, 7) , (m,27) , ...

Now we consider the somewhat more challenging differential equation g—g =

—sin (x)y? +y, ie.
(13) Y (@) = —sin (2)y ()" +3(2).

If we make the substitution v = % then the equation for the new unknown function

v(z) is
v (z) = jxy(lm) = _14(190)22/ (x) = sin (x) — ﬁ = sin (z) — v (x);
v'+v = sinz.

This is now a linear equation and we can integrate the left hand side if we first
multiply by the integrating factor p(x) = e*:
d

. (v (z)) = €"v(z)+e"v (z)=¢e" (v +v)(z) =e"sinx;

e’ smxr = 26 sinx 26 COST B )

(sina: —cosx + C’e*“”) .

o
Gl
<
—
8
S—
Il
M\H\
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Thus a one parameter family of solutions to (1.3) is given by

1 2
1.4 = = , CeR.
(14) v (@) v(z) sinx—cosz+ Ce™®
y
10T
14 -12 -10 8 6 -4 -2 2 4 6 8 100 12 14
X
24
44+
6+

The graph of y = m

Here the solution y¢ (x) is defined only for  not equal to a root of the equation
sinz — cosz + Ce™® = 0. For z large enough, Ce™" is negligibly small, and these
roots are approximately the roots of the equation sinz — cosz =0, i.e. tanz = 1,

i.e. {g + nﬂ'}

—T

nezr’

REMARK 1 (Caveat). We may have divided by zero in defining our substitution
1

v=, and if so we may have lost a singular solution in the process. That is indeed
the case in our one parameter family of solutions to (1.3) above; the function y =0
is a solution to (1.8), but is not included in the one parameter family (1.4). The
general solution of (1.3) is given by {yc}oep U {0}, where O here denotes the
function that is identically zero on the real line. The mystery of singular solutions
will be cleared up when we consider initial value problems in the next chapter.

1.3. Implicit solutions. Now we change the differential equation (1.1) to

% = y12<":‘1’6:y7 i.e.
1+€”
1.5 "2) = ————.
(15) V=
Using
d (1 3 .0 2y . t
5y @ +e®) = (y©® + )y () = 1+¢,
we see that we must have the identity or relation,

1 1 v
3Y (z)® +ev(®) — 3V (0) —e¥(©® = / (1+e)dt=z+e" —1.
0
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But this time we cannot solve explicitly for the function y (z) as an elementary
function of z. Instead we say that the general solution of (1.5) is given implicitly
by the family of algebraic equations

1 1
3y3+ey:<3c3+ec—1>+m+ew, ceR.

Since %03 +e¢—1 covers all real numbers for ¢ € R, we can write the general solution
implicitly as

1
§y3+ey:C+x+e$, C eR

ExAMPLE 3. The folia of Descartes are the members of the one parameter
family of functions defined implicitly by

23 + 3 = 3Cuxy, C eR

To find a differential equation satisfied by this family, solve for the parameter and
eliminate it by differentiation,

0 = i(!‘sC‘):i%gﬂﬁzi m—g+y—2
dx dr xy dr \ y T
B y2x—x2y’+x2yy’—y2_ 2y 22\ , y? 2
- y2 12 “\z yz 72 y ’
to obtain
v _ 2 2. 042 _ 2z 3 3
0 yoEE _AEE o)
T T i T )

The folium of Descartes 2® + 3% = 3zy
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Solution techniques. Using the method in the example above, we see

that it is quite easy to find a differential equation if we are given a family of
prospective solutions. But the reverse problem, that of finding a family of solutions
if we are given a differential equation, can be quite daunting. However, all of the
equations above were solved using elementary techniques of solution.

(1)

(1.7)

Equations (0.2), (1.1) and (1.5) are examples of separable equations, i.e.

having the form
d
2=y =a(@)b),

and were solved by the method of separation of variables:

dy /
—— = [ a(z)dz.
[ig =/
Equation (1.3) is an example of a Bernoulli equation, i.e. having the form
Y (@) =-p@)y@)" +aq(x)y(z),

and can be reduced to a linear equation by the substitution v = y'—™:

/

v'o= A-n)y "y =0 -n)y " {-py" +ay}
= (n-Di{p—aqy" "} = (-1 {p—qu};
v+ (n—1)qu=(n—-1)p.
The general linear equation
v (@) + f(z)v =g (2),
can be integrated after multiplying by the integrating factor p(x) = el 1

(n(@)v(z) = ' +p'v=p{ + fo} =p@)g(z);

v(z) = (e*fzf) / (eftf)g(t)dt.
Equation (1.6) is an example of a homogenous equation, i.e. having the
form p
Y _ = (E)
w =V =)

and could have been solved by using the substitution v = £ to reduce it
to a separable equation:

(W WA
fo=f(2) =y == @)= +v
sov’:f(v)ivand dv :—zgive

x flvy—v «
dv —  [dzx
[rm==]%
For the equation (1.6) we have
v3—2

fv)= Um’

and the solution is given implicitly by

dx dv 1— 203
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Maple then gives f dv =Inv —In (v + 1), and we can replace v

v(1+v3)
by £ in (1.7) and exponentiate to get
+efx = : 2%y

TR el
B4+ = Le ‘ay=3Cuxy,
if we replace £e~¢ with 3C (both expressions cover all real numbers).

Here are two second order differential equations that are really first order equa-
tions disguised by a substitution:

"=f(zy) andy" = f (y,9'),
where the first equation is missing y on the right, and the second equation is
missing 2 on the right. Both equations are reduced to first order by the substitution
v=1y = gg, but with different independent variables. Namely, the first equation

becomes
dv

C=y = f@y) =] @),

which is a first order equation for v as a function of x; while the second equation
becomes

dvidvd:ri ”i:f(yy’)i:f(y’v)
dy dxdy % ’ Yy’ v

which is a first order equation for v as a function of y. For example, to solve

"=y (y)?

we let v = 9 to obtain

d dyv?
do _
dy v
1
v: = /iv_%dv:/ngy:Cl + 2
dy 2
R A— = (C 17,
dx v ( 1—|—y)

d
[etmr = [amere

which gives = as an antiderivative of (01 + y2)_2, and hence defines an implicit
solution. The antiderivative can of course be worked out with partial fractions.

The CAS in this editor gives that [ (A+ 2)2 equals 2A(v vy times

Lo 2 1 1 2 2 1 1
vtaa <1n<y+A\/_A3>>\/_A3_A (“‘(y‘A BN w
Lo 2 1 I 1 5 9 1 1

Next we investigate an important theoretical point, the existence and unique-
ness of initial value problems.



CHAPTER 2

Initial value problems

Suppose that f (z,y) is a function of two variables  and y that is defined for
(x,y) in a region R of the plane R%Z. We will suppose that R is open in the sense
that for any point Py = (2o, yo) that lies in R, there is some small disk D (P, ) of
positive radius r centered at Py such that D (Py,r) C R. The problem of finding a
solution y (z) to the differential equation y’ = f (x,y) whose graph passes through
a given point Py € R, is called an initial value problem. Here is a precise definition
of what a solution to an initial value problem is.

DEFINITION 1. Suppose R is an open region of the plane R?, that f : R — R is
continuous, and that Py = (zg,y0) € R. Then a function y : (xg — §, 9 +0) — R,
where 6 is a positive number, is said to be a solution to the initial value problem

{ y = [(zy)
y(zo) = Yo
if these three conditions are met:
(1) The graph
g= {(m,y) ER?:z € (xg— 0,20 +0) andy = f(:c)}

of the function y (x) is contained in R,
(2) The function y (z) is differentiable and satisfies the identity

y' (z) = f(z,y () for all x € (xg — d, 20 +9),

(3) The function y(x) takes the value yo when x = xo, i.e. y(xo) = yo or
equivalently, Py € G.

)

EXAMPLE 4. Let f (z,y) = 3y5 for (z,y) € R = R? and let Py = (0,0). Then
f is continuous on R and Py € R. The associated initial value problem

{ y = 3yf
y(©0) = 0
3

has the trivial solution yo (x) = 0, but also the solution y; (x) = z°. Thus we see
that in general, an initial value problem may have more than one solution.

EXAMPLE 5. Let f (z,y) = y? +1 for (z,y) € R =R? and let Py = (0,0). The
initial value problem

{ y/ — y2 +1
y(0) 0

has the solution y (x) = tanz, but is defined on no larger an interval than (—%, g)
Thus we see that in general, a solution to an initial value problem may not be defined
on as large an interval as we might expect.

13
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There are two important theorems regarding initial value problems. The first
gives conditions under which a solution exists, and the second gives more restrictive
conditions under which the solution is unique.

THEOREM 1 (Existence theorem). Suppose R is an open region of the plane
R?, that f : R — R is continuous, and that Py = (x0,y0) € R. Then there exists
a (possibly very small) positive number § and a function y : (xg — §,29 +0) — R
that is a solution to the initial value problem

{ y = f(2y)

y(zo) = o

THEOREM 2 (Uniqueness theorem). Suppose R is an open region of the plane
R2, that f : R — R is continuous, and that Py = (z0,y0) € R. Suppose in addition
that f (z,y) satisfies a Lipschitz condition in the y variable. This means that there
is a positive constant K such that

(08) |f(x,y1)_f($7y2)| S[(|y1_y2‘7 fO?” all ($17y1)7($27y2) eR.

The previous theorem guarantees the existence of a solution to the initial value
problem

)

{ y = f(zy)
y(®o) = o
and this solution is unique in the sense that any two solutions must agree on their
common interval of definition around xg.

In applications of the Uniqueness theorem, the Lipschitz hypothesis (0.8) can
often be verified using boundedness of the partial derivative % on the region R.
Indeed if

of

o (z,y)| < M for all (z,y) € R,
Y
then the mean value theorem gives
Y1 af
| (@,91) = f(zp2)] = - (z,t)dt
Y2 8y

of
3 (w,t)‘dt‘ <

/y1
Y2

so that (0.8) holds with K = M.
We can now explain the mystery of the singular solution 0 to the Bernoulli
equation (1.3).

Y1
/ Mdt‘ =M |y1 — ya,
Y2

EXAMPLE 6. The Existence and Uniqueness theorems above apply to the initial
value problem

y = —sin(@)y(@)’ +y(x)
0.9) {y<o> - o ’

to show that there exists a unique solution (how does Lipschitz apply here?) for
every choice of value yo for y(0). Now the one parameter family of solutions ob-
tained in (1.4) is
2
yo (x) = C eR,

sinz —cosx + Ce=2’
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2
Yo’
solution to (0.9) when yo # 0. When yo = 0 the unique solution is the constant

function 0, which we can interpret as the limit lime_, o yo (2).

and since yo = yc (0) = &> for C =1+ we see that y,, > (x) is the unique
Yo

4__
y
A_j
= F————————]
5 4 3 -2 -1 1 2 3 4 5
X
24 /

2+

N X 1

3T+

The graph of y = y3 (x)

y 3-“

| /

The graph of y = y5 (x)

1. Direction fields

The graphs of solutions y (z) to a differential equation y' = f (x,y) can be vi-
sualized, without actually solving the equation, by plotting the associated direction
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field

1, f (z,y)) _ 1 f(z,y)
|(L, f (2, 9) \/1+f(x,y)2 \/1+f(ﬂc,y)2

Here the vector v (z,y) is a unit vector tangent to the graph of the solution y ()
that passes through the point (x,y). This solution y (z) exists and is unique when
the hypotheses of the Existence and Uniqueness theorems hold, which is typically
the case. This plot provides qualitative information on solutions that is often useful
even when explicit solutions are available, since one can ‘see’ the rough shape of
the solution y () to an initial value problem

{ yl = f(xay)
y(xo) = o

V(m,y)E|

)

by starting at the point Py = (20, yo) in the plot of the direction field and ‘following
the arrows’. The direction field for the equation in (0.9) is given by

1 —sin (2)y? +y
V1t (Csin(@)g? +9)° /14 (~sin(@)y? +)°

v(z,y) =

)

and depicted here:

> 5 =
< =z
- y =z
= N EA
= N\ A
= 4 N\ EA
=z > 7,
N7 7> \7
X7 — \7
N7 = x7
X7 =N\ >7
7 N\ \—>7
X=>7 2N\ NX>7
\—>7 Z>3\ N\X>7
AX>7 72>\ A>x>7
XX>>7 P 7S\ NXX>>7
NN NN NDX>FT 7|17 7>\ NN\ >77
NNNNNS>FT 7T A7 7- SN NN 7
= :77;‘; A ;—r;,’a-»s\;\;w,rg‘; A
T ZTIAA, 77 7. FFTFTFT T
> T T T T TIATAAATTTTT T e ST T T T TTTAIATT
T T T T T TTTTTTTTT T > I TTTTTTT
s
= >
Ees==e=g==t = <
e S~
NN = AN RRAR RN NN NS
AR DR ARRRRRE DA A A3 300NN NN NN NN
LD A AR NI S-S S-S \s\.i \ A A A NN
AN NN S>> >53NS A NN S>>
AN\ XA >>7555>>>N NN A\ N\
NN\ >F77 77 7>\ Y] \N\YN>>FF 777
NX>F 77 77 7 77=>>\\N N LA
\xX>77 - S \>x>77
\>>7 733 RN 7
\=>77 -\ \—>7
N\=>77 A7 X>7
\=>7 7~ N A
N> Ya N7
\7 \7
\7 = N
\7 = \
N =z R
N
\ % >
N 7 =
S =
= Ed

The direction field v (z,y) for f (z,y) = — (sinx)y* +y

If you start at the point (0,2) in the plot, and ‘follow the arrows’, you ‘see’ the
graph of y = y, (x) displayed above.
Here is the direction field

T (2y3 — x3) Y (y3 — 2:133)
Vi@ @y =29 + @ - 20%)° /@@y~ 2%) + (y (47 — 209
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2. PICARD ITERATIONS

for the equation

x (2y3 — x3)

Y (y3 — 29:3)
whose solutions are the folia of Descartes.

/

Y

7SS SN kb VIV IY
eSS\ v VUL
N A\ 1 VWV VIV
- W\ vy VIVLLIILILIIY
1 vy
YV
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2. Picard iterations

We will prove the Existence and Uniqueness theorems assuming the Lipschitz
hypothesis (0.8). The proof of the Existence theorem is more difficult without this

assumption. There are six basic steps to the existence proof, and the uniqueness is

an easy seventh step.

Step 1: We convert the initial value problem

(2.1)

into an equivalent integral equation:

S.

f(s,y(s))d

y0+/
xo

Indeed, if y solves the initial value problem (2.1) then part (2

theorem of caluclus shows that

(2.2)

of the fundamental

)

f(s,y(s))ds,

T

/.

Conversely, if y solves the

V)
= .
—
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N
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8 =} =}
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=
__0 w.
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@ <
SN~— wUIAO
= Q
Il m
=} ()
£ 2
) w0
_ ()
>
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G
> >
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Lk

—
5
-

>
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=
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B

integral equation (2.2), then

f(s,y(s))ds =yo+0,

Zo
0

y(xo)=y0+/w
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and part (1) of the fundamental theorem of calculus shows that

v =g vt [ Fep@d =0+ @y ).

Thus y solves the initial value problem (2.1).
The advantage of an integral equation over a differential equation is twofold:

(1) to make sense of each side of the integral equation requires only that y
be a continuous function, while the differential equation requires that its
solutions be differentiable functions, a much more restrictive class.

(2) the operation of integration only improves functions, i.e. the antideriva-
tive of a continuous function is differentiable, hence continuous; while the
operation of differentiation can worsen functions, i.e. the derivative of a
differentiable function may not be differentiable.

Step 2: We consider Picard’s approzximation operator T which takes a continu-
ous function ¢ (z) to another continuous (actually differentiable!) function (T'p) (x)
defined by

x
To (@) =+ [ Flsp(s)ds

o
If  solves the integral equation (2.2) then ¢ = T, and so we can think of the
difference

p—Typ

as a function whose ‘size’ that measures how far ¢ is from being a solution to (2.2).
This is why we call T an approximation operator, and in fact, this suggests the
hope that if we start with any given continuous function ¢, the function T'¢ might

be ‘closer’ to being a solution than ¢ is. Then T?p = T (T'¢), which is T applied
to Tp, might be closer still, and T3¢ yet closer.

EXAMPLE 7. In the case of the initial value problem

{2y

Picard’s approximation operator is

T<p(1:)=1—|—/zap(s)ds,

0

and if we choose ¢ (x) = 1, we get

Tp(x) = 1+/ lds =1+,
0
) T 1’2
T p(z) = 1+ (1+s)ds:1+x+7,
0
T 2 2 3
T3¢ (z) = 1+/ l4s+o)ds=1+a+2+2
o 2 2 3l

n x? "
T o (x) = 1+x+?+...+ﬁ, n>1.
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Thus in this case, the Picard approximations T"¢ (x) are the Taylor polynomials
for €*, and so converge to y = e®, which is indeed a solution to the given initial
value problem.

Recall that in order to define
TSD =Yo + / f (Sv ® (8)) dSa
o

we need that the integrand f (s,¢ (s)) is defined, which in turn requires that
(s, (s)) stays in the region R, i.e. that graph ¢ C R. Similarly, in order to

define the iteration N

T?¢(z)=yo+ | f(s5,Te(s))ds,

zo
we need that the integrand f (s, Ty (s)) is defined, which in turn requires that
(s,T¢ (s)) stays in the region R, i.e. that graph T C R.

Step 3: Given positive numbers o > 0 and 5 > 0 denote by R, g (zo,%0) the
rectangle

Ra g (20,90) = [10 — o, w0 + & X [yo — B,y0 + B].
We claim that there are @ > 0 and 8 > 0 (possible quite small) with the two
properties
Ra,5 (T0,90) C R,
and
graph Ty C Rq g (xo,y0) whenever graph ¢ C Ry 5 (z0,%0) -
Indeed, if
|f (z,y)] < M for all (z,y) € R,

then we have

lyo — T (z)] = <

L:f<s,@<s>>ds

< Mlz—29| <

[ 15 olds

for (z,y) € Ra,p (To,Y0)- So if we choose o small enough to ensure that M < «a,
we will have (x, Ty (z)) € Ra,5 (Zo,Y0)-
Step 4: Let I denote the interval [xg — «, 29 + «]. Consider the vector space
of functions
C(I)={p:I—R:pis continuous} .
Define a distance function d(p,1)) that measures the ‘distance’ between two con-
tinuous functions ¢,y € C (I) by

d(p,y) = max|p (z) — ¢ ()]
In particular we have

(2.3) lo () = (x)] < d(p,¢) for every x € I.

From Step 3 we conclude that T takes functions ¢ in C (I) to functions that are
again in C (1), i.e.

T:C(I)—C).
Such a map T is called a linear operator on the vector space of functions C (I). We
think of it as taking a given continuous function ¢ to a new function T'p, that is
hopefully closer to being a solution to the integral equation (2.2). To get this to
actually work we will need to use the Lipschtiz condition (0.8).
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Step 5: Start with any fixed ¢ € C (I). By Step 4 we can construct the infinite
sequence of Picard approximations {T" ¢}, in C (I), where we set T%¢p = ¢ for
convenience. Now we estimate the distance between successive approximations 7"y
and T" "1y, Since

T (x) =T o (z) =T (T" ) (z) = T (T"¢) (z)

<yo +/9:f (5, T" 1o (s)) d8> - (yo +/x:f(s,T"s0(8))d8)
-/ (5T (9) — (5, T ()] ds,

0

we have for each n > 1,

d(T"p, T ) = max|T"p(z) = T" g ()]
= max /gc0 [ (s, T o (s)) = f (s, T"0 (s))] ds
< max /w K |T"*1<p(s) —T"p(s)|ds

0

< aK max 1T o (s) = T (s)]
se

= aKd (T"flgo,T"go) .
By induction we obtain
d (T, T ¢) < (aK)"d(p,Te), n>0.
Thus by (2.3) we have
T (2) = T g (2)] <d (T, T 'p) < (aK)"d(p,Tp), zel.

The infinite series of nonnegative terms,

ST () — T ()]

n=0
will converge provided Y7, (aK)" < oo, i.e. provided aK < 1. So let us choose a
small enough that aK < % Then, since absolute convergence implies convergence,

we see that the series -

> [T (x) = T ()]
n=0

must converge to a real number, that we will call ¢ (z). But then

N
¥(@) = Jim Y [T (x) = T e (x)]
n=0
= lim {lp@) = Te@)]+...+ [TV (2) - T p ()]}
= lim {p(@) - TV ()
shows that

Jim TN () =g (@)~ p(a), wel
Step 6: We claim that the limit function
y(@) = @) —e@), zel,
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from Step 5 solves the integral equation (2.2), or what is the same thing, that
Ty (z) =y (z) for x € I (one says that y is a fized point of T in this case). Indeed,
for x € I,

y(@) = lim T% (@) = lim T(TV) (z)

= g funs [ (1) as)

o
x

= ot [ {Jm s Ve () as

0

— g+ / Ty (s, Jim T (5)) ds

0
xr
= % +/ f(s,y(s))ds,
To

where the limit has been taken inside both the integral and the function f. It is a
standard theorem in real analysis that limits can be taken inside integrals when the
convergence is uniform (which we have here from our definition of distance in C (1)),
and of course the limit can be taken inside continuous functions by the definition
of continuity.

Step 7: Now we show uniqueness. Suppose that both y; (z) and y, () are
solutions to the initial value problem (2.1). By Step 1 they both solve the integral
equation (2.2) and so the difference y () = y1 (z) — y=2 (x) satisfies

y() = y(2)—y2(z)

= fw [ semeyash{mw+ [ riamenas)
0 o
— [ e) - f e o) as
From the Lipschitz condition (0.8) we obtain
(2.4 @< [ Kl @)=l ds =K [ iys)las
and hence (assuming y (x) is defined for o < x < ¢ + ﬁ)

1 1
w W@I<Kgz  swo =y s ).
x0§w§w0+ﬁ mogsgx[ﬁﬁ a:ogasgonrﬁ

But this implies that y; (z) — y2 (z) = y (z) = 0 for zg < z < z¢ + 5. Similarly,
Y1 (z) — y2 (x) = 0 for 3y — 5% < @ < 2. Thus y; (z) and ys () coincide on the
interval [330 — ﬁ, o + ﬁ], and we can now repeat this argument with the initial
point z( replaced by the endpoints xg — ﬁ and zg + %, and then repeat as often
as necessary.

Alternatively, if y (x1) # 0 at some point z1, then in a neighbourhood N of z;
we have from (2.4),

Ll
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which shows that In |y ()| is bounded in the neighbourhood N. But this contradicts
the fact that eventually, a large enough neighbourhood of x; will have to encounter
a point « where y () = 0, this because y (x¢) = 0.

PROBLEM 1. Solve the intial value problem

{ v o= 2u(l+y)
y(0) = 0

using Picard approximations ¢,, () = T™yp, () beginning with ¢, (x) = 0.

SOLUTION 1. We have

Ty (z) = /02c 25 (14 (s))ds,

2 2.2
p3(@) = Toy(x)= [ 25 <1+ [s2+4s4} ds=x2+fx4+ﬁ$6,
¥ 2 2:2
py(x) = Tgag(x):/ 2s <1+[52+4s4+636})ds
0 .
2 2.2 2.:2-2
_ 2,24, 4% 6 8
U T Trest
By induction on n we obtain
o (2) = P L 2 22"
" I I 1)
1
2 4 6 2n
= a:—|—233 +ﬁ ST e n>1
(Prove the inductive step!) Thus we have
= 1
lim T"p, (z) = lim ¢, () = E:c% = — 1,
k=1""



CHAPTER 3

Solution methods for first order equations

We can write a first order equation

dy

%:y/:f(xﬁl/)

in differential form

f(z,y)dz —dy = 0.
Of course we can then always multiply by any function of two variables u (z,y) and
get another equation with the same solutions (and maybe more):

u(w,y)f(x,y)dx—u(w,y)dy:O.

In this chapter we begin by considering the general first order equation in differential
form

(0.5) M (z,y)dx + N (z,y) dy = 0.

1. Exact equations
Consider the differential equation
(233 + y2) dx + 2zydy = 0,

which is neither linear, separable, homogeneous nor Bernoulli. However, a clever
observation is that the function ® (z,y) = 22 + 2y? has the properties

3} 0
—®(2,9) =2z + 9> and = (z,y) = 2y,

ox dy

which means that our equation can be written as
0 0 dy
0 = (2 %) dx 4 2zydy = —® —& s
(22 +y*) do + 2wydy = (x,y)+3y (w,9) o

= Lo y@) =L (@t )

dx dx

by the chain rule if we view y = y (x) as a function of . Thus we have the family
of solutions

C

P4yt =Cory=4/— —uz

x
Note that what made this method work here was the existence of a function ® (z,y)
with partial derivatives M and N, i.e.%@ = M and %q) = N. Such a function
can only exist provided a%M =2 ( 0 <I>) =2 ( 0 <I>> 9 N by the equality of

oy \ox oz \ 9y = oz
mixed second order partial derivatives of ®.

23
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The above example suggests that we start with a discussion of exact equations,
which have a very special differential form in which the coefficient functions M and
N have their partial derivatives M, and N, equal:

(1) S (2.0 = My (0,) = N, (2,) = 51N (29).

When this condition holds, we say the equation (0.5) is ezact. It turns out that in
this case there is a function ® (z,y) of two variables whose gradient V® = (®,, ®,)
equals the vector (M, N):

(1.2 D pay) = ®len)=M(y);
@) = () = N @),

Note the following calculation, that shows (1.1) and (1.2) are consistent with the
equality of mized second order partial derivatives. Indeed, if ® (z,y) satisfies the
gradient equation (1.2), and if ® is twice continuously differentiable, then the equal-
ity of mixed second order derivatives

o 0 0
gyaq’(may) = %@Q)(mvy)a

shows that

%M(w) = a% (i@@,;,)) = % (;y@ (:my)) = %N(myy),

which is (1.1). Before proving the existence of such a function ® (z,y) for an exact
equation, we look at two examples.

ExAMPLE 8. We consider the equation

2
{(Cosx) In (1+2°) + (sinz + e¥) 1+$2} dz+e’In (1+2%)dy =0,
x
in which
2

M = (cosz)n(1+2?) + (sinz + eY) Txe’

N = eyln(1+x2).
Let us now check the exactness condition (1.1) for this pair M and N. We compute

2z
M, = eyl—l—xz and Ny :ey1+m2,

so they are indeed equal, and (1.1) holds. If we accept the theorem that says there
exists a function ® (x,y) satisfying (1.2), then we have the two gradient equations:

73 _ _ 2 . y 2x
am¢($,y) = M = (cosz)In (1—|—x )—I—(smm—i—e )1—&-7’
0

— = — oY 2

oy (@ v) N =¢’In(1+27).

The second gradient equation looks easier to solve so we start by integrating it with
respect to the variable y. We then have

¢($’y):/eyln(1+x2) dy = e’In (1 +2?) + C,



1. EXACT EQUATIONS 25

but we must be careful here! The constant of integration could be a different constant
for each choice of x, in other words, C is really a function of x, which we will call
g (x):

® (z,y) =e’In (14 2%) + g ().
To figure out what this function g is we substitute this answer back into the first
gradient equation to get

2
(cosz)In (1 + 2?) + (sinz + e¥) . _,_xxz
0
= % {eyln (1 +x2) +g(x)}
2z
= Y !
el+m2+g(@,
which when solved for g’ (x) gives
2
¢ () = (cosz) In (1 + 2%) + (sinz) waz

Note how conveniently the variable y dropped out of the right hand side of this
equation - otherwise we could not continue to solve it! This is the magic performed
by the exactness condition (1.1). Finally we integrate in x to get

2
g(x) = / {(cosx) In (1+ 2°) + (sinz) sz} dz = (sinz)In (1 +2%) + C,
x
where this time C is indeed a constant. Thus we have obtained the implicit solution
0=2(z,y) =e’In(1+2%) +g(z) = (sinz+e’)In (1 +2°) + C.

EXAMPLE 9. Consider the equation y' = £ which we can write as —ydz+zdy =
0. This latter equation is not however in exact form since M, = —1 while N = 1.
Howewver if we multiply through by ﬁ we get an equation

—y T
d dy=0
2+ 2 x+x2+y2 y="5
with
—y z
M = 7z2+y2 and N = 7x2+y2’
that is indeed exact since
0 0 —y — (22 + %) + 42y y? — 2
oM = | 2] = 2 = PR
o\ iy @’ @)
) d T (2% +y?) —a2x  y? —2?
—N = — = 3 = 5.
Ox Oz \ 22 + y? (22 + 4?) (2 + y2)

Then integrating the second gradient equation in y we get

£ 1Y
and then substituting this in the first gradient equation we get

Y _ a9 _ 9 [t Y Y 4y
x2 492 =M= ax(I)(x’y)i Ox {tan erg(:E)} a2+ y? T (o),
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which gives ¢’ (x) =0 and g (z) = C. Thus the implicit solution is
0=tan ! ¥_ C,
x
i.e. the rays 0 = C' emanating from the origin, and is given expicitly by
y= (tanC)x and z = 0.

Notice however that the function ® (x,y) = tan~! Y = @ is not defined in the open
region R = R3 \ {0} where the coefficient functions M and N are defined and
infinitely differentiable. The problem with the global definition of the function ®
in R lies in the fact that the coefficient functions M and N have a singularity
at a point, namely the origin 0, that is surrounded by the region R. Of course,
this problem with the global definition of ® does not stop us from solving ® = C
implicitly for solutions y (x) to the differential equation. But we must be careful in
stating our theorem regarding the existence of such functions ®.

We say that an open region is simply connected if there are no ‘holes’ in the
region. For example, any disk is simply connected, while the plane minus the origin
is not simply connected.

THEOREM 3. Suppose that R is an open simply connected region in the plane,
and that M (z,y) and N (x,y) are continuously differentiable functions in R. Then
there is a twice continuously differentiable function ® (x,y) satisfying

13 (2 5 @) = V(o) = (M (5.9). N (o)
if and only if
(14) M (x7y) =N, (.’,L‘7y)

Proor. If (1.3) holds, then the continuity of mixed second order partial deriv-
atives gives 9 M = iaifb = a o 0§ = d ~ N, which is (1.4).
dy Oz z 9y
Conversely7 if (1.4) holds, fix a pomt (z0,y0) € R and define a function
® (z1,y1) as follows:

Z0,Y0)

(®1,51)
@(xl,yl):/ M (s,t)ds+ N (s,t)dt
(

(117211

where the integral f( stands for any path integral f-w with + a differentiable

path in R that joins (xo,yo) to (z1,y1).

The key point here is that the exact condition (1.4) implies that this definition
is independent of the defining path we choose to joint (xg, yo) to (21,y1)! Indeed, if
~ and 3 are two such defining paths, and if we assume that the closed path v — 3
surrounds a subregion D of R, then by Green’s theorem applied to the closed path
~ — B, we have

/{M £)ds+ N (s,1) dt} — /{Mst)ds+N(st)dt}

:/ {M(s,t)ds+N(s,t)dt}:/ {M (s,t)ds + N (s, ) dt}
:

-8B
*// aM(s t) + aN s,t) p dsdt = //Odsdt*O
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Now it is easy to verify that (1.3) holds. For example, if we choose defining
paths « that end in a horizontal segment near the point the (z1,y1) then

0 P _
=@ (v1,1) = lim (21,9) (z1,41)
Oz Y=y Y — Y1
f(zz; {M (s,t)ds+ N (s,t)dt}
= lim
v Y-
S M (s, 1) ds
B fim =M (1’1, yl) y
Y=y Y =1
since dt vanishes along a horizontal segment, and the average of the continuous
function M (z1,-) on the interval (y1,y) tends to M (x1,y1) as y — 1. 5

2. Integrating factors
Given a first order equation
Mdx + Ndy =0,
we say that pu = p(x,y) is an integrating factor for this equation if the equation
uMdz + pNdy =p-0=0
is exact, i.e.
(uM), = (uN),
But the product rule gives
(uM), = p, M + pMy and (uN), = p, N + pNe,
so that we need
py M+ pMy = N + ppNy;
ie. My~ N, = —luprqtap,
I I

In general this partial differential equation is at least as hard to solve for u as a
function of x and y, than our original equation is to solve for y as a function of x.
But there are cases in which p can be easily obtained. Here are two such cases:

MN

CASE 1. = (y) is a function of y alone. Then we can solve —% =

Y (y) = % to obtain an integrating factor u(y) that is also a function of y
alone.

CASE 2. w = ¢ (x) is a function of x alone. Then we can solve *L—z =
o(x) = My]:,N“” to obtain an integrating factor u(x) that is also a function of x
alone.

ExaMPLE 10. We solve the equation
yBr+y)+x(z+y)y =0.
by finding an integrating factor. Now
M = y(Bz+y)=3zy+y°
N z(z+y) = 2" +y,
M,—N, = (Bz+2y) —(2z+y)=z+y,
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and we note that

M, — N, T4y 1

N S z(rty) =z
just happens to be a function of x alone, so that we can apply Case 2 above. First,
we solve for the integrating factor p (z),

My My_Nx_ _l'
e Ml
Injp| = In|z|;

plz) = =,

and then multiply the equation through by u(xz) = % to get
(3x2y + xyz) + (z3 + x2y) y =0,
which is now an exact equation. To solve this exact equation we compute
1
/de = / (32%y + 2y®) dz = 2%y + §x2y2 + f(y);

a2ty = N=&,=2>+2%+f (y),

0

which gives f' (y) = 0, hence f (y) = C. Thus a family of implicit solutions is given
by
1
3y + 53323/2 +C =0.

3. Modelling with separable, linear, homogeneous and Bernoulli
equations

We consider a variety of ‘real life’ problems that can be modelled by first order
differential equations, and solved using the methods we have developed so far.

PROBLEM 2. A cannonball of mass m is shot upward, and perpendicular to the
earth’s surface, with an initial velocity vy. Assume that the force F of gravity is
directed down toward the center of the earth, and has magnitude inversely propor-
tional to the square of the distance from the center of the earth. Moreover, assume
that
(1) at the surface of the earth F is given by —mg where g = 9.8 m/sec? is the
acceleration due to gravity at sea level, and
(2) the radius of the earth is R = 6,371 km.

Assuming there are no friction or other forces acting on the cannonball, find the
escape velocity Vescape, the smallest initial velocity vy for which the cannonball will
not return to earth.

SOLUTION 2. From (1) we have
—k

R+ W)
where h is the height of the cannonball above the earth’s surface, and k is the
constant of proportionality. From (2) we see that

—— . ie. k=mgR?
(R+0)* g

—mg =
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and so we have Newton’s law
_ —mgR?
(R+h)*
Since there are mo other forces acting on the cannonball, Newton’s second law of
motion F' = ma then gives

- 2 d?h
mg R =F=ma=m—=

(R+h)? dt2’

which is a second order differential equation for h = h(t) in terms of time t.

In order to transform this into a first order differential equation we rewrite every-
thing in terms of the velocity

d
t)y=—h(t
v(t)= Shit),
but viewed as a function of height h = h (t). Thus we view v as a function of

h and eliminate the time variable t in the process. To accomplish this we use

d Pz R
il (t) = @h(t) =

(R+h(1)*
: : dv _ dv dt _ dh dt .
together with the chain rule 57 = 579 and 1 = 52 5+ to obtain:

do_dvdt _ 1dv_1dv 1 g
dh  dtdh gt wdt v (R+h)*
This equation,
dv 1 —gR*
dh v (R+h)*
is separable and has solution

v? dh 1
— = d:—R2/7:R2—+C;
2 /”“ TR

2R
= =+ 2C.
v VIgr+n T2

At time t = 0 we have h =0 and v = vg > 0 so that

vg = vV 29R + 2C,

2C = vg — 2¢gR,

which gives

and thus

2R?
\/gRJthr”OQQR
R
= ¢%_%RO_R+h)

The cannonball will return to earth if and only if v vanishes at some height h > 0
(since then it will reverse direction and start falling back to earth), i.e. if

ve = 29R (1 - &) for some h > 0,
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which means v3 < 2gR. Thus with initial velocity vy > +/2gR, the cannonball will
never return, $0 Vescape = V29R. Using the values given above for g and R we
obtain

Vescape = \/2 (98) ﬁ (6, 371, 000) m

sec?

~ 11,175 % = 40,230 km/hr.
sec

PROBLEM 3. Suppose your nephew has deposited By dollars in a special bank
account that pays interest at an annual constant rate r that is compounded every
second. Suppose moreover that your nephew actively withdraws and deposits money
every second at a constant rate k. Approximately how much money B (t) is in
his account after t years? If the initial deposit is $1,000 at 5% interest, and he
withdraws on average $50 a year, how much is in the bank account after a long
time?

SOLUTION 3. There are about

n= 365% -24-60- 60 = 31557600

seconds in an average year. If interest is compounded every second, i.e. n times
a year, then the value of the bank deposit is increased by a factor of 1 + - each
second, and so after t years, the value would be

P nt 1 =rt 1 m~ 7t
B(t):Bo(l—kg) :Bo(l+n> :BO{<1+m>}

n

where m = >> 1 is much larger than 1. It is thus reasonable to approximate the

m
factor (1 + %) by
1 m
lim (1 + > =e,
m—oo m
and we obtain the approrimation
B (t) ~ Boert.
Since the function Boe™ solves the initial value problem

d
EB = rB
B(0) = By’

we are justified in making the approximating assumption that interest is compounded
continuously, i.e.

%B (t)y=rB(), forallt>O0.

If we also approximate the active withdrawals and deposits by a constant rate of
change k over time, we obtain the following differential equation for the value B (t)
of the bank account after t years:

d

S BM)=rB (1) +k
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This is a linear equation with integrating factor u(t) = e™", so that

LWWBWY = —re B+ (B ) +R) = ke
e B(t) = /ke*”dt LY +C.
T

The initial condition B (0) = By gives C = By + % and we obtain the solution
B(t)=Ce™ — é = Boe™ + % (e —1).

In the special case By = 1000, r = 2—10 and k = —50 we get
B(t) = 1000e% — 1000 (e* - 1) — 1000,

so that the value stays steady at $1,000 over time.

PROBLEM 4. A population of S (t) squirrels increases over time t from an initial
value So, at a rate b(t) S (t) proportional to the number of squirrels S (t) at time t,

and simultaneously decreases at a rate d (t) w

S (t)
2
functions b(t) and d(t) are assumed to be positive and to vary periodically over
time t, e.g. due to seasonal effects. Solve the resulting initial value problem

{ 48 = (b+49)s—4s?
S(0) = So

proportional to the number

of pairs of squirrels ) at time t. Both the birth and death proportionality

SOLUTION 4. The equation is a Bernoulli equation so we make the substitution
v=_S'"2=.5"1 to get the linear equation

4 _52lg_ g2 Ng_ de2l (9, ¢
tyosrts st {(bn D)5t} o (1a )t

(@)
An integrating factor is p (t) = elo (b@+95 )de

d d d d d
a{uv} = <b+2)uv+u{ (b+2)v+2}u2,

d(z t
e /Ou<s>d(§)d8;

1 . _ = Ji(b(= dg"”) x ! @
ol v (t) = e Jo (b@)+532)d {/0 w(s) 5 ds-i—C}.

The initial condition S (0) = Sy gives Sio =C and so
1
o= Jo (b(@)+ 952 ) da {fot eJo ()t 552 )z gy 46 g C’}
1
fot eff(b(z”d(zz))dﬂﬁ@ds N S%e_ JE(b(z)+ 282 ) dar
So
So fot et (b + 55 )dg:@ds t+e b (b@)+ 45 )da”

, and so

S(t) =
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4. Euler’s numerical tangent line method

Consider the intial value problem

{21

whose unique solution we know is y = e*. Suppose that we do not actually know
the solution explicitly, and that we wish to compute the numerical value of the
solution at x = 1, i.e. we want to compute y (1). Or even if we know the answer is
y (1) = e, we wish to numerically approximate the value y (1). Of course we could
use the most crude estimate available, y (1) ~ y (0) = 1. However, an inspection of
the direction field for this equation

—~
=

L

L VAN RN
IARASAAERRRNRY
A VLA NN
ARASAESRRRRNN
ARARRETRVERRAS
AAASRERRRNN
IARASAAERRRNNY
A VLA
IAAASAAERRRN

.

reveals that we can do better by instead approximating y (1) by the value 2 of the
tangent line function z 4+ 1 at x = 1, as pictured below:

3T

y

1+

Euler’s method with one step

Notice that the divergence between the solution e* and its tangent line function
x + 1 increases the further away from the initial point x = 0 we go. This suggests
that instead, we only go half as far to x = 0.5, approximate by the tangent line
function z + 1 to get y (0.5) =~ 1+ 0.5 = 1.5, and then start over with a new initial
value problem using this approximate value 1.5 as intial condition at the point
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Of course we again know the actual solution to this problem explicitly, namely
y= %e“”%, but we do not need this in order to continue! We can just use its tangent
line function %x + % to approximate y (1) as in the picture below. Again, a glance
at the direction field indicates that this should indeed give a better approximation
than before.

0.2 0.4 0.6 0.8 1.0

1+

Euler’s method with two steps

The graphs of e* and %e”_% are the green and blue curves respectively, while their
tangent line graphs x 4+ 1 and %m + % are the sienna and red lines respectively. The
value of the red tangent line at z = 1 is % -1 4 % = % = 2.25, which is a better
approximation to e = 2.718 than the result of our first attempt, which gave 2.

We can of course get an even better approximation by applying this procedure
four times with step size l as pictured below. Here the successive tangent line

functions are = + 1, 4£L' + 16, 16:10 + 25 and 125:10 + %gg (pictured in sienna, red,
purple and black), and the final approxnnatlon is 125 1+ égg = % = 2.44, better

yet than before.
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1+

Euler’s method with four steps

Note how our approximations 2, 2.25 and 2.44, obtained from Euler’s method
with first one, then two and finally four steps, become successively closer to e =
2.718. But they don’t appear to converge very rapidly! In fact we can dramatically
improve the rate of convergence by using a modification of these steps due to Runge
and Kutta, and this will be addressed in a later chapter.

4.1. The general setup. Here is the general setup for applying Euler’s nu-
merical method to approximate solutions to the initial value problem

{ y = f(zy)
Yy = Yo

~—
8
(=}

~—
|

Pick a (small) positive number h, called the step size, and define points (2, yn)
successively in the plane by

ry = w9+ hand y =yo+ f(x0,%0) I,

xo = z1+handyy =y + f(z1,91)h,

x3 = x4+ handyz =y2 + f(z2,92) h,
Tpp1 = Tp+hand Ypp1 =yn + f (20, Yn) by

as long as f (zn,yn) is defined. Note that we can rewrite the general inductive step
as

Yn+1 = Yn + f (xnyyn) h 5

where x,, = x¢ + nh.
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ExAMPLE 11. We use FEuler’s method with step size h = 0.1 to approximate
the solution to the initial value problem

{yg{l) _ le/g’

at the points v = 1.1,1.2,1.3,1.4 and 1.5. We are given the data f (x,y) = x\/y
and (zo,yo) = (1,4). Then the general formulas are

Tn = xo+n(0.1),
Yn+1 Yn + (@n) (Vyn) (h),
and so we compute
r1 = 1401=1.1,

yo= 4+ (1) (\/Z) (0.1) = 4.2,

then
g = 142(0.1)=1.2,
yo = 4.2+ (1.1)-v4.2(0.1) = 4.42543,
then
z3 = 143(0.1)=1.3,
ys = 4.42543 + (1.1) - v4.42543 (0.1) = 4.45210,

which leads to the following table:

n X, Yn Y (Xn)
0 1 4 4

1 1.1 42 421276
2 1.2 4.42543 4.45210
3 1.3 4.67787 4.71976
4 1.4 495904 5.01760
5 1.5 527081 5.34766

2
where we have included the values y (xy) of the exact solution y(x) = (#) ,

which is obtained from

2 12
2@:/%=/wdm:g+0and2ﬂ:2+a
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55T

y

50T

457

40— —————————+—|
1.0 11 12 13 14 )JZS

The graph of y = (#)2.

It is more common to approximate the value of the solution to an initial value

problem
{ y/ = f(xay)
y(zo) = Yo
at a fixed point x, and to use a fixzed number n of steps in the Euler method to get
to z, i.e. to use step size

)

T — X
h=——.
n

Then x,, = 29 + nh = x and so we use y,, as our approximation to y (x,) = y ().

ExampLE 12. Consider again the initial value problem

{ y =y
y(1) = 4 7
and this time approximate the solution at x = 1.5 using n = 10 steps. Then

h= 1'?61 = 0.05 and we get

Ynt1 = Yn + (1 + (0.05) 1) \/yn (0.05).

We will now compute the values y.,, iteratively but rounding these values off to only
four decimal places. This leads to the sequence

yo = 4

Yy = 4+ (1)V4(0.05) = 4.1

Yo = 4.1+ (1.05)V4.1(0.05) = 4.2063

ys = 4.2063 + (1.1)V4.2063 (0.05) = 4.3191
ya = 4.3191+ (1.15) V4.3191 (0.05) = 4.4386
ys = 4.4386 + (1.2)V/4.4386 (0.05) = 4.565
ye = 4.565+ (1.25)V/4.5654 (0.05) = 4.6985
yr = 4.6985 + (1.3) V4.6985 (0.05) = 4.8394
ys = 4.8394 4 (1.35)V/4.8394 (0.05) = 4.9879
yo = 4.9879+ (1.4)V4.9879 (0.05) = 5.1442
yio = 5.1442 4 (1.45)V/5.1442 (0.05) = 5.3086.
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Note how using ten steps has resulted in an estimate y19 = 5.3086 that is closer
to the actual value y (1.5) = 5.34766 than the previous estimate 5.27081 using just
five steps. Since the solutions to the equation 3 = x,/y are all convex up in the
vicinity of the solution y () whose graph passes through (1,4) (as an inspection of
the direction field reveals), the Euler approximation to y (1.5) will always be less
than y (1.5) for any n > 1, but will increase as n increases.
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Direction field of y' = x/y.
In general, the error in using Euler’s method for small step sizes, is bounded
by some constant mulitple C' (that depends on the nature of the function f (z,y)
near the initial point (zg,yo)) times the step size h, i.e. Error < Ch. However,
the error can actually be worse than this because of roundoff error, the additional
error introduced when rounding off the intermediate values y,...,y9.






CHAPTER 4
Higher order differential equations

In this chapter we consider n'" order differential equations of the form
(0.1) y™ = f (myy’ ~-~7y(”*1)> :

where n > 1 and y*) denotes the k** derivative of y as a function of z:

k times
dr d d
V9 (@) = oy () = oy ().

A solution y (z) to equation (0.1) on an interval I is an n times differentiable
function y : I — R that satisfies the identity

v @) = f (vy@).y @),y @), cel

EXAMPLE 13. The functions y; (x) = sinz and ys (x) = cosz both satisfy the
second order equation

(0.2) y' +y=0.
Moreover the collection of functions
{c1sinzx + ¢5 cos x}(ch@)eRg

is a two-parameter family of solutions to (0.2).

1. Equivalence with first order systems

It is an extremely useful theoretical observation that the n'"* order equation
(0.1) is equivalent to the following system of n first order equations for the n
unknown functions y; (), ya (z),...yn (),

v o= Yo
Yy = Y3
(1.1) : : : ;
y;—l = Yn
Y = fxy,y2, 0 Yn-1)

in the sense that y (z) solves (0.1) if and only if y (x) = y1 (x) where the functions
{y1,Y2,..-; Yn} solve the system (1.1). Indeed, if y (z) solves (0.1), then the set of
functions {y1,y2, ..., yn} = {y, Y, ... y("*l)} clearly satisfies the first n—1 equations
in (1.1) by definition; and the final equation is satisfied because (0.1) gives

/
Y = (y("_”) =y (z)=f (xyy' -~-7y(”‘”) = F (2, Y1, Y2, s Yn1) -

39
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Conversely, if {y1, Y2, ..., yn } satisfies (1.1) and y = y;, then the first n — 1 equations
in (1.1) give

v =vhq ==y D =y* 1<k <n,
by induction on k; and then the final equation in (1.1) gives

I
ygn) = (ygnil)) = y’/n = f(‘r7y17y2a "'ayn—l) = f (mvy?y/a "'ay(n_l)) )

which is (0.1).

Of course the system (1.1) is very special in that the first n — 1 equations are
extremely simple. The general first order system of m equations in m unknown
functions {y1,y2, ..., yn  is

yll = fl (xvyhy%”-aynfl)
/ _
vy = fo(x,y1,92, - Un—1)
(1.2) : : : 5
y;,fl = f’nfl (x7y17y27"'7yn71)
v = fo(@y1,02, 0 Un—1)

where the functions fx (x,y1,y2, ..., Yyn—1) are typically arbitrary for k = 1,2,...,n—
1,n. Without further thought, it might appear that the the n x n first order system
(1.2) is simply much worse than the n'* order equation (0.1).

However, matters appear much brighter if we rewrite the system (1.2) in vector
form

(13) yl :f(.’E,y),

where we use boldface type to denote n-dimensional vectors,

1
y = Wyznyn) = y:2 :
"
fi(z,y)
fey) = (@ heyhE=| "0
fu (@.3)

which we write as either row vectors or column vectors depending on context. In the
vector form (1.3), our system looks much more like the first order scalar equation
y' = f (z,y) considered in our Existence and Uniqueness theorems above.

Indeed, if we simply replace numbers by vectors in the appropriate places in
the seven step proof of the Existence and Uniqueness theorems above, we obtain
Existence and Uniqueness theorems for systems of first order equations that read
almost exactly the same!

THEOREM 4 (Existence theorem). Suppose R is an open region of the Fuclidean
space R"1, that £ : R — R™ is continuous, and that Py = (x0,y0) € R. Then
there exists a (possibly very small) positive number § and a vector function y :
(xg — 0,20 + &) — R™ that is a solution to the n x n initial value problem

{ y = f(zy)
y(xo) = Yo
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THEOREM 5 (Uniqueness theorem). Suppose R is an open region of the Euclid-
ean space R"*1 that f : R — R™ is continuous, and that Py = (x9,y0) € R.
Suppose in addition that f (x,y) satisfies a Lipschitz condition in the y variables.
This means that there is a positive constant K such that

If(z,y1) — f(z,y2)l| < K |ly1 —yall,  forall (z1,y1),(72,y2) € R.
The previous theorem guarantees the existence of a solution to the nxn initial value
problem
{ y' = f(zy)
y(@) = yo

and this solution is unique in the sense that any two solutions must agree on their
common interval of definition around xg.

Y1 fi(z,y)
Y2 fa(z,y)

In the theorems above, y = ) and f(z,y) = ) are n-
Yn fn (. y)

dimensional vectors. The length of a vector y is ||y|| = \/¥? + ... + y2 and the
notation y; and ys is used to denote two different vectors - the subscripts here do
not stand for components of the vectors.

When applied to the nt" order equation (0.1), these theorems give existence
and uniqueness for an nitial value problem for (0.1), one that involves specifying
the values of the derivatives () (zo) for k=0,1,2,...,n — 1 at an initial point z;.

THEOREM 6. Suppose R is an open region of the Euclidean space R™!, that
f: R — R is continuous, and that Py = (z9,y0) € R, where yo = (y3, 43, ...,yg_l)
is a point in R™. Then there exists a (possibly very small) positive number § and
a (scalar) function y : (xg — 8,29 + ) — R that is a solution to the n" order
equation initial value problem

y™ o = fzyyy™Y)
y(zo) = y(;?
(1.4) Y (z0) = Yo
y" ) (o) = v
If in addition there is K > 0 such that f satisfies the Lipschitz condition
|f (@, y1) = f(z,y2)| S K [lyr —y2ll,  forall (z1,y1),(z2,y2) ER,

then this solution y (x) is unique in the sense that any two solutions must agree on
their common interval of definition around xg.

th

2. Linear n'" order equations

We say that the n'" order equation (0.1) is linear if f (2,y,9/, ...,y V) is an
affine function of the variables v, v/, ...,y ™) with coefficients that are functions of
x, i.e.

f (m,y,y’,...,y("_1)>
= h(@)+ fo@y++f @)Y+ .+ faor (@)Y,
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which we can rewrite in the form
an () Y™ + an_1 (@) y" T + L ar (2)y +ao (2)y =g (2),

and more usually as

n n—1 d
(2.1) an () e + ap—1 () Jgn—1Y + .ot ar (o) e +ag(z)y=g(z).
We often abbreviate the left hand side by writing
n n—1 d
(2.2) Lly] = ay () e + ap—1 () P + ..t ar (o) e +ao () y,

where it is understood that the coefficient functions ay (x) are associated with the
linear operator L, which we refer to as a linear n'" order differential operator. We
also refer to the function g (x) on the right hand side of (2.1) as the forcing function.

The existence and uniqueness theory for linear equations is better behaved than
in the general case because the Lipshitz condition is (locally) automatic, and in fact
the solutions exist on the interval of definition of the coefficients ay (x), provided
the top coefficient a,, () doesn’t vanish there.

THEOREM 7. Suppose the functions ay, (z) are continuous on an interval I for
0 <k <n and that a, (z) # 0 for x € I. Then the initial value problem

Ly] = g(z)

y (z0) =y

(2.3) Yy’ (z0) = ?Jé
y(n D) (z0) - yS’;I

has a unique solution y : I — R defined and n times differentiable on the interval
1.

The set of solutions to a linear equation has a great deal of structure that is
missing in the general case, due mainly to the fact that

(2.4) Liciyr + cayo] = c1 L [y1] + c2 L [y2]

for any two functions y; and y2, and any two constants c¢; and cy. This equation
says that the operator L is a linear operator on functions, and its proof is immediate
from the corresponding properties for derivatives, e.g.

(cryr + cay2) = 1y} + cath.

In fact, we have the following properties for solutions to the homogeneous equa-
tion L [y] = 0 (the word ‘homogeneous’ is used here just to indicate that the right
hand side of the equation (2.1) vanishes).

Cra 1. Let L[y] be as in (2.2) with ay, (z) continuous and ay,, (x) nonvanish-
mng.
(1) Ify1 and yo are both solutions to the homogeneous equation L [y] = 0, and
if c1 and co scalars, then the linear combination y = c1y1 + ca2ys2 s also a
solution. Indeed, if L{y1] = 0 = L[ya], then (2.4) gives L[ciy1 + caye] =
0.
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(2) Given an interval I, a point xg € I, an operator L as in Theorem 7,
and an integer 0 < k < n — 1, let yi (z) be the unique solution to the
homogeneous initial value problem

Ly = 0
Yy (zo) =0
y(k)'(xo) : 1 ’
Y (@) = 0

where g (x) = 0, yl(gj) (o) = 0 for j # k, and y,(ck) (xg) = 1. Then the
unique solution y (x) to the initial value problem (2.3) with g (z) = 0 is
given by

y=90yo @)+ s y1 (@) + .+ Y0 Yoo (v),  wEI

as can be seen by direct substitution. In other words, we simply take the
linear combination of the special solutions yi, (x) with constants equal to
the specified initial conditions y§!

(3) The general solution of the homogeneous equation L [y] = 0 is given by the
n-parameter family of solutions

{C() Yo (QT) + C1 Y1 (ZE) + ...+ Cn—1 Yn—1 (x)}(co,...cn71)€R" .

Indeed, each such function is seen to be a solution to Lly] = 0 upon
applying (2.4) repeatedly. Conversely, if y (x) satisfies L[y] = 0, then let
e = y") (x0) for 0 < k < n— 1. Then each of the functions y () and
coyo () + ...+ cn—1yn—1 (z) satisfy the same initial value problem, and so
must be the same function by the uniqueness of solutions:

d£

Tt {eoyo + .. + cn—1Yn—1} (o)

= Coy((f) (zo) + ... + Cnflyffh (zo)

= c0+..+ ngy) (z0) + ... + ¢n—10

= =y (@),
for each 0 <€ <n-—1.
DEFINITION 2. We say that a set of n functions Y = {y1, Y2, ..., Yn} is a funda-

mental solution set for the homogeneous equation L [y] = 0 if the general solution
is given by the n-parameter family

{Clyl + ...+ Cnyn}(cl,...cn)eR“ .

Claim (3) above shows that there is always a fundamental solution set for
the equation L [y] = 0, provided the coefficients of L are continuous and a,, is
nonvanishing. Note that we are here relabeling the functions as yq, ..., y, instead of

Yo, -3 Yn—1-

CONCLUSION 1. With a fundamental solution set ) to L[y] = 0 in hand, and
together with just one particular solution y, to the nonhomogeneous equation L [y] =
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g, the general solution to the nonhomogeneous equation L[y] = g is given by

Y = Ye + Yp; Ye = C1Y1 + .. + Cp¥Yn-

Here y, is called a particular solution (to the nonhomogeneous equation) and y. is
called a complementary solution (to the homogeneous equation,).

2.1. Second order linear equations. We divide the linear second order
equation (2.1) (in which n = 2) through by the top coefficient as (x), which we
assume is nonvanishing. The result is this equation in which we have redefined the
operator L and the forcing function g (z):

(2.5) Liyl=y"+p(@)y +q(@)y=g(x).

We cannot in general find solutions to this linear equation (although we can in
the special case when the coefficient functions are constant), but if we are lucky or
clever enough to find just one nontrivial solution to the associated homogeneous
equation

Lyl =0

(the trivial solution is y (x) = 0), we can use the method of reduction of order to
reduce the task of finding all the other solutions of (2.5), to that of solving a first
order linear equation. The idea is to make two successive substitutions as follows.

Assume that y; () is a nontrivial solution to the homogeneous equation L [y] =
0. Make the substitution

y(z) =y (2)v(2)
in the nonhomogeneous equation L [y] = g, and compute the equation satisfied by
the new unknown function v (z). We expande L [y;v], and regroup terms according
to v and its derivatives, to get

(2.6) g(x) = Lyl =Lyl =) +p@) (5v) +q(z) (y1v)

(wiv +y1v") +p (@) (Wi + 1) + ¢ (=) (Y1v)

(10 +2y10" +y10") +p (2) (Y10 + 91v') + ¢ (2) (y1v)

= {W+r@)y+a@yitv+{2y +p(@)y}o +y0”

{20, +p (@) y1} 0" 4+ y10”,

since ¥} +p (x) yy +q () y1 = L [y1] = 0. Now make the second substitution z = v'.

Then z satisfies the linear equation

yi(x) 2 + {207 (@) +p(x)y (2)} 2 = g(2);

2 /
z’+{y1+p}z - 7
Y1 Y1

An integrating factor for this equation is

2y)
J3+e _ 2lnfyl+[p _ y2e?

p=e ,
where P = [ p is an antiderivative of p. Thus we have
(n2) = (Bel) z+yfels = pd =il I = yely,
Y Y1
z = nyG*P /ylepg.

We can now antidifferentiate z = v’ to obtain v.
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Finally, we obtain that y = y1v is a solution to the nonhomogeneous equation
L[y] = g. Since there were two antiderivatives taken in the method above, there
are two constants of integration in the formula for the solution y, and we have
thus constructed a two-parameter family of solutions. This somewhat complicated
procedure is best illustrated with an example.

EXAMPLE 14. Given that yy () = L solves the homogeneous equation

xr
22%y" + 3zy —y =0,

we will use the method of reduction of order to find a general solution to the non-

homogeneous equation

22%y" + 3xy —y = 2.

Let y = yv = %v, and write the nonhomogeneous equation in standard form

I
VoY 2x2y_2’
with p (z) = &, q(z) = —52 and g(z) = . From (2.6) we have

= {2 +p (fE) 1o +yv”

,3 + il v + 1’0//
2 2zx T

N8

and so z = v satisfies

Then with p = e[ 2y — g3z — ﬁ, we obtain

Then we antidifferentiate z = v' to get

v-/z—/(m—l—c?f) —x —&—7021‘2—&—01,

and finally from y = fv we obtain the two parameter family of solutions,
1 2 1
Y= %x +502x2 —&—clf (c1,c2) € R%

It is worth noting that in the above example, the general solution has a very
special form, namely

Y =Yp + C2Y2 + C1y1, (c1,¢2) € R?,
where y; = % and yo = %x% are different solutions to the homogeneous equation

22%y" +3zy —y =0,
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while y, = %xlg is a particular solution to the nonhomogeneous equation

1

222y + 3xy —y = a>.

We now turn to making precise this notion that solutions are different, and this
involves the concept of linearly independent functions.

2.2. Linear independence and Abel’s formula. Two functions f and g
defined on an interval I are said to be linearly dependent on I if one of them is a
constant multiple of the other, i.e. either f (z) = c1g(x), x € I, for some scalar ¢;
or g(z) = caf (x), ¢ € I, for some scalar co. The reason we consider both ¢; and
¢y is to include the possibility that one of the functions, say g, is identically zero,
but not the other. Then we can write g = 0- f but f # ¢;g for any constant ¢;. We
can combine all possible cases in a single equation by simply requiring that there
exist scalars ¢; and ¢y that are not both zero, such that

af(@)+eg(x)=0, =zl

The way to extend this concept to more than two functions is now evident. We
say that a (finite) set of functions { f1, fa, ..., fn} is linearly dependent on I if there
exist scalars (c1, ¢, ..., c,) # (0,0, ...,0) such that

lel ($)+62f2($)+...+0nfn(1'):0, zel,
ie. c1fi +cofe+ ... + cnfn = 0 is the identically zero function on I.

EXAMPLE 15. The set of four functions

1 T 2
{Lu—mf’u—xf’u—xf}

is linearly dependent on any interval I not containing 1, since with

(61702,037&1) = (_1; ]-7 _27 1) )

we have
14 1 n T 4 x?
C C C C
V- - -
1-2 2 1—2)2
= f1+#:f1+%:0, z#1.
(1—x) (1—2x)

We say the set {f1, fa,..., fn} 18 linearly independent on I if it is not linearly
dependent on I. For a general collection of functions {f1, f2, ..., fn}, the concept
of linear independence cannot be easily characterized directly - it is simply the
negation of linear dependence, which can be expressed as

(27) le1+62f2+...+cnfn =0 = c=c=..=c¢,=0.

EXAMPLE 16. The set of three functions {sinx,sin 2x,sin 3x} is linearly inde-
pendent on R . One of many ways to see that (2.7) holds is to assume that

c18inx + cgsin 2z + cgsin3x = 0,

and then let x = 5 to obtain

. . . ™
01703:clsln§+0231n7r+03sm? =0.
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Then differentiate the identity twice using (sinwz)” = —w?sinwz to get

—c1sinx — 4c¢o sin 2z — 9¢3 sin 3z = 0.
Then sel x = 5 again to obtain

3
—c1 +9c¢3 = —cy sin g — 4co sinm — 9cg sin g =0.

Thus we have 9c3 = ¢1 = c3 which gives c3 = 0, then ¢y = 0, and then cysin2z =
0 gives co = 0, and this completes the demonstration of the linear independence
condition (2.7).

But for special classes of functions we can do much better than verifying (2.7),
especially when the functions {y1,¥a,...,yn} are solutions for the homogeneous
equation L [y] =0 on an interval I, where

(2.8) Lyl =y™ + a1y Y + ..+ a1y + agy

is a linear n** order differential operator as defined in (2.2), but with a, = 1.
Indeed, if ciy1 + coyo + ... + cpyn = 0 on I, then we can differentiate both sides n
times with respect to = € I to obtain

ay (@) +eyz (@) + ..+ eyn (2) = 0,
a1y (o) + oy (2) + o+ ey (2) = 0,
ey (@) + eV @) + e (1) = 0,
for every z € I. In matrix form this equation is
Y1 Y2 T Yn
Y Yo ot WU
: : . . (z) el;
y%n—l) yén—l) . y7(ln—1)
(x)c = 0, z € I
Mc = O
We now conclude that the linear independence criterion (2.7) holds if and only if
(2.9) Mc=0 = c=0.

Note that so far we have only used that the functions {y1,ys2,...,yn} are n — 1
times continuously differentiable, and we haven’t yet exploited the fact that they
are solutions to an n'" order linear homogeneous equation L [y] = 0.

To link (2.9) with the differential equation L [y] = 0, we recall from linear
algebra that for a fized x € I,

M(z)ce=0 = c=0,

if and only if det M (x) # 0. We define this important determinant to be the
Wronskian W (y1, ..., yn) (z) of the functions {y1,y2,...,yn} on I:

y1 () Y2 (z) Yn
v (z) yp (@) oy (@)
W (y1s-sYn) () = det M (z) = det : . ) .

W (@) @) o Y ()
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The connection of the Wronskian with a set of solutions is twofold. First
we have a nonvanishing property from which we obtain the equivalence of linear
independence and fundamental solution.

In the next three lemmas, the linear n'* order operator L [y] is as in (2.8) with
continuous coefficients ay () on an interval I.

LeEMMA 1. Suppose {y1,Y2; ..., yn} is a set of solutions for the linear n** order

equation Lyl =0 on I. Then the Wronskian W (y1, ..., yn) (x) is either identically
zero on I, or never vanishing on I.

LEMMA 2. Suppose {y1,Y2,...,Yn} 5 a set of solutions for the linear n'* order
equation L]y] =0 on I. Then the following four conditions are equivalent:

(1) {y1,92,.--;Yn} is a fundamental solution set for L[y] =0 on I,
(2) the Wronskian W (y1, ..., Yn) (z) is nonzero for all x € I,

(3) the Wronskian W (y1, ...,Yn) (zo) is nonzero for some xg € I,
(4) the set {y1,y2,...,yn} is linearly independent on I.

Second, if we work a bit harder, we can derive an explicit formula connecting
the Wronskian W (y1, ...,y,) at two different points z,z¢ € I, and that gives the
conclusion of Lemma 1 above as an immediate corollary. This is Abel’s formula
involving the coefficient a,,—1 () of the linear differential operator L.

LEMMA 3 (Abel’s formula). Suppose {y1,y2,...,yn} S a fundamental solution
set for the linear n'" order equation L[y] =0 on I. Then for x,xzo € I, we have

W Y1y yn) () = €~ Jey an-1(s)dsyy) (Y1, e, Yn) (z0) -
We will only give proofs in the simplest case n = 2, but will give them in a

form which is not hard to generalize to the case n > 2. To establish Abel’s formula,
let y; and y2 be two solutions of the second order linear homogenous equation

Y+ a1 (x)y +ao(z)y = 0.

We differentiate the Wronskian of y; and y, using the product rule for derivatives,
and the multilinear and alternating properties of determinants:

W @) = a0 w0 ]
_ [ Ly (2) Lys(2) yi(z) w2 (2)
= det] U W@ }”“[dﬁya(m) maM
T h@ % n(2) (@)
= et @) 4 <x>}+det[y1'<x> ym}
_ . y1 () Yo ()
= 0+d t[ —a1 (z)y1 —ao (2)y1 (z) —a1 (z)y; —ao (z)y2 (z) }
_ [y () Y2 () y1 () Y2 ()
= A @y —m(x)yg]*det{—ao@:)yl(x) —ao () 2 ()

= —a1(z) W (y1,92) (z) +0.
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This is both a linear and a separable equation for the Wronskian. Using the inte-

f’;o ai(s)ds

grating factor e we get Abel’s formula:

dx dx

W (y17 y2) (Jf) — Ce f;() ai(s)ds VY (yl; y2) (mo) e f;o a1(s)ds.

Since the exponential function e Sy ar(s)ds

obtain Lemma 1 as a corollary.

We prove the equivalence of the four statements in Lemma 2 by linking the
first to the second, and the third to the fourth. Of course the second and third are
equivalent by Lemma 1.

We first show that (1) and (2) are equivalent. Indeed, (1) fails if and only if
there is a triple (zo, yo,y,) such that the solution y (z) to the initial value problem

never vanishes, we immediately

y' = —ay —agy
Yy (950) = Yo
Y (o) = Yo

fails to have the form y = c¢1y1 + coy2 for any choice of scalars ¢; and cg. Thus if
and only if there is no solution ¢ = (¢, ¢2) to the matrix equation

_ v | _ | v(@o) walwo) || e | _
o=l =1hE) e 6 ] e

i.e. the vector yo = (yo, () is not in the range of the matrix M (zg). It follows from
linear algebra that this holds if and only if det M (x¢) = 0. Since W (y1, y2) (x0) =
det M (), this is equivalent to the failure of (2).

Now we demonstrate the equivalence of (3) and (4), beginning with (3) implies
(4). Indeed, suppose that (3) holds, and in order to derive a contradiction, that (4)
fails. Then by (3) there is some z € I such that det M (x¢) # 0, and by the failure
of (4) there is a vector ¢ # 0 such that

0 yi(z) y2 () } { @] }
0= = =M (z)c,
{o} [yux) o) || e (@)
for all z € I, and in particular for z = z¢. But det M (z¢) # 0 implies ¢ = 0 by
linear algebra, and this is our desired contradiction. Conversely, we suppose that

(3) fails and prove that (4) fails. Indeed, the failure of (3) shows that for any € T
we have W (y1,y2) () = 0, and in particular for a fixed g € I. Then the equation

0 y1 (wo)  y2 (wo) } [ 1 }
0 = = = M 5
{ 0 } [ 1 (o) ya(wo) | | 2 (wo) c
has a solution ¢ # 0. Define the function ¢ (z) = c1y1 () + cay2 (z). Then ¢ solves
the initial value problem

Yy = —ay —agy
Yy (‘TO) = 0 y
Y (o) = 0

but so does the identically zero function 0! By the uniqueness of solutions, we
conclude that ¢ (z) = 0, which says that the set {y1,y2} is linearly dependent on
I, hence that (4) fails.

S W @)} = O Lo @)W ) @)+ W ) (0]

0;
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Caution!: For functions {fi, fo} that are not solutions to an equation, it
remains true that if f; and fs are linearly dependent, then their Wronskian

vanishes. But the converse is false: The pair of functions {x?’, \x|3} has

vanishing Wronskian on the entire real line,

W (a2, ") detl 2 o’

=325 2 — 32 Iz = 0,

3x2 3p2Z ||

||

but they are not linearly independent on any open interval containing the
origin 0. Exercise: prove this!

2.2.1. Using the Wronskian to find a second independent solution. Now we
show how to use Abel’s formula to find a second linearly independent solution
y2 to the homogeneous equation L [y] = 0, if we are given a first nontrivial solu-
tion y;. This provides a convenient alternative to carrying out the substitutions

28
solve the nonhomogenous equation L [y] = g, we must still use the substitutions

!
z=0 = (% in the method of reduction of order. We illustrate the use of Abel’s

formula by returning to the equation in Example 14.

/
z =1 = (i> in the method of reduction of order. Of course, if we wish to

EXAMPLE 17. Given that y; = % solves the homogeneous equation
— 3 / 1
Liyl=y"+ v = 53y=0,
we fix any point xg other than the singular point 0, and assume that there is a second
solution ya with W (y1,y2) (xo) = 1. Note that such a solution ys is automatically
independent of y1 by Lemma 2. Now we write out Abel’s formula for the unknown
function ys:

1, 1 ’ / Yy Y2
Vot gt = Uiy~ UiY2 = det v
= W(y1,p2) (v) = e~ S 00 — o= [ a5de
= 67% Inz _ ;1;7%.
This equation is linear,
1 _1
Yo+ —yo =2,
x
with integrating factor u =z, and so
1
5!32/ = z(yh+ -y ::c:c’%:gc%~
Y Y2 Zliy )
2
TYs = /x%dac: fx%;
3
2 1
Y2 = g.’EQ,

gives a second independent solution ys.

Note that we ignore the constant of integration here since we are only interested in
finding the ‘other’ independent solution. Indeed, writing in the constant of integra-
tion C' at the end would only give back a multiple of the known solution %, since

TYs = f:c%dw = %;C% + C gives yo = %x% +C1i.
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3. Constant coefficient linear equations

Now we consider the special case of the n'" order linear operator L [y] in (2.2),
where the coefficients ay, (z) of the operator L are constants ay:

n m—1 d
(31) L[y] Ean@y—l—an,lmy—l——i—al%y
In this case we will be able to give an explicit fundamental solution set to the
homogeneous equation L [y] = 0, and develop very effective methods for solving the
corresponding nonhomogeneous equations L [y] = f.

+ agy.

3.1. Fundamental solutions sets for the homogeneous case. The first
order linear homogenous equation with constant coefficients L [y] = a1 %y +ap=0
is easily solved by separation of variables:

dy = —Ldz;  y=Ce u”.
ai

In particular we note that the exponent 72—? of the exponential is the unique root of
the linear algebraic equation a7 + ag = 0. This suggests that we might search for

a solution to the n*" order equation L [y] = 0 by plugging in exponential functions
T

€™ and see if they happen to satisfy the equation for certain exponents r. Since
k
Ti-k e = rker® we compute that

Lie™] = apr"e™ +an_ 17" ™ 4 .+ arre”™ + ape™
= (anr" +an 1" N+ agr+ ao) e,
which vanishes identically in x if and only if r is a root of the polynomial
(3.2) P(r)=Pp(r)=anr" +an_ 1" ' 4+ ...+ a1 + ag,
which we refer to as the characteristic polynomial of the constant coefficient linear

nt? order operator L.

The fundamental theorem of algebra: It is a fundamental theorem in
algebra that every polynomial P of order n has exactly n roots counting
multiplicities in the field of complex numbers.

If r is a real root of P, then
y=Ce™
is a solution to the homogeneous equation L [y] = 0. If r = a +ib is a complex root
of P, then
y = Ce™™ = Celet )T = 02T (cos B + isin fz)
by deMoivres formula e = cosf + isinf and properties of exponents. Thus we
have produced a complex-valued solution y (x) = €"* to the differential equation

L]y] = 0. We can write this solution uniquely in terms of its real and imaginary
parts as

y(z) =u(x) +iv(x),

where both u (z) = Rey (z) and v (z) = Imy (x) are real-valued functions. If the
coefficients ay, are real numbers, then it is easy to see that both u (x) and v (z) are
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themselves solutions to the homogeneous equation:

m n—1 d
Lu)(x) = Qo (z) + A1y U () + ...+ ay - -u + agu (z)
m n—1 d
ano Rey (z) + Un—1o g Rey (z)+ ...+ a1 Rey (z) + ag Rey (2)

d" a1t d
= Re (an et (z) + n-1 7Y (Z)+ ... + a1 Y + apy (x))
= ReL][y](z) =Re0 =0,
and similarly L [v] () = 0. We can also easily compute that

uw(z) = Rey(z) =Ree™ = Reel® )7 = Re {e* (cos Sz + isin fz)} = e cos f;
v(z) = Imy(z)=Ime™ =Ime@TH? = Im {e* (cos B + isin fz)} = € sin B

Thus in this case we have produced two linearly independent solutions,

y1 () = e cosfu,
Yo () = e**sinfux,
to the homogeneous equation L[y] = 0. They are linearly independent because

B # 0 by assumption that the root r = o + i is complex, and their Wronskian is
NoONZETo:

W (y1,92) () det [ y;} y'2 }
Y1 Y2

C et e** cos Bz e** sin B

= ae®® cos Bz — Be** sin Br  ae™® sin fx + BeT cos fx

cos Bz sin Bz

—QBsinfBx [cosfx

= g (Cos2 Bx + sin? Bx) = fe?,

= 297 det [

REMARK 2. Note that in the case the coefficients ay, of L are all real numbers,
then the complex roots appear in complex conjugate pairs: o + i3 is a root of the
characteristic polynomial P (r) in (3.2) if and only if o — if3 is oot since
Pla+iB) = apn(a+iB)" 4+ an_1(a+iB)" '+ ...+ a(a+iB) + ao

= ap(a@—iB)" +an_1(a—iB)" '+ .. +ai (a—if) +ao =P (a—if).

Thus it is not surprising that a complex root delivers two independent solutions -
namely ‘one for each root in the complex pair’.

EXAMPLE 18. The general solution of the equation
y" 45y +6y =0
is found by computing the roots of the associated characteristic polynomial
0=r+5r+6=(r+2)(r+3).
The roots are r = —2,—3, and the general solution is then given by

y=cre 2 4 coe 3",
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EXAMPLE 19. The solution to the initial value problem

y' =2y +5y = 0
y(0) =1,
y' (0) = 2

can be found as follows. First, find the general solution of the differential equation:

0 = r>—2r+5; r:72i 24_20

— 14+ 2%
y = c1e”cos2x + coe” sin 2x.
Second, differentiate y to get
y' = c1€” (cos 2z — 2sin 2z) + co€” (sin 2z + 2 cos 2z) ,

and then substitute these formulas into the initial conditions to solve for the con-
stants ci, Ca:

1 = y(0)=c1-14+c2-0=1cy;
2 = Cl<1—2'0)+02(0+2'1)201+202.

This gives ¢y =1, co = %, and the solution to the initial value problem is hence
1
y =e” cos2x + iel sin 2.
ExaMPLE 20. Try to find the general solution to the equation
y" — 6y + 9y = 0.

The characteristic polynomial is r* — 6r +9 = (r — 3)2, and has a single repeated
root 3. Thus we know that

Y1 = 61631’
is a solution but this method doesn’t produce a second independent solution. Of
course we could take y1 = €3® in Abel’s formula, and solve for yo:

yiys —Yhya = det [ z?ﬁ zz } =W (y1,92) (x) = e W (y1,12) (w0) =
3y — 3e3y, = 8
(e*BIyQ)/ = e (yh — 3yp) = e M = 1
e yy = x4+ C;
Yo = xe’” + Ce’”.
Thus we have found a second independent solution yo = ze3®, and the general

solution is
y = 1% + coxe’® = (c1 + caz) e,

The three examples above suggest the following theorem.

THEOREM 8. Let L[y] be a constant coefficient n'* order linear differential
operator as in (3.1). Suppose that the characteristic polynomial P (1) of the (real)
constant coefficient n*" order linear differential operator L [y] factors as

P(r)y=(r—r)" (r=r)* . (r —rp)™
x {(r — o1 +iB,]) (r = [ar — B )} . {(r — lan +iBy]) (r — [an — ibBN])}™
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where the r;, aj, B, are all real numbers, and
n:k1+...+kM+2€1+...+2£N.

Thus each r; is a real root of multiplicity k; and each pair of complex conjugate
roots (aj +1iB;, a5 — zB]) has multiplicity ;. Then the set of n functions

(3.3) et get®  gkiTlen,

Tk,

2 ke lere,

e, xe?’

e’l‘]\/[a:, xeTM:E’.“xkj\/jfle’l’]v[:D;
€% cos By, T cos By, ... e cos B, x;

e % sin Bz, T sin B, ... e sin B, x;

e*N¥ cos Sz, xe*NT cos Sy, N TN T o9 BN1T;
€N sin Byx, xe*NTsin By, Lt TN T gin BNzT,

is a fundamental solution set for the homogeneous equation L[y] = 0, and the
general solution is given by

M kj
y = E § Cj.s 33‘5_1 eli®
j=1 | s=1
N 45
: s—1 a;T
+ E (dj.s cosBjz+ e smﬁjx) x eiv
j=1 | s=1

where ¢; s, dj s and e; s are real constants.

Here is how we can informally remember the conclusion of this theorem:
(1) For each repetition of a real root r;, there is a solution

xs—lerjz’

with 1 < s < kj, and
(2) for each repetition of a complex conjugate pair of roots a; £if3;, there are
two solutions

s—1 _aj x

s—leaje cos B;z and 2" e

% e sin 3,
with 1 < s < 4.
PROBLEM 5. Find a fundamental solution set for the equation
y W — " — 3y 45y — 2y = 0.
SOLUTION 5. The characteristic polynomial is,
P(r)y=7r*—r®—3r? +5r 2.

To factor this polynomial, we hope there is a rational root % in reduced form, in
which case we must have that p divides the constant coefficient —2, and that q
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divides the highest power coefficient 1. Thus our only choices for a rational root
are £1,£2. Substitution shows that

P(1)=0, P(-1)=-8, P(2)=4, P(-2)=0,
and so we know that
(r—=1(r+2)=r+r-2
is a factor of P (r). We now apply the long division algorithm due to Fuclid to get

r? —2r +1
r?4+r—2 — rt—r3-3r2 457 -2
rd 43— 2r2
—2r3 —r? 4 50 —2
—2r3 — 2r2 4+ 4r
r?4r—2
Thus we have the factorization
P(r) = (r=1)(r+2)(r*—2r+1)
— -1’ (r+2),
and guided by point (1) above, Theorem 8 gives the fundamental solution set
{e”s7 ze®, ze®, 6_21} .
PROBLEM 6. Find a fundamental solution set for the equation
yM — 8y + 26y" — 40y’ + 25y = 0
given that its characteristic polynomial factors as
rt — 8r3 4+ 2612 — 40r + 25 = (7“2 —4T+5)2.
SOLUTION 6. The roots of the quadratic polynomial 2> — 4r + 5 are

—(—4)+/(-4)*—4-1-5
2-1
Guided by point (2) above, Theorem 8 gives the fundamental solution set

=21

{e2z cosz, e*sinz, ze*® cosx, xe?® sin x} .

3.2. Undetermined coefficients in the nonhomogeneous case. Now we
consider the nonhomogeneous equation

Lyl = f,
where L is a constant coefficient n‘"* order linear differential operator as in (3.1),
n m—1

L[]Zad——I—a ——y+ —i—ai
Y = oyt an oy a1y

We assume the forcing function f is a finite linear combination of the type of
functions arising in the fundamental solutions sets to arbitrary homogeneous linear
constant coefficient equations, namely functions of the form:

+a0.

k ax

ke cos B, xFe®® sin fz, k=0,1,2,... and o, 5 € R.
Such functions include all polynomials @ (z) in z,

Q(z) = barz™ + b1 2™+ byx + by,
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and all products @ (z) e*® of polynomials @ (x) with exponentials e** and sines
and cosines cos Sz and sin Sz, and of course sums of such. We will denote the set
of linear combinations of these functions by F:

M
F= ZQj (z) €% cos Bz + Rj (z) ™  sin B, »
j=1

where the sums are taken over all M = 0,1,2,...; and where oy, 3; € R, and Q)
and R; are polynomials in z. Remember that we can take the polynomials to be
the constant 1, and the numbers «;, 3; to be 0, so that functions like e> cos 2z +
23 sin 4z belong to F.

There are two important properties of this vector space of functions

(1) F contains the general solutions of all homogeneous nt" order linear dif-
ferential equations with constant coefficients;
(2) F is closed under the operation of differentiation, namely, if f € F then
f' € F, which we can abbreviate by writing
d
—F—=F.
dx -
To see property (2), we simply note that the product rule, together with for-
mulas for derivatives of elementary functions, give

a4 zFe?® cos fx
dx

= kz* 1™ cos Bz 4+ zFae® cos Bz — 2¥e*® B sin Bz € F;

k oz

and similarly di (:L‘ €™ sin ﬁx) e F.
x

Of course it now follows that

dF
d;]jik:f_)fy k:0,1,27...

CONCLUSION 2. From the facts that F contains all solutions y. to the homo-
geneous equation
Ly =0,
and is closed under repeated differentiation, it is reasonable to conclude that if the

forcing function f lies in F, then a particular solution y, to the nonhomogeneous
equation

also lies in F. It remains only to narrow our search by making an intelligent guess
with undetermined coefficients for the form of y,, and then to plug our guess for
yp into the equation Lly] = f to determine the coefficients.

In order to motivate our scheme for intelligently guessing the form of a partic-
ular solution y,, we look at a few examples first.

EXAMPLE 21. In order to solve the equation

y" + 4y = 5a’e”,
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we assume there is a particular solution y, € F, and since f = 5z*e” and all of
its derivatives are linear combinations of x2e®, xe® and e®, we might guess that Yp
has the special form

yp (2) = Az’e” + Bre® + Ce” = {Az® + Bx + C}e”

where A, B and C are undetermined coefficients. Then

yy(x) = {247+ B}e" + {Aa® + Bx + C}e"
= {Ax2+(2A+B)x+(B+C)}6x;
yy (x) = {24z+ 24+ B)}e" + {42’ + 24+ B)z + (B+O)}¢”

{A2* + (4A+ B)z + (2A+ 2B+ C)} ¢*.

We now plug this form into the equation and use the above expressions for y, and
Yp to get

5ate” =y + 4y,
= {A2’+(4A+B)z+ (24+2B+C)}e" +4{Az” + Bz +C}e”
= (5A)z%e” + (4A+5B) ze” + (2A + 2B + 5C) €”.

Since the functions {$26I, ze”, ex} are linearly independent, the above identity gives
equality of the coefficients:

54 = 5,
4A+5B = 0,
2A+2B+5C = 0,
from which we obtain
4 2
A=1,B=—-,C=——.
’ 5’0 25

Thus a particular solution is

EXAMPLE 22. To solve the equation
Yy + 3y + 2y =sinz,

we note that f = sinx and all of its derivatives are linear combinations of sinx and
cosz, and so we might guess that y, has the special form

yp (x) = Asinz + Bcosz,

where A and B are undetermined coefficients. Then

y, () = Acosz— Bsinuz;
y, (x) = —Asinz— Bcosz.

We now plug this form into the equation and use the above expressions for y,, y,
and y, to get
sing =y, + 3y, + 2y,
= (—Asinz — Bceosz)
+3(Acosxz — Bsinz) + 2 (Asinx + Bcos )
= (A—3B)sinz+ (B + 3A)cosz.
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Since {sinx,cosz} are linearly independent, we can equate coefficients to get

A-3B = 1,
B+3A = 0,
from which we obtain
1
Aoty B
10 10
Thus a particular solution is
() = 1 sinz — icosm __ sinz — 3cosz
=10 107" 0

Thus it appears that a general rule is emerging from these two examples, namely
that given f € F, a particular solution y, has the same form as that of f and all
of its derivatives. This is not quite true as the next example shows.

ExXAMPLE 23. To find a particular solution of the equation
y'+2y +y = bze™",
we might guess, based on our experience with the first two examples, that a particular
solution has the form
yp (x) = Aze™" 4+ Be™ ",

since f = bxe™™ and all of its derivatives are linear combinations of xe™™ and
Be=*. But clearly this is not the case! Both of the functions xe™® and e~ * are
solutions to the homogeneous equation L [y] = 0, hence

Lly)=A+BL[e "] =04+0=0.

x x

This is the first time we have come across the situation where the forcing function
is (or includes) a solution of the homogeneous equation. The ‘trick’ is to assume
that y, has the special form

yp = 2° (Aze™ + Be ™),

where the exponent of the extra power of x is chosen to be the multiplicity of the
corresponding root in the characteristic polynomial,

P(r)y=r*+2r+1=(r+1)°.

Then
Yp = {Aac3 + B:c2} e 7
Y, = {342 + 2Bz} e ® — {Az® + B} e ”
= {-42°+ (34— B)a2*+2Bz}e "
yy = {-3A2"+ (6A—2B)x+2B}e ™"

—{-A42°+ (3A— B)z® +2Bz}e "
= {Az’+ (B—-6A)2” + (6A—4B)z +2B}e "
We now plug this form into the equation and use the above expressions for y;,/, y;,
and y, to get

x

Swe” " =y, + 2y, +yp
= {6Ax +2B}e ".
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Since {xe™* e~ *} are linearly independent, we can equate coefficients to get
6A=5,2B=0,
from which we obtain
5
A=-,B=0
67
Thus a particular solution is
5
yp (z) = éxgefm.

One final comment. The linearity of the operator L shows that if f = g+ h
is a sum of forcing functions g and h, and if y, and z, solve the nonhomogeneous
equations Ly,] = ¢ and L[z,] = h respectively, then the sum y, + 2, of the
particular solutions is a particular solution to the nonhomogeneous equation

Llyp + 2] = Llypl + Lz] = g+ h.

For example, we showed above that with L [y] = y” + 4y, the function y, (z) =
(x2 — %m — 2—25) e® satisfies L [y,] = 52%e®. We also note that a simple calculation

shows that z, = e * satisfies L [z,] = be~". Hence by linearity of L, we have

4 2
2 = = x —x
L[(x 530 25)6 +e }

and so (332 — %x — %) e” 4+ e~ 7 is a particular solution of the nonhomogeneous

equation L [y] =5 (z%e® + e7%).
The examples above suggest the following theorem.

L [yp + Zp]

= Lyp) + Llzp] = 526" +5¢7,

THEOREM 9. Let Ly] be a constant coefficient n'* order linear differential
operator as in (3.1), and consider the nonhomogeneous equation

k oz

L [y] = 2*e®® cos Bz or zFe”

* ¢in Bz,
where k =0,1,2,... and o, f € R. A particular solution y, is given by
yp = 2°{Q (z) e** cos fr + R (x) e sin Sz},

where @ (x) = E?:o Bjz? and R (z) = Z?:o C;x? are polynomials in x of degree
k, and with undetermined coefficients B; and C; which can be determined by sub-
stitution in the equation, and finally, where s is the multiplicity of the root o + i
in the characteristic polynomial P (r) associated with L [y] (if o+ 18 is not a root,
then its multiplicity is 0).

EXAMPLE 24. The form of a particular solution y, to the equation
Y+ 2y +2y =e “cosxz + 2
18
Yp = ! (Be_” cosx + Ce™ " sin a:) + Agz® + Az + Ao,

since the characteristic polynomial r>+2r+2 has a conjugate pair of roots =
—1 %4 with multiplicity s = 1.

2+v4-8 __
=
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EXAMPLE 25. The form of a particular solution y, to the equation
y"' =2ty =z —€"
18
yp = z' (Ag + A1) + 22 (Be™) = Agx + Aya® + Ba?e”,
since the characteristic polynomial
T3—2T2+r:r(r—1)2

has root r = 0 with multiplicity s = 1, and root r = 1 with multiplicity s = 2.

4. Variation of parameters

Suppose L is an n'" order linear differential operator as in (2.2). We present
a general method, called variation of parameters, that applies even in the variable
coeflicient case, for solving the nonhomogeneous equation

Lyl =g,

provided we know a fundamental solution set for the associated homogeneous equa-
tion L[y] = 0. In the special case that L has constant coefficients, then we do
indeed know a fundamental solution set for L [y] = 0 (if we can factor the charac-
teristic polynomial), and so the method of variation of parameters always applies
in this case, and for any choice of forcing function, not just those in the space F
introduced in the previous section.

The idea in this method is to consider a fundamental solution set {yi,...,yn}
to L [y] = 0, and replace the constants ¢; in the general solution to L [y] = 0,

Ye (-75) =Gy (33) + ..+ Cnn (55') s

with functions vj (x) in the hope that for some choice of v;’s the function

Yp () = v1 (@) y1 () + oo+ 0n (2) Y (2)

will be a particular solution to the nonhomogeneous equation L [y] = g. This does
indeed work, and the functions v; can be determined by substitution in the nonho-
mogeneous equation, followed by quite lengthy calculations. In order to minimize
both the effort and the chance of computational error, we can greatly streamline
the organization of the calculations by returning to the connection between n'"
order equations and first order n X n systems as discussed earlier. This approach
also proves that the method will always succeed.
Recall that y (z) solves

Y™ +a,1 (2)y" Y+ tar (@)Y +tao(x)y =Lyl =g (),

if and only if the vector function

Y1 Yy
Y2 y’
y = : =
Yn—1 y=2
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solves the n X n system

0 1 (1 0
0 1 Y2 0
y'(z) = 0 1 : + :
0 1 Yn—1 0
—ag (v)  —a1 () —an—1(2) Yn g(x)
= M(2)y(2)+g(2),
0
where g (z) = I {pq, .. 0, } is a fundamental solution set for L [y] =
g ()
P; ()
0, then each vector function ¢; = solves the equation <p9 (x) =
n—1
@y (@)
M (z) p; (), and so if we arrange the columns ¢, into a matrix
pr(@) o e (@)
n—1 n—1
AV @) e (@)

we get the matrix equation
® (x) =M (2)®P ().
In the simple case n = 2 we can write this out in full as

d %(ﬂf)w(x)}:[ 0 1 Hz(m) 5 (%)

©
©h

| P @) (o)

1
/
1

—ag (z) —ay (z) () ¢ (x)
v1 (2)
Now we treat matrices like numbers, and with v = , we compute
Uy ()

using the product rule that
(®(@)v(2) = @ (2)v(z)+®(x)V (2)
= M(z)®(z)v(z)+®(2)Vv ().
Thus the vector function y (z) = ® (x) v (z) satisfies the system
Y (x) = M (2)y (z) + g (),
if and only if the derivative v’ (z) of the vector function v (z) satisfies
® (2) V' (x) = g(x).

If we can solve this latter equation, then the first component y (x) of the vector
y (z) = ® (z) v (z), which is

y (@) = ¢y (@) v (@) + o+, (@) vn (2),

is a solution to the nonhomogeneous n*" order equation

Lyl =g.
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But the determinant of the matrix ® () is precisely the Wronskian W (¢4, ..., ¢,,) (z)
of the solutions in the fundamental solution set, so is nonvanishing for all x! Thus
the matrix ® (z) is invertible for all z, and we can solve for v/ (z) and then v (z):

Vi) = @(x) g();
v(z) = /@(m)flg(x)dw.

REMARK 3. This latter formula

vi(z) = / ® (2) " g (x) dr,

is particularly easy to remember, along with the fact that the first component in
® () v (z) is then a particular solution y, to the nonhomogeneous equation L [y] =
g. In fact, in the order one case y' + agy = g, we see that this formula is the usual
integrating factor formula,

M(x)y(fc)=/u(m)g(m)dx,

once we have observed that the integrating factor p (x) = el @o(@)dx g the reciprocal
of the solution o (x) = e~ J 9@ 15 the homogeneous equation y' + agy = 0; then
v =y and@fl:%:,u.

4.1. The second order case. In the special case n = 2 these calculations
can be written out in full, making them perhaps more transparent. Repeating the
above with n = 2 we have from the product rule,

sl allel)

_ i P11 P2 U1 T P1 P2 i U1
de | ©1 #3 2 ©1 ¥y | do | ve

Thus the vector function

satisfies the system

if and only if
/
Lz alln]-l]
©1 ¥ V2 g
But det [ (‘0,1 L‘O,Q ] = W (py,ps) is nonzero, thus the matrix [ <‘0,1 90,2 ] is in-
Y1 P2 Y1 P2

/

. U1
vertible, and so we can solve for { v } :
2

/ —1
Vg O Ph g
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Now we use the familiar formula for inverting a 2 x 2 matrix,

a b1 1 d —b
c d Cad—be| —¢ a |’
to obtain

l:U1:|/: 1 [w’z —%HO}: 1 {‘@29]
2 Wpr,0p) | =61 1 g Wier,00) | 19 |’

and hence finally

v (z) = —fmgog(x)g(x)dm
vg () = fW%(ff)g(f)dx

Thus a particular solution y, to the nonhomogeneous equation L [y] = ¢ is given

by the first component of [ 80,1 <,0/2 } { U1 } which is
1 P2 V2

(41 yp(z) = ¢ (@)v1(z)+ 9 () v2 (2)
= —<P1($)/ mwz(s)g(s)ds
@ [ e

¢ 1
- / W (@1, 99) (5) {01 (8) oo (%) — 1 () 02 (8)} g (s)ds

B /wmd“[ﬁii ijéﬁﬂg(sms,

or written out in full,

det | 1 (;) o (i)
42) wiw)= [ dt[[i(gg j;;sg)]]gws
18) ©2(8

REMARK 4. We can use Abel’s formula

W (o1, 2) (5) = € 0 W (01,0) (s0)
to calculate the Wronskian, but we must be careful when calculating a particular
solution in formula (4.1), to use the exact value of the Wronskian, and not just an
arbitrary multiple of the function e~ J 1.
EXAMPLE 26. To find a particular solution to the equation
y" + 4y = 3csew,
we compute the players in formula (4.2) above. We start with a fundamental solu-
tion set for y" + 4y = 0, for which we can take
{1 (2), @2 (2)} = {cos 2z, sin 2z},
and then compute the determinants

det ©1(8) a(9) — et cos 2s s.1n25
o1 () @y (x) cos2x sin2z

= co0s2ssin2x — cos 2x sin 2s,
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and

5 (s) _ cos 2s sin 2s
B ] det[ —2sin2s  2cos2s

= 2co0s?2s+ 2sin?2s = 2.

Thus (4.2), and the double angle formulas cos2s = 1 — 2sin’s and sin2s =
2sin scos s, give

uy (z) = /m cos 2s sin 2z ; cos 2x sin 233 csc sds
_ 3/'”” (1—QSinQS)sian—c0s2x(281nsc0ss)d
2 sin s §

T

3 v 3
§SiH2{L'/ (cscs—2sins)ds—§cos2x/ 2 cos sds

3
3 sin 2z {In |csc x — cot x| + 2 cosz} — 3cos 2z sinx

3
—sin2zIn|cscz — cot z| 4+ 3sinz,

since sin 2z cos © — cos 2z sinx = sin (2z — ).

5. Cauchy-Euler equations

There is one very special type of nt" order equation with variable coefficients
that we can solve explicitly, namely the Cauchy-Euler equation

(5.1) Ly = ana™y™ + an_12" 'y + L+ arzy + aoy = g,

where the linear operator L [y] has coefficients (axz*) that are constant (az) mul-
tiples of monomials (z*) whose degree matches the order (k) of the derivative y(*).
This equation has a singular point at x = 0, and so from the existence and unique-
ness theorems, we can only expect solutions to be defined on the half lines (0, c0)
and (—o00,0), and not at z = 0. We will confine our attention to z > 0, the case
x < 0 being similar.

The substitution x = e’ for £ > 0 turns out to reduce the Cauchy-Euler equa-
tion (5.1) to a constant coeflicient equation, that we can then solve using the tech-
niques in the previous sections. Indeed, using the chain rule

de - _ et =z
dt -
a1 _1
de ‘é—f_x’
d _ dd_1d
de  dxdt xzdt’
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repeatedly then gives

dy ~ d 1d ldy

dr  da? " wdt! T wadt’

d?y _ddy 1d (ldy

pr mw‘m(m)
1 1 dy 1d% 1 d’y dy )
= x{_aﬂxdterdt?}_z?(dt?_dt)’

d3y _ ddZy_ld 1 d?y 1 dy

pr d:zzdx2_zdt(m2dt2_m2dt>

S o 2T — ——

1 2 d?y 1 dy 1 dy 1 d%
3 dt2 22 de3 3 dt 22 dt?

T

and
d
(5.2) azy = a1£ + aoy;
d’y dy dy
2,1 / _ A =d
a2y’ + a1y +aoy = a2 <dt2 di +ay dt + aoy
d*y dy
= azﬁ‘#(% az)E-Faoya
Py Py | dy
3, 2,1 /
= — —3—=+2—=
azT"yY" +axx”y +axy + apy as <dt3 di2 + dt
d*y dy
+G2W + (a1 — a2) T + apy
dSy d2
= a3ﬁ + (aQ 3a3) dtz
and so by induction we see that
dny dnfly dy
Llyl=b,—= +by_1——— + ...01— + boy,
] = b g+ bt Gy + by + boy

¢y + (a1 — ao +2a3)

65

dy
dt

where by, ba, ...b,, are certain constant coefficients depending on the ay’s. Now the
first and last coefficients are easily identified as by = a¢ and b, = a,, but the
formulas for the intermediate coefficients by are not evident at this point. It turns
out however that there is an easy method for computing these constants by that we

will discover in a moment, so we leave them alone for now.

By Theorem 8 a fundamental solution set for equation (5.1) can be written
down once we have factored the characteristic polynomial of the constant coefficient

+ aopy;
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operator,

P(r) = by +b, 17" 4 bir 4 by

= (r-— 7“1)k1 (r— rg)k2 e (r = TM)kM

x{(r = [oa +64]) (r = [ar = i)} . {(r = [an +iBy]) (PA = [an — ibBN])}Y

where the r;, o, Bj are all real numbers, and
n:k1++kM+2£1++2€N

We replace all the 2’s in the fundamental solution set (3.3) by ¢’s, and then use our
substitution z = e’ to plug in the identities

e = 2" and the = (Inz)¥ ",
cosft = cos(Blnz) and sinft =sin(BInz).
The result is that the set of n functions
(5.3) 2™, (Inz)a™,..(nz)" '™,

2", (Inz)z", ... (Inz)™ ' 2",

2™ (Inz)a™ ... (Inz)™ g,
2 cos (B, Inz), (Inz)z® cos (B, Inz),..(Inz)" ' 2% cos (B, Inz);

2 sin (B, Inz), (Inz)z® sin (8, Inz), ... (nz)" ' 2 sin (8, Inz);

)fol

2N cos(Bylnz), (Inz)z*N cos(ByInz),...(Inx N cos (B Inz);

2V sin (ByInz), (Inz)z® sin(ByInz),...(Inz)™ ' 2V sin (By Inz),
is a fundamental solution set for the homogeneous Cauchy-Euler equation L [y] = 0.
CoONCLUSION 3. A fundamental solution set for the Cauchy-FEuler equation is

obtained from a fundamental solution set for the corresponding constant coefficient
equation, by replacing x with Inx everywhere.

In order to minimize confusion, we will refer to the characteristic polynomial
P (r) of the associated constant coefficient equation, as the indicial polynomial
P (\) associated with the Cauchy-Euler equation (5.1), and write the variable as
A instead of r to help us remember this. In some books the equation P (\) = 0 is
called the auxilliary equation. The above conclusion then suggests that in order to
determine the indicial polynomial P (\) associated with the Cauchy-Euler equation
(5.1), we can just substitute the function 2* into the Cauchy-Euler equation (5.1):

Lz = aua"[AA-1)..(A=(n—1))z*"]
+ap_ 12" [)\ A=1.(A=(n-2) m)‘_(”_l)} + oo+ arz e 4 apa?
= 2Ma A A =1 .. A=—n=1)F a1 AA=1)..(A\=(n—2)) +...a1 X+ ao}
= 22P()).

Thus L [z*] = 0 if and only if P (\) = 0 and we have discovered that the indicial
polynomial P (\) can be computed simply by plugging 2* into the Cauchy-Euler
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equation and calculating derivatives. The case n = 2 is particularly simple:

P(A\) =aA(A=1)+ a1 A + ao,
which of course agrees with the characteristic polynomial P (1) = aor?+ (a1 — az) r+
ag of the associated constant coefficient equation, that is obtained from the third
line in (5.2). We are now equipped to solve the Cauchy-Euler equation in three
steps:

(1) Calculate the indicial polynomial P (),

(2) Write down a fundamental solution set using (5.3),

(3) Solve the nonhomogeneous problem by the method of variation of para-
meters.

EXAMPLE 27. To solve the nonhomogeneous equation
22y +5zy +4y =271, x>0,
we compute
PA=AA—1)45A+4=X4+4r+4=(\+2),

so that {x’Q, (Inz) x’Q} s a fundamental solution set for the homogeneous equa-
tion. To find a particular solution to the nonhomogeneous equation we set
Yp = v12 2 + vy (Inz) 22,

where

v(z) = / & ()" g (x) dr,

with g (z) = [ x(z?, } (remember to obtain g from the normalized equation!) and

[ a2 (Inz)z2
20 = | S o S |
@) = Ils{m‘?’(g;?s(lnw)) —(1131:33%37_2}:[x2(1—2$22(1nx)) _(h;g;)gc3 |
RO R L N I

Thus we have

(28] st ] 4 e iz

and so the top component of

ever=[ 30 e [ ) =[5

1

s a particular solution, i.e. y, = x~ . Then the general solution is given by

y(z) = yp (z) + ye (2) =z ' 4zt (Inz) 2, z > 0.

REMARK 5. It is also possible in this example to use the method of undeter-
mined coefficients, for the corresponding constant coefficient equation, to see that a
particular solution y, has the form Az~', but in general we must use variation of
parameters.
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ExaMPLE 28. To solve the homogeneous equation
22y +ay +9y =0,
we compute
PA)=AA=1)+A+9=2+9=(\+3i)(\—3i),

so that {cos (3Inz),sin (3Inz)} is a fundamental solution set. The general solution
is given by

y(x) =y.(x) = c1cos(3lnz) + cosin (3lnx), x> 0.



CHAPTER 5

Power series solutions

In the previous chapter we showed how to successfully solve the n* order linear
equation (2.1),

Lyl = an () y™ + an—1 (@) y" D + a1 (@)Y + a0 (@) y = g (2),

in the following special cases:

e when the coefficients ay () = ai are constants, and the forcing func-

tion g(z) = 0 vanishes, we can find a fundamental solution set & =
{01,902, 0 )3

when the coefficients ay, () = aj, are constants, and the forcing function
g (z) has a special form, we can use undetermined coefficients to find a
particular solution y,, and hence the general solution as well;

when we have a fundamental solution set ®, even when the coefficients are
variable, we can use variation of parameters to find the general solution;
when n = 2, and we know a nontrivial solution to the homogeneous equa-
tion L [y] = 0, we can use the method of reduction of order to find the
general solution. Abel’s formula can be used instead if we only want to
find a second independent solution to the homogeneous equation.

Thus in the absence of any special information regarding solutions, the only
case we can always solve so far is the case when the coefficients ay (z) = ai are
constant. In the general case of variable coefficients, we cannot find closed forms for
the solutions, despite the fact that their existence is guaranteed by the Existence
and Uniqueness Theorems. But for a very large class of equations with ‘nice’
variable coefficients, we can always find solutions in the form of power series, i.e.
solutions y (z) having the form

(0.4)

where

y(@) = Y culw—zo)"

n=0
= co—|—01(x—x0)+02(:1c—m0)2+...
for —R < z—x9<R,

(1) xg is a real number called the center of the power series expansion, and
(2) the ¢, are real numbers called the power series coefficients, and
(3) R is a positive real number, perhaps infinity, called the radius of conver-

gence of the power series, such that the series >~ ¢, (z — )" converges
forall z € (zg — R, xzo + R), called the interval of convergence of the power

69
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series, i.e.

N
. no_.
A}Enoonzzocn (x —x0)" exists for all — R <2 — 29 < R.

A function y(x), that is defined by a power series as above, is said to be
analytic at the point xy. To be precise, y () is analytic at a point zq if it is defined
in some nontrivial open interval (zo — R, xo + R) centered at zg, and is given by a
convergent power series as in (0.4). The theory of power series is covered in detail
in virtually every first year calculus book, and in particular, in the book by James
Stewart, to which we refer the reader. Before describing the theory surrounding
power series solutions to linear differential equations, we apply the method to Airy’s
equation in order to focus our thoughts:

(0.5) y'—zy=0, —oo<uz<o0.

Here we hope to solve the equation with power series of the form
o0

(0.6) y(z) = Z ', —oo <z < 00,
n=0

in which the series is centered at xg = 0, and the radius of convergence is R = oo
infinite. The method we use is often called the method of undetermined series
coefficients, and in analogy with the method of undetermined coefficients discussed
in the previous chapter, we simply plug the guessed form (0.6) of the solution into
the equation and solve for the coefficients ¢,,. So we need to know how to compute
both 3" and zy when y is a power series.

Since a power series can be differentiated term by term within its interval of
convergence, we have

d
y () = %{c0+clx+02w2+03x3+...}
d ot I B
= —c+ —ar+ —cox’ + —czx’ + ...
de " dr " "

= 04c1 + 222+ 033502 + ...
= 1+ 2c1+ 3033:2 + ...,

equivalently

Y (z) =
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and by another application of term by term differentiation,

d
y'(x) = . {cl + 2¢ox + 3¢z + }
d d d
= — —2 — 24
d:ccl+d:r cQa:+d$363x +
= 04 2¢co + c36x + ...
= 2¢c9 + 6czxr + ...
equivalently
d d [
" _ / _ n—1
Yy (ZE) - %y (.’,E) - % {T?_l ncpx }
= d
= E d—cnnxnfl
T

1

3
Il

can (n —1)z" 2

I
M8

1

3
Il

-2

I
M8

n(n—1)cya”

n=2

By the rule for multiplying series we have
Ty = T {CO +cix + 02x2 + 03x3 + }
= cor+ clx2 + CQ:E?’ + 63:104 + ...
equivalently

o0 o0 o0
Ty =1 E cpr”t = E repx"t = E enx™ T

n=0 n=0 n=0
If we now substitute these two expressions into Airy’s equation we get
0 = 2cy+ 6c3z + 24cq2® + ...
—CoZ + clx2 + 02x3 + 03x4 + ...
= 2cy + (6c3 —co)x + (24cq — 1) 2% + ...

equivalently
oo oo
0=y —zy= Z n(n—1)cpaz"? — Z cpz™ L
n=2 n=0

Now the first form, in which we write out the initial terms, is useful for ‘seeing’
what is going on, and by equating coefficients of like powers of x (all the coefficients
on the left side vanish) we see that co =0, ¢c3 = %co, and ¢4 = icl; but this form is
not sufficiently explicit to help us easily solve for the remainder of the coefficients
¢, Instead we would like to use the second form involving the infinite summation
notation ) . But a difficulty here is that the powers of « don’t match in the two
series, namely the series for y” has " 2 while the series for zy has z"*!. We
remedy this situation by shifting the index of summation so as to have x™ appear
in both series.
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In the series for y”, this can be accomplished by making the substitution n =
k42,

o0
y' = z:n(n—l)cnx"_2

= Y (k+2)(k+2—1)cpypa*t?

= Z (n+2) (n+1)cpyoz™,
n=0

where in the last line we have replaced the dummy index k by the dummy index n.
Once familiar with the process of shifting the index of summation, one can simply
replace n with n + 2 here, and skip the introduction of the auxilliary dummy index
k. The skeptical reader should write out the initial terms in the above lines to see
what is going on here.

In the series for xy this is accomplished by the substitution n =k — 1,

Ty = E Cpx" Tt

Now the two series have the same power x" appearing, and they only differ in
where the summation starts, namely the shifted series for ¥’/ now starts at n = 0,
but the shifted series for zy starts at n = 1. This means that we have to separate
out the case n = 0 and write

oo (oo}
0 = Z (n+2)(n+1)cpp22™ — Z Cp—12"
n=0 n=1

= (04+2)(0+1) cogoz’ + Y {(n+2) (n+1)cpsaz" — cn12”}

n=1

= 2¢co+ Z {(n+2)(n+1)cpya —cp_1}a”.

n=1
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Next, we equate coefficients of like powers of x on each side - and all the coefficients
on the left side are 0 - to obtain

0 = 2027

0 = 603 — Cp,

0 = 12¢4 —cq,

0 = 2065 — Ca,

0 = (n+2)(n+1)cny2 —cpo,

which we can write as a recursion relation,
(0.7) c2 = 0,

1
Cn+2 )Cnfl, n 2 1.

n+2)(n+1
This specifies all of the coefficients ¢, for n > 2 in terms of the first two coefficients
co and c1, which are left unrestricted. Thus we see that for every choice of constants
co and c¢q, we obtain a possible power series solution to Airy’s equation having the
form y (x) = Y., ¢,z™, where the coefficients ¢, satisfy the recurrence relation
(0.7). We don’t yet know these series are actually solutions since we don’t even
know at this point if the series converge anywhere other than at x = 0.

This particular recurrence relation (0.7) can be explicitly solved by induction
as follows. In order to start with ¢,, we make the substitution n — n — 2 in the
relation to get

1
Cn = )cn_a, n >3,

nn-—1
and then, since ¢, _3 appears on the right side, we make the further substitution
n —n — 3 to get

1

n—3 — 7 o/ . Cn—6; 267
R P s S L

so that we have
1
Cp = mcn—s
1 1
nn—1)(n—3) (n—4) "

Continuing in this manner, for n = 3k we get by induction on k,

1
C3k = mcs(k—l)
1 1

3k (3k — 1) (3k — 3) (3k — 4) 2+

1 1 1
3k (3k—1) 3k —3) 3k —4)"(3)(2)”

k>0,
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where it is understood that when k£ = 0, the empty product is 1. Similarly we have
forn =3k +1,
1 1 1

G G Gh G- eh-3) T mEr 70

where again, when k = 0, the empty product is 1. Finally

1 1
= — k> 0.
2T B 2 Bk + 1) (5) (4) 0, 20

Thus we have now constructed the following possible series solutions where we
separate out the sums over n = 3k, 3k + 1 and 3k + 2:

y(z) = chm”
n=0

o0 oo o0
_ 3k 3k+1 3k+2
= ) espa®™ 4> cana® T 4 gt
k=0 k=0 k=0

- 1;0 { 3k (3k — 1) (3k — 3) (3k — 4) " (3) (2) } -

tad e R oo C

[eS)
4 Z O . $3k+2
k=0

= coyo () +cry1 (z),

where
= 1 1 1 =
b (@) = ];0 { 3k (3k— 1) (3k —3) 3k — 4) " (3) (2) } = kzzob%x%’
= 1 1 1 -
o) = k; { (3 + 1) (3k) (3k — 2) (3k —3) "(4) (3) } = ’;b%ﬂﬂﬂ

It remains to see if these possible series solutions actually converge for all
x € (—00,00), and moreover to a solution to Airy’s equation. For this we recall the
ratio test for series.

LEMMA 4 (Ratio Test). A series > oo a, converges absolutely if

an+1
Qn

L= lim

n—oo

<1,

and diverges if L > 1.

To apply the Ratio Test to the power series yo (z) = > po, bsxz®*, we write

ap = bgkl’gk
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and compute

k
L= g | %] gy | P o Tim | 220D
k—oo ag k—o0 bgk:lj?’k k—oo bgk-
1 1 1
3 . | BEDBRFD)-D) BHRFD-3)BFRI)—4) " 3)(2

_ |$|k1Lr{,10 (k+1D)(( 1) ) (3( 1))(( )1) (3)®
3EER—1) GEF=3)(3k—1) " 3)(2)
1

- |m|3khm w =0<1.

It follows from the Ratio Test that the series for yo (z) converges for all z €
(—00,00). A similar calculation shows that the series for y; (x) also converges
for all z € (—00, 0).

Then we can show that both yo (z) and y; (z) are solutions to Airy’s equation
(0.5), by using the facts that term by term differentiation and multiplication of
power series are valid within their open intervals of convergence. Finally, from

Yo (0) = bo=1, Yo (0) =0,
y1(0) = b1=0, 1(0)=b

we see that the solutions yo () and y; (z) are linearly independent since their
Wronskian satisfies

= O

W(yo,yl)(o)zdet[zg() yi( ) } :det[(l) }:1;&0.

Thus {yo,y1} is a fundamental solution set, and the general solution of Airy’s
equation (0.5) is

y(z) = coyo () +c1y1 (),  x € (~00,00).

REMARK 6. For x < 0, we might expect that the Airy solutions yo (x) and
y1 (x) behave qualitatively like the solutions to y” +y = 0, namely cosz and sin x.
Similarly, for x > 0, we might expect yo (z) and y1 (x) to behave qualitatively like the
solutions to y'”’ —y = 0, namely coshx and sinh x. That this is roughly so can be seen
from the graphs of partial sums of the power series for yo (x) and y; (x). Pictured
below is the graph of the partial sum for yo (z) of degree 30. It is a reasonably
accurate approzimation to yo (x) in the range —5.5 < x < 2, but for x < —6, the
graph of yo (z) continues to oscillate like cos x.
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X L

2+

The graph of y = 2,16020 bapak.
1. Theory of power series solutions

We consider the problem of finding a fundamental solution set for the n‘" order
homogeneous linear equation

(1.1) Ly] = an () y™ +a,_ 4 (x) y Y 4y (x)y' +ap(x)y =0,

where the variable coefficients ay, (z) are all analytic at some point zg. Once we
have a fundamental solution set to the homogeneous equation (1.1), we can use
the method of variation of parameters to solve the associated nonhomogeneous
equations, and so we work only with the homogeneous equation in this chaper.
Recall the definition of analytic:

DEFINITION 3. A function a(x) is analytic at a point xq if it is defined in a
nontrivial open interval (xg — R, xo + R) in which it is given by a convergent power
series centered at To:

a(x):Zan(xfxo)n, for all x € (xg — R,x0 + R).
n=0

A function a (z) is analytic in an interval I = (b,c) if it is analytic at each point
xo € I. Here the interval I can be finite or semi-infinite or the entire real line.

Power series solutions are most easily dealt with when the point x( is especially
‘ordinary’.

DEFINITION 4. We say that xg is an ordinary point for the equation (1.1), if
all the coefficients ay, (x) are analytic at xg, and if a, (x9) # 0. Otherwise we say
xo s a singular point for the equation (1.1).

If g is an ordinary point for (1.1), we can write the equation (1.1) in normal

form
1(z) , ao(z)

an—1 ()
vt an, ()

a
y b 4+
an, ()

Lyl =y™ + (@)
n

y=0,
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where the normalized coefficients Zi Eig are all analytic at zg. Then the Existence
and Uniqueness Theorem applies to show that a fundamental solution set exists
on any common interval of definition of the normalized coefficients. But we can
actually do better in this case, and obtain a fundamental solution set consisting of
analytic functions. But before stating the theorem, we point out that the definition
of ordinary and singular points given above applies as well to complex points xg € C.
This plays a role in determining the largest common radius of convergence for the
functions in our fundamental solution set. Here is the main theorem regarding
power series solutions about an ordinary point.

THEOREM 10. Suppose xzq is an ordinary point for the equation (1.1). Then
there is a fundamental solution set {y1,ya, ..., yn} where each yy has a power series
expansion about xo with radius of convergence R > 0:

yk(x):ch’m(x—xo)m, r€ (xo—R,xo+R),1 <k <n,
m=0

and where R is the distance from xy to the mearest singular point in the complex
plane C. Moreover, the coefficients ci , can be determined by substitution in the
equation (1.1).

1.1. Equivalence with an n x n system. In order to prove Theorem 10, we
again exploit the algebra of square matrices by considering the n** order equation
(1.1) as the n x n system (1.1):

yi o o= Y2
vy = Y3
/. ; . ?
Yn—1 = Yn
y;z = f('ray17y2a'"ayn—1)
where f is given by the normalized form,
an—1(%) (- a1 (z) ag (x)
f(w,yl,yz,-u,yn_l){”y(” D+ y + Yo,
an (2) an () an ()
and the coefficients Z"Eg are analytic at an ordinary point zy. In fact we will prove

the analogue of Theorem 10 for the general first order linear system of n equations
in » unknown functions {y1,y2, ..., Yn},

vi = f@ynye,nUn—1) = a1 (@) y1 + ...01.0 (T) Yn
y/2 = f2 (m7y1ay27“'7yn71> = az.1 (3?)3/1 +"'a2,’n ($>yn
y;—l = fn,1 (xayl,y%“'vynfl) - anfl,l (x) Y1 +~'an71,n (CL’) Yn
y'/n = fn (m7y1ay27~"7yn71) = an,l ($)1U1 +~~-an,n (x)yn
If we define the n x n matrix-valued function
a1 (z) arz(z) -+ ain(v)
az1 () asp(z) - azn(z)

Az) = : : : ’

an1(z) an2(x) - ang(z)
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and the solution vector

Y1
y@=| " |
o
we can write the n X n system as
yi1 a1,1($) a1,2(9€) al,n(x) Y1
Y= | B o] @ @ e @)
v ) L@ we@ o an@ ]\

Moreover, if we write a fundamental solution set (of column vector solutions)

Y11 Y1,2 Yi,n

Y21 Y2,2 Y2.n
¢E{YI7y27'-~7Yn}: . s . g ey . R

yn,l yn,Z yn,n

in the form of a matrix with columns yy,

Y11 (CU) Y1,2 (CC) R ) (x)
B (z) = y2,1: (z) y2,2: () y2n (z)
yn,l (LL') yn,Z (1’) e yn,n ({E)

then the equation for the fundamental solution set ® becomes the following matrix
equation,

[ yi1 () yis (@) Yin (@)
&' (2) Yo (z) o, :(w) Yo, (2)
L yn,l (CE) yn,2 (.’17) y;L,n (ZC)
(a1 (z) ar2(z) - ar. () yi1(@) yiz(®) oy ()
a21 (iC) az 2 (SU) o G2p (x) Y21 ($) Y22 (!E) o Yz (fﬂ)
L @n,1 (z) QAn,2 () .- An,n () yn,l. (z) Yn,2 () - Yn,n ()
= Az)®(z),

together with the linear independence (of the columns) condition
det @ (x) # 0.

We say that the fundamental solution set ® is normalized at xq if the matrix ® (z¢)
is the identity matrix.

Here then is the power series solution theorem for x X k systems, where we
are writing the order of the system as k so as to permit the use of n as a dummy
variable in the series. We will also sometimes use the letter ¢ instead of ¢ to denote
coefficients.



1. THEORY OF POWER SERIES SOLUTIONS 79

THEOREM 11. Suppose the coefficients a; i (x) in the k X k matriz-valued func-
tion A (x) are all analytic at o, and with radius of convergence at least p > 0. Then
there is a fundamental solution set ® = {y1,y2,...,¥x} for the equation ®" = AdD
normalized at xo, i.e. a matriz solution ® (x) to the initial value problem

(1.2) ' (z) = A(2)®(z),
1 0 0
01 -~ 0
®lro) = I=| . . . .|
0 0 1

where each component y; . (x) of the matriz ® (x) has a power series expansion
about xy with radius of convergence R > p:

yjk Z(pgkn - )n7 $€($0*R,I0+R),1§j,k'§ﬁ).
n=0

Moreover, the coefficients ¢, ; ,, in the power series can be determined by substitu-
tion in the equation (1.2).

We will write the collection of series y; 1 () = 0" @ 4. (¥ — )" in matrix
form as

o (x) = [ZUJ, ]k 1= [Z@],kn - )n]

jik=1
o0 oo
K
= Z[%kn];k 1 :Z (@ —x0)",
n=0 n=0

where the matrix coefficients ®,, are given by

K

o, = [@j,k,n]j,kﬂ , n=>0.

Simliarly, if
n .
aj7k($)zzaj)k;,n($—$o) ) -TE(-’L'O_p,xQ—‘rp),lS],kSn

we write
oo
T) = Z A, (T —x0)",
n=0

where
An = [ajn]5 4y 120

1.2. The Root Test. Given a sequence of real numbers {s,}, - ,, we say that
an extended real number L € [—o0,00] is a subsequential limit of {s,},_, if there
is a subsequence {sp, }p—; of {sn}n:1 with

lim s,, = L.
k—oo

We then define the limit superior of a sequence {s,} ,, denoted limsup,, ... Sn,
to be the largest subsequential limit of {s,} ;. Similarly, liminf, . s, is the
smallest subsequential limit of {s,,},- ;. It is a standard theorem that both a largest
and a smallest subsequential limit always exist in the extended real numbers.
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—1)"n

o0
EXAMPLE 29. The sequence {( } has two subsequential limits, +1,
n=1

n+1
and
—1\)" e
lim sup {()n} = 1,
n—oo n+1 n=1
1) e
lim nf { D" - 1
n— oo n—|—1 ne=1
ExAMPLE 30. The sequence
4 2 1 1 2
_150717 _77_§a_77_7a0a7777§7éa
2" 27 2 2 2°2°2°2
16 15 1 1 15 16 64 63
- Y e, —,0, = =, =, ——,——,...etC
4 4 4 4 4" 4 8 8

has every extended real number as a subsequential limit, and its limit superior is
00, and its limit inferior is —oo.

Here is the root test for series.

LEMMA 5 (The Root Test). Let L = limsup,,_, |an|%. Then > °° | an con-
verges absolutely if L < 1, and diverges if L > 1.

PRrROOF. Suppose L < 1 and fix any number R with L < R < 1. Since L is the
largest subsequential limit of {\an\%} , it follows from a standard theorem that
there is N such that !

|an|% <R, foralln>N.

But then |a,| < R" forn > N, where 7" R" = 1= < 00, and so the comparison
test shows that > ° |an| < oo. If on the other hand L > 1, fix any number R

with 1 < R < L. Since L is a subsequential limit of {\an\%} , it follows that

1
there are infinitely many n for which |a,|™ > R, hence infinitely many n for which
lan| > R™ > 1. Thus the n'* term a,, does not tend to 0 as n — oo, and so the
series > a,, diverges. O

We now have the following corollary for the radius of convergence of a power
series.

1 )
COROLLARY 1. Let L = limsup,,_, . |an|™. Then the radius of convergence of
the power series Y o~ an (x — x0)" is R = %, where we interpret % as 0o, and éas
0.

PRrROOF. For any z let

L (z) =lim sup |a, (z — z0)"

n—oo

W= |z — zo|lim sup |an|% = |z — xo| L.
n—oo

By the Root Test, the series > a, (x — x¢)" converges if |z — zo| L = L (z) < 1,
and diverges if |z — 29| L = L(z) > 1; i.e. converges if [z — 29| < + = R, and
diverges if |z — z9| > 1 = R. Thus the radius of convergence of > > a, (z — 20)"
is R. g
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Both the Root Test and its corollary for power series extend to matriz-valued
series if we use the following definition for the absolute value (or norm) of a matrix

A = [aj’k}?’kzli
a1 a1,n
[ TS | I |

Qp,1 An,n

1A]

In particular we state without proof the corollary for matrix-valued power series.

PROPOSITION 1. Let {A,},", be a sequence of square matrices and set

L = lim sup ||An||% .

n— oo

Then the radius of convergence of the matriz-valued power series

Z Ay (z— )"
n=0

is R= 1, i.c. the series > o A, (x — 20)" converges (absolutely) if |x — zo| < R,

and diverges if |x — xo| > R.

1.3. Proof of the power series solution theorem. In our proof of Theorem
11, we first demonstrate just the existence of some positive radius of convergence
R for the series ® (z) = > 07 (@, (z — x0)", and defer the proof that R > p to
the final subsection, as it involves a tricky induction. Moreover, we first give the
complete details of this assertion only in the case n = 1, when the matrices are
1 x 1, hence just numbers. But the proof we give uses only standard properties of
real-valued series that extend readily to matrices and their norms, and in the next
subsection we sketch how to prove the case n > 1. Finally we assume without loss
of generality that x¢ = 0.

So the scalar initial value problem corresponding to (1.2) is

(1.3) {i((ﬂ(«“)%, z a(x)fp(x) ,

where we assume that a () = >, ° a,z" has radius of convergence p > 0. We
begin by assuming there is a power series solution

p@) = "
n=0

and plug it into the equation to get

oo

Z (n+1) @, 2" = Z np,x" ! = ¢ ()
n=1

= a(x)p(x)= (Z akxk> (Z (pg.%Z)
=0

k=0
oo oo o0
k+£
= E QR T = E E arp, | .
k,0=0 n=0 \k-+{=n
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Equating coefficients of like powers of = gives the recurrence relation

(TL + 1) <)0n+1 = Z axPy, n 2 03
k+4=n

which after sending n — n + 1, we can write as

oo

1
Yn=— >, ap, n>L
k+f=n—1

The initial condition ¢ (0) =1 implies that ¢, = ¢ (0) = 1.
If we solve for the first few coefficients we get

900 = ]-7
_ 1 i o
Y1 = 1 agPy = apPy = Ao,
k+4=1-1
R 1 1
P2 = 5 Z ke = 5 (aopy + ai1py) = 3 (af +ar),
k+0=2—1
— 1
v = 3 D wpr= 3 (a0py +a1p) + a2p)
k+0=3—1

—l(ag—i—aa)—i—laa —&—la
=5 \% 001 gd1do T o a2

This general recursion is difficult to solve, but there is an estimate we can make on
the size of the coeflicients ¢,, if we use the information we have on the sequence
{ak}r, namely that

=

lim sup |ag]|

= - < o0
k—o0 P

o oo
From this it follows in particular that the sequence {|a;€ | g } , and so also {|a;C | 52 } ,
k=0 k=0
is bounded, say by M < oc:
|ak|’%rl < M equivalently |ax| < M*1 for all k> 0.

If we use this estimate in the formulas above we get,

lprl = laol < M,
1 1
Pl = 5 laopr +arpy| < 5 (MM + M?) = M?,
1 1
los| = g‘%@z"‘aﬂﬁ"‘a%@o‘Sg(MM2+M2M+M3):M37

which suggests that in general we have
(1.4) lon] < M™, n > 0.
And indeed, this can be proved by induction:

oo

% Z kP

k+6=n—1

o0 o0

1
S - Z ‘akﬁﬂe‘ S - Z Mk+1M£ — M”7
k+f=n—1 k+f=n—1

—_

lon| =

3
3

where we have used the induction assumption |p,| < M* for £ strictly less than n,
together with the fact that there are exactly n summands in the sum sz—l:n—l
since both £ and ¢ are nonnegative.
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From the estimate (1.4) we obtain
1
lim sup |p,|™ < M < 0,
n—oo

and hence from Corollary 1, that the radius of convergence R of the power series
¢ (z) =307, p,a" satisfies R > - > 0. It now follows from standard theorems
on power series that ¢ (z) solves the intial value problem (1.3) for |z| < R.

1.4. The higher order case. The above proof generalizes easily to higher
orders. Here is a sketch of the arguments adapted to kK X k square matrices. If we
plug the matrix-valued series ® (z) = >, ®,2" into the matrix equation (1.2)
and use A (z) =Y 2, A,z", we obtain

oo

Z (n+1)®,q2" = & ()= A(x)®(x)

n=0
(iAkxk> <§: %&)
k=0 £=0
Z ( Z Akq)g> {En,
n=0 \k+fl=n

which gives the following recursion relation for the matrix coefficients ®,,:

1
(1.5) By = Z Ap®y.
k+f=n—1

Now the matrix-valued series > p-, Axz® converges for |z| < p by assump-
tion, and so the Root Test for matrix-valued series, Proposition 1, shows that

lim sup,_, oo ||Ak||% < %, from which it follows that {||Ak\|%} and also {||AkH’T1H}

k=0
are sequences bounded by some M < oo:

| Akl < M*E for all k > 0.

0o
k=0

Just as before, we obtain from this by induction on n that

[0l < M™[[®o]| = M"Vk,  n>0.

Indeed,
1 < 1 < 1 & X
— || = < Z < +1as¢ — n
l@all =~ D0 Ak <~ DT (ARl < - YT MMM VE = MU,
k+fl=n—1 k+f=n—1 k+f=n—1

where this time we have used the multiplicativity of the norm on matrices, ||AB|| <
| A|l || B]|, together with the induction assumption ||®,| < M*\/k for £ < n. Note
that | @] = ||x X & identity| = V/k.
Thus
lim sup ||<I>n||% < lim sup (M"\/E)% =M,
n—oo n—oo
and so Proposition 1 shows that the matrix-valued series Y~ ®,z" has radius
of convergence R > - > 0, and standard results on series now show that ® (z) =
oo o Pna™ is a solution to the initial value problem (1.2) with 2o = 0 for |z| < R.
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1.5. The optimal estimate on R. We end this section on the theory of
power series with a sketch of the tricky induction needed to prove the optimal
inequality

R>p
for the radius of convergence R of the series > ° ) ®,2" in Theorem 11.

Start by choosing positive numbers S and T such that % < S < T, and divide

the recursion relation (1.5) by T™ to obtain

S () (B) =18 () (B,

k+l=n—1 k=0

@y,

Tn

S|

Since lim supy, _, o ||Ak||% = % < S, we have || Ay < S**! for k sufficiently large, say
k > m. And of course we have the estimate established in the previous subsection
in terms of M:

|Agll < M* for all k > 0.
Altogether then, for n > m we have the estimate

m

il 1 n—k—1 k1
HT T ’”1 HT" kol Z ’f+1 ‘ k1
k=0 k*m.
§ A VAR 1 ni gy
=~ n P T Tn—k—1 n a T T
— et k41
1 M 1 S o,
= n - su bl = - @,
< (n JCXZ;] <T >0§£§5—1 (n T >o<e<g A7
1 '— 1 ’H_l S m+1 1 n 1
- \n Z + <T> =
k=0 k'—’m
Now with m fixed, we choose N so large that
k+1 m—+1
V() ()
k—

Thus using 2 Y720 ( "™ <1, we have for n > N that

§
T
1m 1 k+1 m—+1 1 n S k—m 1 -1 M k+1 S m—+1
e LR T ()
n n T N S T
k=0 k=m 0

3

k=
and hence
@ ¢
1.6 — su — > N.
(L6) H ™| - 0§@§5—1 Tt
Induction on n now shows that for n > 0 we have
(I)n 14
1.7 — | < su —
(L.7) ‘T” _0<€£N‘TE
Indeed, the inequality (1.7) is trivial for 0 < n < N, and for n > N (1.6) gives
0} i}
8= el =l
)<Z§n71 0<¢<N
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by the induction assumption.
From the inequality (1.7), we thus obtain

[®all <" sup ||T~"2]| = CT™,
0<e<N

where C' = supg</<y ||T*£<I>g|| is independent of n, and hence

lim sup ||(I)nH% <lim sup (CT”)%

n—oo n—0o0

=T

Proposition 1 now shows that the radius of convergence R of >~ @, 2" satisfies
R > 1. Since T > % can be chosen arbitrarily close to %, we conclude that
R> 1 =p.

-

2. Regular singular points

Every point zg on the real line is an ordinary point for Airy’s equation
y'—axy=0, —oo<x< 00,

the prototypical example of the simplest higher order equation with variable coef-
ficients. An almost equally simple example is the equation

(2.1) 22y —y=0, —oc0<z<o0.

However, if we plug a power series y = Y - ¢,2"™ centered at zop = 0 into this
equation, we get

Z n(n—1)cz" = 22 Z n(n—1)c,z" 2
n=2 n=2

S

" n

= Ty :yZE CnT,
n=0

and equating coefficients of like powers of z we get the recursion relation

0 = Co,
0 = C1,
nn—1c¢, = ¢ n>2

which gives ¢, = 0 for all n! Thus, apart from the trivial solution, there are no
power series solutions centered at g = 0 to the equation (2.1). The problem lies
in the fact that 0 is not an ordinary point for the equation (2.1).

On the other hand, (2.1) is a Cauchy-Euler equation with indicial polynomial

PAN=XA-1)—-1=X-)x-1

having roots

1£vV1+4
5 .
We know from the previous chapter that a fundamental solution set for (2.1) with

x > 0 is given by
1+v5  _ 1+VE
(552 -2

As we will see below, any equation of the form

(2.2) z2ay (x)y" 4 zay (2)y +ao (z)y =0,
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in which the functions ay () are analytic at 0, and
(2.3) as (0) = 1, ai (0) = 0, ag (0) = —17

will have a fundamental solution set for z > 0 of the form
{7 0 @)™ @)} = (w0 (@), @)

1+V5 1-5
9 ’ ™= 2 )
where yo (z) and y; (x) are analytic at = 0, and where moreover, the coefficients
¢!, in the power series expansions
yi(@)=1+claz+cha®+.., i=1,2,

can be computed by substitution in (2.2). Of course, if some xg > 0 is an ordinary
point for (2.2), then we can find power series solutions centered at xg, but these
power series will have their intervals of convergence limited by the singular point at
0, a defect avoided by the solutions 2"y (z) and " y; (x). Even more importantly,
in some applications a regular singular point has special physical significance, such
as in Bessel’s equation for a radially vibrating circular drumskin (treated below), in
which the regular singular point = 0 corresponds to the center of the drumskin. In
such cases, an expansion about an ordinary point, away from the point of physical
significance, does not give useful information regarding the physical nature of the
solutions.

Note that because of (2.3), the equation (2.2) can be considered as an analytic
perturbation of the Cauchy-Euler equation (2.1), where the analytic function

ro =

aj (x) = a; (0) +aj (0)z + %a;’ (0) 22...

replaces the constant function a; (0) for j = 2,1,0. Then we can also consider the
fundamental solution

o7 et it

a" (14 clx+cha? + )

to (2.2), as an analytic perturbation of the fundamental solution =" to the Cauchy-
Euler equation (2.1).

"y (z)

We restrict our attention here to second order homogeneous linear equations,
(2.4) A(x)y" +B(x)y +C(x)y =0,

with variable coefficients. The reader should have no trouble however, in extending
the methods below to higher order equations. Recall that a point x( is said to be
singular for the equation (2.4) if it is not ordinary, i.e. if it is not the case that
A(x), B(z) and C (z) are analytic at zo with A (zo) # 0.

The nicest case of a singular point ¢ is when A (z), B (z) and C (z) are analytic
at zg, and when in normal form,

w, B , Cz) _
we can factor (z — z)” " out of ﬁgf; and (z — xo) > out of 3237 ie.
B(x) _ -1 C(z) _ -2
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where p () and ¢ (z) are analytic at xo.

DEFINITION 5. We say that xq is a regular singular point for the equation (2.4)
if ¢ is not an ordinary point, and if (2.6) holds. Thus at a reqular singular point xo,
the normal form (2.5) can be multiplied by (z — xo)* and put in the Cauchy-Euler
form,

(2.7) (@ —20)"y" + (x — o) p (@) y +q(x)y = 0.

It turns out that a fundamental solution set for equation (2.7) is typically an
analytic perturbation of a fundamental solution set for the associated Cauchy-Euler
equation

(& —20)"y" + (& —w0) p(20)y +q(z0)y = 0.
There is however, the possibility of a wrinkle when the roots of the indicial poly-
nomial
PA)=AA—-1)+p(zo) A +q(z0) =0
differ by exactly an integer. To see what is going on here, we investigate the case
zo = 0 when the roots 1 and ro are real.
Consider the equation

(2.8) 22y +ap(2)y +q(2)y =0,

where
(o) oo
p(x) = Zpka:k and ¢ (z) = quxk
k=0 k=0

are analytic at 0, and the associated indicial polynomial
P(/\) /\(/\—1)+p0>\+Q[):(/\—7“1)(>\—7“2),
L = T,

has two real roots with r; > 7. Motivated by the fact that the Cauchy-Euler
equation
(2.9) 2y + zpoy’ + qoy = 0,
has a fundamental solution set
{z",z"} when r; > 1o
{z", 2™ Inz} when r;=ro

i

we take y (x) to be a series of the form

oo o0
y(z)=a" E cpz’ = E Cnz" T,
n=0

n=0

which we think of as an analytic perturbation of z". Using the products

¢(@)y(@) = (Z quk) (ZCMEJFT) = Z( Z %Q) "t
k=0 £=0 n=0 \k4l=n
ap(2)y (z) = @ (Zpkwk> ( (L+7r) Cﬂé+r_1>
k=0 £=0

= i ( Z D (£+T)Cg) vt

n=0 \k+l=n
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we plug y (z) into equation (2.8) to obtain

0 = a° Z (n+r)(n+r—1)c,z" 2
n=0
+ Z ( Z pr (L+7) cz) "t 4 Z < Z ch@> vt
n=0 \k+{=n n=0 \k+f=n
(o]
- S {otnmarne s 3 nernas 3 aefor
n=0 k+0=n k+4=n

Now in the expression in braces above, the coefficient of highest index, namely
¢n, occurs in three places, and collecting these three terms, we see that ¢, is mulit-
plied by

m+r)y(n+r—1)+po(n+r)+qe@w=Pn+r),
the indicial polynomial P (\) evalutated at A = n + r. If we equate coefficients of
like powers of = we thus get the recursion relation

0 = P(r)co,

0 = Pn+r)e,+ Z pr(L+71)ce+ Z arce, n>1,
k+l=n k+b=n
<n <n

which can be solved for ¢, when P (n+r) # 0:

0 = P(r)co,
1
Cn = —m Zpk(ﬂ—i—r)q—i— Z qrce |, n > 1.
k+l=n k+l=n
<n <n

At this point we should take note of the important role played by the indicial
polynomial P () associated with the Cauchy-Euler equation (2.9).

If we take r = r1, then P (r1) = 0 and the recursion relation leaves ¢y unre-
stricted. Moreover, since r; is the largest real root, P (n+r) # 0 for all n > 1, and
the recursion relation inductively determines all of the coefficients ¢, uniquely in
terms of cg. It can then be shown that the power series portion of

oo

y (@) =a™ Y cqa”

n=0

has optimal positive radius of convergence, and that the series y; (x) is in fact a
solution to the equation (2.8).

Now we take r = ry in y(z) = 2" Y., c,z"™, so that again P (r2) = 0, and
the recursion relation leaves ¢y unrestricted. But now the wrinkle mentioned above
makes its appearance. If the difference of the roots r; — ro is a positive integer N,
then we cannot in general solve for the N coefficient ¢y in the recursion relation

n

1

CNZ—W Z o (€ +12) e+ Z qrCe

k+l=N k+l=N
L<N L<N
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In fact if the complicated expression in curly brackets

(2.10) Ex(ra)= > pe(l+m)e+ > auc

k4+4=N k+l=N
L<N L<N

is nonzero, then the method stalls and there is no second independent solution of the
form y, (z) = 2™ Y7 ; cpz™. On the other hand, if we happen to be lucky enough
that En (r2) = 0, then the recursion relation leaves the coefficient ¢ unrestricted,
and there is indeed a second linearly independent series solution of the form

oo
ya (x) = 2™ Z cnz™.
n=0

It turns out that in the (as yet) unresolved cases,
® I —T9 = 0,
. Tl—TQZNENWithEN(Tz)#O,
there is a second linearly independent solution having the form

yo () = a(lnz)yy (x) + 2™ Z d,x™.
n=0

This is certainly not surprising when r; = ry, given that the Cauchy-Euler
equation (2.9) has fundamental solution set {#™,2" Inz} in this case. The wrinkle
is that for general analytic coefficients p (z) and ¢ (x), a log factor can also arise in
the second solution for (2.8) when the roots of the indicial polynomial differ by an
integer.

Here is our theorem on fundamental solution sets centered at a regular singular
point. For convenience we state the theorem with zo = 0.

THEOREM 12. Suppose that x = 0 is a regular singular point for the equation

2?y" +ap(x)y +q(z)y = 0.

Let m1 and 7o be the roots (either both real, possibly equal, or a complex conjugate
pair) of the indicial polynomial
PAN=XA=1)4+p(0)A+¢(0).
(1) If r1 and 7o are real and do not differ by an integer, then there is a
fundamental solution set of the form

oo oo
{yl =z chx”, yo = ' Zdnx"} , x>0,
n=0 n=0

where the power series have optimal positive radius of convergence, and
the coefficients ¢, and d,, can be evaluated by substituting the series in the
equation, and deriving a recurrence relation for the coefficients.

(2) If r1 = 7o is real, then there is a fundamental solution set of the form

{yl =2 ea”, o= () ys @)+ “} . a0,
n=0 n=1

where the power series have optimal positive radius of convergence, and
the coefficients ¢, and d,, can be evaluated by substituting the series in the
equation, and deriving a recurrence relation for the coefficients (note the
second series starts atm = 1).
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(3) If r1 and ro are real and T — 7o is a positive integer, then there is a
fundamental solution set of the form

{yl =g chxn) Y2 = a(ln:c) Y1 (:Z?) + z" Zdnl‘n} ’ T > 07

n=0 n=0

where the power series have optimal positive radius of convergence, and
the coefficients a, ¢, and d,, can be evaluated by substituting the series in
the equation, and deriving a recurrence relation for the coefficients.

(4) If r1 and ro are a complex conjugate pair o = i3, then there is a funda-
mental solution set of the form

{xa cos (Blnx) Z ez, x%sin(flnx) Z dnx"} , x>0,

n=0 n=0

where the power series have optimal positive radius of convergence. The
coefficients c,, and d,, can be evaluated by substituting the series Z:O:o cpx™ T
in the equation, deriving a recurrence relation for the complex-valued co-
efficients when v = « + i3, and then taking real and imaginary parts of
the resulting series.

We will not prove this theorem, but instead give a couple of examples to illus-
trate the application of parts (1) and (2). Further applications of parts (2) and (3)
of the theorem are given in the next section on Bessel’s equation.

ExampLE 31. The equation

1"

22%y" —xy' + (14+2)y=0, x>0,

has a reqular singular point at x = 0, and the associated indicial polynomial is

P(A) = 20A—1)=A+1=2\ -3\ +1
= @22 -1DK-1),

and has real roots r1 =1 and ro = % So part (1) of Theorem 12 above guarantees
a fundamental solution set {y1,y2} of the form

o0 o0
1
Yy1=1x E cnz”, Yo = 2 E dpx™, z > 0.
n=0
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“+r

If we substitute y = Yo, c, ™" into the equation, shift indices in the final sum,

and collect terms, we get

0 = 227? Z n+r)(n+r—1)cz"t 2
n=0

oo oo oo
- Z (n+7) ey 4 Z ezt + Z ezt
n=0 n=0 n=0
oo
= 22(n+r)(n+r— 1) cpa™t”

o0 o0 o0
— g (n+7)cpx™™ + E cnr™ T 4 E Cper T
n=0 n=0 n=1

P(r)co+ Z {P(r+mn)e, +cp1}a™,

n=1

and hence, equating coefficients, we obtain the recurrence relation
1

771—7 21'
P(r—l—n)c ! "

Cp = —

Solving the recurrence we get
(1" .
Pir4n)P(r4+n—1)..P(r+1) "
(1" )
Cr+n)-Dr+n-1)..Cr+)-0Fr+1-1)"
(="
@riy2n—1) .2+ (rtn—1..n"

Now when r =1 we get

Cp, =

n > 1.

(=n"
2n+1)@2n—1)...3) (n).(1)
(="

Cn co

= Garyrme  n=b
and when r = % a stmilar calculation gives
B D >1
T on 1 "=
Thus we have
J— n
o= xnz;) 2n—|—1”n' ’
o0 n
— i ’I'L
Y2 = :c22) n—l”n' , z > 0.
n—=

ExAMPLE 32. The equation

22y —axy +(1—2)y =0, x>0,
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has a reqular singular point at x = 0, and the associated indicial polynomial is
PA=XAA-1)-=A+1=X-22+1=\1-1),

and has repeated real roots r1 = r9 = 1. So part (2) of Theorem 12 above guarantees
a fundamental solution set {y1,y2} of the form

ylzchnx”, y2 = (Inz)y ( —|—de$ x> 0.

Proceeding as in the example above we obtain that for a series ZZOZO cnx™TT to be
a solution, we must have the recurrence relation

Cp = ——5Cn-1, n Z ]-7

(n+r—1)

and so
1

Cn W 05 n>1
Thus a first solution is
(2.11) n) =3 e

. 1 e (n' 2

and a second independent solution has the form

ya () = (Inz) y1 ( +Zd "

n=1

Substituting y» into the equation gives

0 = 22 {y’{ (x)Inz — 2 2y, (x) + 227 1y} (z) + Z (n+1) ndnxnl}

n=1

—x {3/1 () Inz +z  yy (z) + Z (n+1) dnx"}
n=1
+(1-2) {yl (o) + fjdwl} ,

n=1
equivalently

= {1 00 -y} () + (1 )y (9} I = 2 ) o+ 203} (0

o0

—1—2 (n+1)d,z" ! Z(n—i—l "“—l—de idnx”+2
n=1

n=1
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Now the term in boldface type in the braces vanishes because y1 is a solution, and
hence shifting indices, and then substituting the series (2.11) for y1, we get

0 = 2y (z)— 2y (z) +diz® + Z (n’dy — dpp—1) 2™t
n=2

o0 1 (e ]
23:"“ +diz? + Z (nan — dn_l) !

- QZ "+1 -2y

n=0 (Tl') n=2

— 2+d1$ +Z< '2+n2d d_1>zn+1’

which gives the recurrence relation

d = -2

dn

|
3[0’—‘
/N
3‘[0
Z |3
(V)
~_—
3
A\
[N

Thus we have

1 3 1/ 3 6 11
dy=-(dy—1)=-2>, dg=-(-°——2)=—-"2
2= 7 —1) s (4 36) 108

and so a second linearly independent solution is given by

11
Yo (2) = y1 (z) Inz — 222 — %x?’ - ﬁ:ﬁ + .y

where we will not solve for the remaining coefficients d.,, explicitly.

3. Bessel’s equation
Bessel’s equation of order v, where v is a real constant, is
(3.1) Lyl = 2%y + zy Jr(z —l/)y:(), x>0,
and has a regular singular point at = 0, and indicial polynomial
PA=XAXA=-1D+r-2=X2-12=A-v)(A+v),
with roots +v. For convenience, we are here Considering series expansions only for
x > 0. We will show that the cases v =0, v = 2, and v = 1 of Bessel’s equation
(3.1) illustrate respectively application of parts (2), (3) with a = 0, and (3) with
a # 0 of Theorem 12.

Before proceeding with these calculations, we informally discuss the qualitita-
tive behavior of solutions to (3.1) for x large. First we rewrite the equation (3.1)

in normal form,
2
y+<>y—|—< 2)yzo,

and note that for x large, both % ~ 0 and ;—2 ~ 0. Thus we might expect that for
x large, solutions to Bessel’s equation (3.1) behave qualititatively like solutions to
the equation

'+ 0y +(1-0y = 0
y'ty =
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The general solution to the latter equation is

y = ci1cosx+casine = Acos(z—0);

-1 €2
A = /3 +cE O=tan ' =,
1

which oscillates back and forth between A and —A with period 27. We will see
below that this is approximately true of solutions to Bessel’s equation (3.1) when
x is large.

3.1. The order v = 0 case. In the case v = 0 the indicial polynomial has
repeated root 0. Thus part (2) of Theorem 12 gives a fundamental solution set of
the form

(3.2) {y1 = Z cnz”, yo = (Inz)y (z) + Z dnx"} ,  x>0.
n=0 n=1

Since
oo o

(33) 0 = L lz cnx"J”] = Z (n+7r)(n+r—1)c,z™t"
n=0 n=0

(o] o0 o0
+ g (n+7)cpx™™ + g Cpa T2 — 2 E cpxtT
n=0 n=0

n=0

= (r*—v?)coa" + ((r +1)% - 1/2> crwttr

00
O3] (RS PP FS
n=2

we obtain the following recursion relation when r = v = 0:
(& —— 07
1

Cpn = *72671—27 n = 2.
n

Thus we have both

b (ot 1
G = (Qk)QCQk—Q— (2k)2 (2k—2)2 C2k—4

()t 1 .
= =00 (2k)% (2k — 2)° .22 °
(-1
22k (k!)gc()u >07

and
cok+1 =0, k> 0.
It is customary to denote the power series solution y; (x) constructed above by

> (*Uk 2k ot 0

S Y o A L N
ho @) ,;2%(1@1)293 1761 63 0

and to refer to Jy (x) as the Bessel function of the first kind of order 0.
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The second solution in the fundamental solution set (3.2) has the form
ya = (Inz) Jy (z) + Zd "

We compute that

(na) Jo ()] = (na) Jj (@) + o (2
(na) Jo ()] = (na) J§ () + 23 (2) — 3o (2).
and so
L(lnz) Jy(z)] = x? {(ln x) Jy () + %J{) (z) — %J() (x)}

1
+z {(lnx) Jo(x) + EJO (x)} + (22 = %) (Inw) Jo (x)
= (Inz) {x*J] (x) +xJ{ (x) + (x* — %) Jo (x)} + 22J] (2)
= (Inz)L[Jo (z)] + 22J) () = 22J} (z), v =0.
Plugging y» into Bessel’s equation (3.1), and using the calculation in (3.3) with

v =r = 0, we thus obtain

0 = L =L[(lnx) Jo (z

(Inz) Jo (z) + Zdnx

[

2z J) (x) + dyz + Z {nan + dn72} 2"

n=2
Now we substitute the series for
_$ 00
= 22k (k!
into this equation to get
'] k [e%e]
-9 ; (221’3(1512)];)36% = —2zJ) (z) = diz + Z {n2dn + dn_z} z".
Since only even powers of x appear on the left side of this equation, it follows that
all of the coefficients of odd powers of x on the right side must vanish, i.e.
0 = di,
0 = (k+1)’dopys +dor1, k>2.
By induction, we obtain from this that all the odd-indexed coefficients doj 1 vanish:

d2k+1 == 0, k’ 2 0

n=2

As for the even-indexed coefficients doy, we have dy = 0 and
k
LU
22k (K1)
(="
K22k (kD? (2k)

(2k)° dog + dog—o =

day,

2d2k’—27 k Z 1
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The first few even-indexed coefficients are thus given by

g - .= 11

S 2 @ 2
=)

dy = 2 21 (2 42d2

S ()
242 (21)?  42922(11) 2242 2)’
(-n* 1 (= 1
k22 (K1) (2k)

1 11 1

- 3-26~62+622242<1+2>

_ # 1_|_1_~_1
224242 2 3)°

and we are led to guess the following formula, which is easily proved by induction
on k:

(_1 k+1
d2k = WHI@, k > 1)

where

11 |
H,=1 - il
k=ldg+gt + m§:1m

Thus a second independent solution is given by

00 k+1 Hk
22k
y2 () = (Inz) Jy (z) + kzjl 2% ,  x>0.

It is customary to define the Bessel function Yy (x) of the second kind of order zero
by

2
Yo (o) = —{y2(2) + (v —In2) Jo ()},
where the Euler-Mdscheroni constant « is given by

v = klim (Hr, —Ink) =~ 0.5772.

Altogether we have

00 k+1
YO(J;):i{(’y+lng),]g(x)+z(_12m€x2k}, z > 0.

The general solution of Bessel’s equation when v = 0 is thus

y(@)=c1do(x) + Yy (), x>0.
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3.1.1. Qualitative behaviour of Jy and Yy. For x > 0 and close to 0, Jy ()
behaves like 1 and Y (z) behaves like 2 Inz, in the sense that

Yo
lim Jp(z) =1and lim 20 (z)
x—0+ z—0t = Inx

=1.

For z large, the discussion at the beginning of the section indicated that both Jy ()
and Yp (z) should oscillate regularly as @ — oo. This is in fact true, but there is
also an inverse square root decay as * — 0o, and a more delicate analysis gives the
following asymptotics at infinity:

lim Jo (@) =land lim
T A cos (- F) T E

YO (l‘)

=1.
I sin (a:— %)

3.2. The order v = % case. When v = % the Bessel equation is

1
(3.4) Ly = 2%y +xy + <x2 — 4) y=0,

and the roots of the indicial polynomial are i%. Thus the roots differ by exactly
1, and part (3) of Theorem 12 applies to show there is a fundamental solution set
of the form

{y1 — g3 D cna”, y2=a(lnz)y (z) +at Zdnw”} ., x>0
n=0 n=0

It turns out that in the situation at hand, the constant a above vanishes, and the
second solution has the simpler form yo = 73 ZZOZO d,x™. Here is a brief sketch
of the details.

1

From (3.3) with v = 5 we obtain

- 1 1
(3.5) L LZO cnz"+rl = <r2 - 4) cox” + <(T +1)* = 4) crattr
+ i (n + r)2 - } [ ) xn+7‘.
n=2 4

With r = % we then obtain the recurrence relation
ca = 0,

Cn =
and with a little calculation we get

(-1*
mcm k>0,

cok+1 = 0, k> 0.

Cok

Taking cp = 1 we thus get the solution

Nl

= (=D,
Z(2k+1)!xk'

k=0

y1(z) ==
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But if we factor out an additional power of  from the infinite sum, we recognize
the resulting series as the Taylor series for sinx at the origin:

Nl

. (—1)k 2k+1 1
y1(z) =2~ Z 7(%{ 2Tl = 72 ginz.
k=

|
< (26 +1)!

It is customary to define the Bessel function .J1 (z) of the first kind of order 1 by

Now we turn to the case when r = —% is the smaller of the two roots. The

first thing we observe regarding the calculation (3.5), is that both (7“2 — i) and

((r + 1)2 - i) vanish when r = —%, so that both of the coefficients ¢y and ¢; are
left unrestricted, and with a little bit of work, the recursion relation leads to the
solution

P =N D
w(r) = o Z{Cokz 2h)!
c=0

_1 _1 .
= ¢cor 2cosx+cixr ?sInz.

$2k+81§: (_l)k x2k+1
2k + 1)!

k=0

Note that the expression in (2.10) is

&
=
/‘\
N —
N——
Il

> pk<€;)65+ > ake

k+0=1 k+4=1
<1 <1

S IR E R

which is consistent with the absence of a log factor in the second independent
solution. If we take ¢; = 0 and ¢y = \/% , we obtain the following function for the

second solution to (3.4),

referred to as the Bessel function of the first kind of order —%. The general solution

of Bessel’s equation when v = % is thus

y(e)=aldy(@)+c_1(x), x>0

2
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Graphs of J1 (z) (in red) and J_ (z) (in green)

%
3.3. The order v =1 case. When v = 1 the Bessel equation is
Lyl =2 + 2y’ + (2* = 1)y =0,

and the roots of the indicial polynomial are +1. Thus the roots differ by exactly 2
and part (3) of Theorem 12 applies to show there is a fundamental solution set of
the form

(3.6) {y1 :chnm‘", yo =a(Inz)y; ( -1 Zd T } x> 0.
n=0

It turns out that this time, the constant a above doesn not vanish, and the second
solution has a log term. Here is a very brief sketch of the details.
From (3.3) with v = 1 we obtain

L Z c,g:””] =(r*—1)coz" + ((r +1)% - 1) cratt’
Sl e}

With r = 1 we then obtain the recurrence relation

cT = 0,

1
n = n—2 227
c n(n+2)c 2 n

and with a little calculation we get
(-1"
= 0 k>0
c2k 22k (k + 1)1k © =5
Cok+1 = 0, k Z 0.
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Taking ¢y = & we get the solution

R S G A
Jl(w)_ﬁkzz%(kﬂ)!k!x ’
=0

referred to as the Bessel function of the first kind of order 1.
In order to compute the coefficients d,, in the second independent solution o
n (3.6), we can proceed as in the calculation of Yy above. The result is that after

much computation, and with the choice d; = 4, we get
ya () = —J (:z:)lnerl 1+1x2—i (71) (HkJer_l)ka x>0
? ! z 47 2Rk (k1) ’ '

It is customary to define

Yi(e) = 2w @)+ (-2 A @)} w0,

referred to as the Bessel function of the second kind of order 1. The general solution
of Bessel’s equation when v = 1 is thus

y(z)=crdi(z) + Y1 (z), x>0.

3.4. The case 2v not an integer. It is convenient to recall the Gamma
function T'(s) at this point. It is defined initially for s > 0 by the convergent
improper integral

oo
T(s)= / tste~tdt, s> 0.

The main interest in the Gamma ?unction is that it satisfies the identity
F'(n+1)=nl, n=0,1,2,3,..

and arises in many series expansions, such as in the binomial theorem

R 8+1 "
(-2 =3 e arpm <1

n=0

and in the expansions for Bessel functions below.
In fact, ' (s) satisfies the important functional equation

(B (s+1) = / tie tdt = —/ t°d (e7") = —t%e " [P +/ dt¥) et
0 0 0
= s/ t"le7tdt = sT'(s), s> 0.
0

From repeated application of this functional equation we obtain for n € N,

'n+1l) = nI'n)=nn—-1)Tn-1)

= ;n(nfl)...2~1I‘(1):n!

since I' (1) = [ e7tdt = —e™" o= 1.
Now we turn to ﬁndlng series solutions for Bessel’s equation (3.1) when 2v
is mot an integer. Since the indicial roots are +v, we see that their difference
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v — (—v) = 2v is not an integer, and so there is a fundamental solution set of the

form
oo o0
{y1 :x”ch:c”, Y2 —:E”Zdnx"} , x> 0.
n=0 n=0

From (3.3) we have
o0
L [Z cnx"”] = (r2 — 1/2) cox” + ((7‘ +1)* = 1/2> ezt
Sl

n=2
and hence with r = v,

m+r)?—1?=m+tv)’ —P=m+v—v)(ntv+v)=n(n+2)

gives the recurrence relation

1 = 0,
= 1 >2
= n(n:l:211)cﬂf27 =
Solving the recurrence gives
k1 = 0, k=0,
o 1 - 1 1y,
ko 2k (2k + 2v) (k—2)2k—2x20)) "\ 2@2+2)) "
1
_ (_k
= 1) g ktv)..1x0)?
& r'+v)
- (1
226K (k£v + 1)
since by the functional equation (3.7),
Fkxtv+1l) = (kxv)T(ktv)=(tv)(ktv-1)T(kxv-1)

= (kxv)(ktv-1)...(1xv)I'(1xv).
Thus we have

<1+V) 2k+v
U (Q?) = COZ 22kk'F(k+1/+1)$ 5

> I'il—v ey
y2 () = %EZVJQQ%MJm—3+1Wk ’

n=0
for x > 0. It is customary to choose ¢y = m and dp = % so that 41
and yo become the Bessel functions of the first kind of orders v and —v:
( ]_k) 2k+v
Jl/ = ( ) y
() BT (k+v+1) \2

J-v(@) = Zklr —u+1)(2>2k K
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REMARK 7. In the special case when 2v is an integer, but v is not an integer,
i.e. V= :I:%, j:%, ..., 1t turns out that the series J, and J_,, are linearly independent
on (0,00). Thus {J,,J_,} is a fundamental solution set on (0,00) for Bessel’s
equation (3.1) for all v not an integer. When v is a positive integer, it can be shown
that J_,, is a constant multiple of J,, and thus a second independent solution must
inwolve a log term in this case.

4. A caveat

The point = = 0 is a regular singular point of the equation
x(x—1)y" +3y —2y=0.
We multiply the equation through by —%5 to obtain the Cauchy-Euler form

3 -2
a2y + () ay + [ —Z )y =0,
z—1 z—1

where p (r) = -2+ and ¢ (z) = =2 satisfy p(0) = —3 and ¢ (0) = 0, to discover

r—1 r—1
that the indicial polynomial is

PA)=XA(A=1)=3x=X—4r=)1(\—4),

and has roots 0 and 4. We can then find the series solution corresponding to the
larger root by substituting the series y (z) = Y.~ c,2™"" into the equation and
deriving the recurrence relation.

Here is the caveat! Since both p (z) and ¢ (z) in the Cauchy-Euler form are
infinite series, it will be easier to substitute y (x) into the original equation, whose
coefficients are simple polynomials. Thus we plug y (z) = Y., ¢,z into the
original equation

0= £E2y” _ my” + 33/ — 2,
and after some calculation get the recursion,
0 = —r(r—4)c,
(n+r)(n+r—1)—2
Cp+1 = — Cp,
3(n+1+r)—(n+1+7r)(n+r)
_ (n—!—r)(n—l—r—l)—QCn’ n>0.
m+1+r)(n+r—3)
After some more computation, we find that a nontrivial series solution correspond-
ing to the larger root r = 4 is given by

Y (x):i(n+1)xn+4:$4i ixn+1 :$4i T _ 74
1 n=0 dx n=0 dr \1—=zx (1 o Z’)Q )

and if we take the smaller root » = 0 in the recurrence relation we get
n(n—1)—2

T ) -3)™

which runs aground when n = 3 since the fraction becomes infinite, ﬁ, and forces

c3 = c3 = ¢ = ¢g = 0. This then leaves c4 unrestricted, but the recursion then

simply recovers the known solution y; (z). Thus there is no second independent

series solution, and by part (3) of Theorem 12, the second solution must have the
form yo () = y1 (x) Inz + Y02, dna™.

n >0,



CHAPTER 6

The Laplace transform

The Laplace transform £ is mapping, or transform (we will define it in a mo-
ment), that takes certain functions f (z) defined for z in [0, 00), into functions F (s)
defined for s in some semi-infinite interval (a, c0). We denote the transformed func-
tion F'(s) by L[f](s). The two main properties of this map are:

(1) L is linear, i.e. it transform sums to sums and scalar multiples to scalar
multiples,

Llerfi+cafo] (s) = aL[fi] (s) + 2L [f2] (s),

(2) L transforms differentiation in x into multiplication by s, i.e.

L[f](s)=sL[f](s) = £(0).

The second property is clearly what makes the Laplace transform a valuable
tool for solving linear differential equations, especially those with constant coeffi-
cients, as such equations are converted under the transform into algebraic equations.
Unfortunately, the Laplace transform also converts multiplication by « into differ-
entialtion by s, i.e.

Llef @) () = L 1) (5).
which limits its usefulness when applied to linear equations with variable coeffi-
cients. Moreover, we must also compute both the Laplace transform and its inverse,
on familiar functions.

In order to state the definition of the Laplace transform L, we require the
notions of piecewise continuity and growth of exponential order for complex-valued
functions f : [0,00) — C.

DEFINITION 6. We say f is piecewise continuous on [0,00) if on each closed
subinterval [a, b] of [0, 00), there is a finite partition {a = to,t1,...,txy = b} such that

e [ is continuous on each open subinterval (t,—1,t,), 1 <n <N,
e f has one-sided limits at each point in the partition, i.e.

lim f(x) exists and lim f(z) exists,
z—(tn)~ zﬂ(tn)‘*'

for 1 <n < N —1 and the right hand limit exists at a and the left hand
limit exists at b.

DEFINITION 7. We say f(x) has exponential order c if there are constants
M < oo and T < oo such that

|f (z)] < Me™, x>T.

103
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DEFINITION 8. If f : [0,00) — C is piecewise continuous and of exponential
order ¢, then we define the Laplace transform L][f](s) for s > ¢ by the improper
integral

LI[f](s) = /OOO f(x) e *"dz, s> c.

Note that for f : [0,00) — C as in Definition 8, the integral fOT f(x)e**dx
exists since f is piecewise continuous, while the improper integral f;o f(x)e 5%dx
exists and converges absolutely for s > ¢ by the comparison test for integrals:

F@)e ™ < Meess — ppele—e,

e M
/ Me(C*S)Id:L. — 76(075)1 |%o
T cC— S

_ lim ele=9z _ M o7

c— § z—00 c—s
M .,

= )T <o, s> c.

s—c¢

Thus the Laplace transform £ [f] (s) is well-defined by the integral in Definition 8.

1. Properties of the Laplace transform

We begin by computing the Laplace transforms of some simple elementary
functions:

o e st 1
(1.1) L[1](s) = /0 le™**dz = — lo°= > 8> 0,
] —sT oo ,—sx
Llz](s) = / xe dr = o —/ C _dx
0 o S
oo e*SfE —ST oo
= A _82 dr = 32 0 78727 5>0,
and for a complex,
12) L h do— ! R
. axr — ar ,—SI — OO: , > ,
(1.2) [€*] (s) /0 e“e T =—— 6 T a s ea
and for w real,
Llcoswz](s) = cos (wz) e **dr = / %e*“dm
0

1

{E[eiw](s)+£[6_iwx](s)}:2{ 1 N 1 }

s—iw S+ iw

N = w\»—l‘:\

2s S -0
= s
(s —iw) (s + iw) §2 + w?’ ’
. w
Llsinwz] (s) = i ° > 0.
Now we turn to a description and proof of the three main features of the Laplace
transform £, namely that
(1) L is linear,
(2) L interchanges differentiation and multiplication by the independent vari-
able,
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(3) L interchanges translation and multiplication by an exponential.
Here is a precise statement of these properties. When f : [0,00) — C is
piecewise continuous on [0, 00), the left hand limit at 0 exists, and we always assume

£ (0) takes this value, so that f is continuous at 0. We define the unit step function
U by
1 if >0
u(”“")_{ 0 if z<0
THEOREM 13. The following five properties hold for the Laplace transform
LI (5) = [ F (@) v da:
(1) If f,g : [0,00) — C are piecewise continuous and of exponential order c,
and if o, B € C, then

Llaf+ Byl (s) = aL[f](s) +BL[g)(s), s>c

(2) If £, ', ..., f0) 1 [0,00) — C are piecewise continuous and of exponential
order c, then

L[] @) =LA {7 O 4 Ok DO} e

(3) If f : [0,00) — C is piecewise continuous and of exponential order c, then
™ f (x) is of exponential order ¢+ ¢ for all e > 0, and

n d"
LIS @]() = (1) SLUNG), s> e
(4) Suppose a > 0. If f : [0,00) — C is piecewise continuous and of exponen-
tial order ¢, then so isU (x — a) f (x — a) and

LU (z—a)f(z—a)(s) e LIfI(s), s>¢
LU(x—a)f@)](s) = e“LIf(@+a)l(s), s>c
(5) If f :[0,00) — C is piecewise continuous and of exponential order ¢, and

if a € R is any real number, then e* f (x) is of exponential order ¢ + a
and

Le™f(x)](s)=L[f](s—a), s>cH+a.

Before proving the theorem, we give two simple illustrations of its application
to solving an initial value problem for a constant coefficient nonhomogeneous linear
equation. Consider the first order problem:

y-y =1
(13) { y(0) =0
We know from earlier chapters that there is a unique solution to the initial value
problem (1.3), and moreover that the solution is y () = e* — 1. But if we merely
assume that the solution and its derivative are piecewise continuous and of ex-
ponential order ¢, then we can apply the following five steps using the Laplace
transform:

(1) Take the Laplace transform of both sides of ' —y =1 to get

Lly'—Llyl=L[1].

(2) Denote the Laplace transform of y at s by Y (s) = L[y] (s), and apply
Theorem 13 to obtain

(Y (s) =y (0)} — Y (s) = é s>
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(3) Solve this algebraic equation for the transform Y (s), and use the initial
condition y (0) = 0, to obtain
1

Y (s) = SGo1)

(4) Use partial fractions to write
1 A B -1 1

s(s—1) st Ty T

(5) Finally, recognize from (1.1) and (1.2) used in reverse, that
-1 1

— = —L[1] and P L[e"](s).

S S —

(6) Combining the previous five steps we have
LW =Y ()= - =+ =
s(s—1) s s—1
and now assuming uniqueness of Laplace transforms, i.e. that the Laplace
transform is a one-to-one map, we conclude that y = —1 + €*.

LI-1+¢€](s),

Now we use the same method to solve the more complicated initial value prob-
lem,

v -2 +5y = 87"
(1.4) y (0) - 2
y' (0) = 12
‘We have
1
{s*Y (5) =y (0)s =4/ (0)} —2{sY (s) =y (0)} + 5Y (s) = 87
from which we obtain
(7Y (s) — 25— 12} —2{sY (s) ~2} 4 5Y (s) = ——
s+1
8
2_2 Y = 254+12—-4— ——
{s s+5} (s) s+ ST

and so

L<
—
@
~—

|

1 8
= (9g+8— >
52—2s+5(s+ s+1>

(2s+8)(s+1)—38 25% + 10s

(s2—2s+5)(s+1) (s2—25+5)(s+1)°
Now the quadratic polynomial s? — 2s + 5 is irreducible, so we complete its square,
2 —25+5=(s—1)>+22,
and write out the partial fraction decomposition of ¥ (s) in terms of s — 1 and 2:

2s% + 10s _A(s—1)+2B C

Y (s) = = .
((3_1)2+22)(s+1) (s—1)°+22 s+l
Now
252 4+ 10s 2-10
C= 2 2 ‘s:—lz 2 =-1,
(s—1)°+2 ((—1—1) +22)
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and so
252 + 10 —1)°+22 3:248s5+5
A(s—1)pop— 210 (52720 874845 4 o
s+1 s+1 s+1
which gives A = 3 and B = 4. Thus we have
-1 2 1
y(s)=3— =D 1y -

(s —1)> +22 (s—1)%+22 s+1
But from Theorem 13 we know

L]e" cos2z](s) = (s = 1)

(s —1)° +22’
L [ez sin 21‘} (S) = (5_1)224_22,
L)) =

and so from the uniqueness of Laplace transforms, the solution to the initial value
problem (1.4) is

y = 3e* cos2x + 4e” sin2x — e 7.

1.1. Proof of Theorem 13. Property (1) is an easy consequence of the lin-
earity of convergent integrals. To prove property (2), we fix s > ¢ and integrate by
parts to get

L [f(”)} (s) = /000 e f(n) (x)dx = /000 e **d {f("_l) (w)}
= @ F=0- 00 ) - [T afe ] 00 @

0
= 1O+ [ s @)
= =) L [£] ().
Now apply this identity repeatedly, or simply use induction on n, to obtain
L[rm) ) = =D +sL [£7] (s)
= SO s {02 (0) + 5L £ ()}
= () = s (0) + 52L 17D (s)

= —fO7(0) = sfT2(0) — = " T(0) + S"LIf] (s)

To prove (3), we first note that by L’Hospital’s rule, lim,_, o % = 0, which
shows that 2™ f (x) is of exponential order ¢ + ¢ for all € > 0. Then differentiating
under the integral sign is justified, and yields

=5 [Tt = [T o @=Ll @) ).
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Repeated application, or induction on n, then gives the formula

L) =~ Ll @) () = & L [P @) (5) = . = (<)) £ [a"f (@)] (5).

dsn72

Property (4) is a simple change of variable,

LU —a) flz—a)(s) = /OOOeSIU(x—a)f(m—a)da:

- / eSOy (o 4+ a) — ) f (o + ) — @) d(z + )

—a

= [Cemen @=L o)
LUE-a @I6) = [ T (@) da
- / e oy e = LIS (a4 )] (9),

0

and property (5) is just

The Laplace transform is sometimes a convenient tool for solving nonhomoge-
neous intial value problems with piecewise continuous forcing functions.

DEFINITION 9. We write L~ {F (s)} (z), or simply L™ {F (s)}, when F (s) =
L[f (x)] (s) is the Laplace transform of f (z), and we refer to L= as the inverse
Laplace transform.

EXAMPLE 33. Solve the initial value problem

y(0) = 5 ’
20x for 0<zxz<m
3cosx  for T>T

{y’ﬂ/ = f(z) forz#n

where f (z) = {

The forcing function f (x) has a jump discontinuity at x = w, so we cannot require
the differential equation to hold at x = 7, but we do require y (x) to be continuous
at 7, and this uniquely determines the solution y (x) to the initial value problem,
as the solution on [0, 00] uniquely specifies the new initial condition y (7) at x = 7.
To solve the initial value problem using the Laplace transform, we write the forcing
function in terms of unit step functions for x > 0 as follows:

flzg) = 200—U(x—7)20x+U(x —7)3cosx
20z +U (x — m) (3cosx — 20x) .
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Then we compute
LI[fl(s) = L[20z](s)+ LU (z—7) (3cosz — 20z)] ()
= 20%2 +e ™ L[(Bcos (x4 m) — 20 (xz+7))](s)
= 20%2 +e ™ {=3L][cosz](s) —20L [z] (s) — 20w L [1] (s)}
241 T sz

1 1 1
= 205 +e ™ {—3 20 2077} .
S S

Taking the Laplace transform of the equation now gives

sY(s)—y(0)+Y(s) = L[y +yl(s)=LI[fl(s)
SRS 2D S S BT I ey
o 52 € s24+1 52 7Ts '
1 s s 1 1
and hence
1
Y(s) = > +20

s+1 (s+1)s2

1 1
e {_3(s+ ey Ry Rt 1)8}'
Using partial fractions we get
1
_ L2 25
(s+1)s2+1 s+1 s2+1 s2+1°

which gives the inverse transform

—1|_q, —7s S

£ [ 3¢ (s+1)(s2+1)]

_§ _pr—1 —7s 1 -1 —7s 1 -1 —7s S
S | R e A e

= —;{—U(x—ﬂ)e_("”—”)+U(x—7r)sin(33—7r)+Z/I(m—7r)cos(m—7r)}.

(SIS

s —

Similarly we obtain the inverse transforms

,C—l[ > = 5e” %
s+ 1]
1 | 1 1-s
20— | = 20L7' | —— 4+ —2 | =20e” " +20(z — 1);
£ [0(s+1)52_ 0c L+1+ s2 ] O +20 (@ = 1);
1 | 1 1-s
-1 —920e~ TS = _9 -1 —s —Ts
L [ Oe T 0L |e 8+1+e =
= 20U (x—7m)e T 20U (z —7) (x — 7 —1);
1] -1 1
L7 —20me™ —————| = —20mL7' e + -
(s+1)s] s+1 s

= 20mU (z — ) e” ™) — 207U (z — 7).
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Adding these all up we obtain

y(x) = be " 4+20e”"+20(x—1)

—g {—Z/{ (x—m)e @™ LY (z —n)sin(z —7) + U (x — ) cos (z — 7'(')}
—20U (x — ) e” @™ — 20U (x — ) (x — 7 — 1)

+20mU (xz —7) e~ ™™ — 207l (z — 7).

We can of course collect all the terms multiplying the unit step function U (x — )
to obtain the formulas

y(xz) = 25e7% 4 20x — 20,
for0<zx<m,
and
y(z) = 2577 — gsin (x—m) — gcos (x —m)+ (2071' - 327> e~ (@™
for x> .

Note that y (x) is continuous at x = 7 since both formulas give y (7) = 25e™" +
20 (1 —1).

2. Convolutions and Laplace transforms

Consider the constant coefficient linear nonhomogeneous initial value problem
with vanishing initial data:

any™ + an 1y 4+ ary +aoy =
y " D(0) = .. =y (0) =y (0) = 0.
The Laplace transform of this equation is
an8"Y (8) + ay_ 18" 7Y (8) + ... + a1sY (s) +agY (s) = F (s),

where Y (s) = L[y] (s) and F (s) = L[f](s). We can factor the left hand side as
Y (s) times the characteristic polynomial

an8" + ap_ 18"+ ..+ ais+ag= P(s).
Solving for Y (s) we obtain
Y(s)= - F
()= 5P )

which exhibits the Laplace transform Y (s) of the solution y (x) as a product of
functions % and F (s). Now it is often possible to find the inverse transforms of
each of these functions separately, and the question that then arises is this:
e Given two functions f(z) and g (z) with Laplace transforms F (s) and
G (s) respectively, what is the function h (z) whose Laplace transform
H (s) is the product F' (s) G (s) of the transforms of f (z) and g (z)? In
other words, what is

L7HF (5) G (5)} 7
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To answer this question we calculate formally, without regard for rigor,
o0 o0
(/ e f (x) dm) </ e g (y) dy>
0 0

= /OOO /OOO e e f (z) g (y) dudy.

In the double integral, we make the change of variable

F (s)G (s)

(,y) = (u,v); uw=z+y,v=y,

and using
Ty Ty _ 1 -1 .
‘det{yu va—det[O 1 H—l,
we get
V=00 U=00 _ Ty Ty
F(s)G(s) = / {/ e f(u—v)g(v) det{y Y ”du}dv
v=0 u=v u v

/: { / 2; f(u=v)g () dv} du
= /OOO e (f * g) (u) du,

where we have defined the convolution of f and g to be the function on [0, c0) given
by the integral formula

(f*g)(u)Z/Ouf(U—v)g(v)dv.

More formally, and using the usual dummy variables, we have this definition.

DEFINITION 10. Given f,g piecewise continuous on [0,00), define their convo-
lution f g on [0,00) by

(Fr9)@ = [ fe-g@®d w0
0
Our formal calculation has thus shown that
FGE) = [ e (frg) (@)do=LIf+)(5).
0

has inverse Laplace transform,

LTHE ()G ()} = (f*9) (a).
Note that the expression f * g is linear in both f and g, and so may be thought of
as a strange sort of multiplication of functions.

e The Laplace transform takes convolution multiplication of functions into
ordinary pointwise multiplication of the transformed functions.

At this point it is useful to note that if both f and g are of exponential order,
then so is f x g.

LEMMA 6. Suppose f and g are piecewise continuous and of exponential order
¢ on [0,00), i.e.

|f (z)] < Me® and |g(x)] < Me®, x>T.
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Then f * g is continuous and of exponential order ¢ + ¢ on [0,00) for every e > 0,
i.e. there is a constant M, such that

|f*g(x) < Melt® >0,

PROOF. We can take T = 0 at the expense of making M larger, i.e. there is a
constant M’ such that

If (z)] < M'e® and |g (z)] < M'e*™, x>0.

Then we have

[f # g ()]

IN

/ |f (z—t)||g ()] dt < / M@= M et dt
0 0

2

= (M) ze® < M.elote)®,

for x > 0, since lim; .o ser = limg oo 56% = 0 by I’Héspital’s rule.
Finally, the continuity of f * g at a point = follows by writing

frg@+h)=fxg()

x+h x
/ f(x—i—h—t)g(t)dt—/ Flo—1)g(t)dt
0 0

x+h

x+h
(A {fm+h—w—fm—wmuwh+/ fa—tyg(t)dt
= I(h)+1II(h).

Assume 0 < h < 1 for convenience. Then

< |

which goes to 0 as h — 0. As for term I (h), we have

x+h x+h 9
(2 —t) g (8)] dt < / M@=\ eetdt — (M) e,
xr

[ (h)]

IN

x+h
A @t h—t) — f (x— 1) M'etds

IN

x+1
M/ec<w+1>/ f (@+h—1t)— f(z—t)|dt,
0

and using the fact that f has only a finite number of jump discontinuities on the
interval [0,z + 1], one can show (with some fuss) that

r+1
lim |f(x+h—1t)— f(z—1t)dt=0.
h—0 0
Draw a picture to see that this conclusion is reasonable! (I

THEOREM 14 (The Convolution Theorem). Suppose that f and g are piecewise
continuous and of exponential order ¢ on [0,00). Then

Lifxgl(s)=LIfI(s) LIgl(s), s>

PRrROOF. For s > ¢ we write the iterated integral for L[f * g](s) as a double
integral, and make the substitution u = x — ¢, v = ¢ with Jacobian determinant 1,
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L[f+gl(s) = /Oooe”{/owf(xt)g(t)dt}dx

/ / e 3@ f (. —t) e g (t) dtdx
o Jo

= /OOOO!)OO e f(u)e *’g (v) dvdu

( /0 e f (u) du> ( /0 g (v)dv)

L[f1(s) LIgl(s)-

to get

O

ExamPLE 34. Here we use the Convolution Theorem to help compute the in-
verse Laplace transform

Indeed, we have

B 1 1. k 1.
HMemfo- 7 {Fref @ - pmir=s0,

and so by the Convolution Theorem,

o ({2 o

f*f(w)=/:f(x—t)f(t)dt

vl 1.
= /0 <k51nk(x—t)> (kunkt) dt

1 xcosk(x—Zt)—cosijdt
k2, 2 ’

where in the last line we have used the trig identity
cos(A— B) —cos(A+ B)

sin Asin B = .
2

Continuing, we obtain

El{(ﬂik?f} = 2]12{/Omcosk(x—2t)dt—/ox(coskx)dt}

1 sink(z —2t)
2k —2k

|6 === coskx

1
= 53 {sinkx — kx coskx}.

2.1. Volterra integral equations. Now suppose that we are given continu-
ous functions g (z) and h (z) on [0, 00), and consider the following Volterra integral
equation for an unknown function f (x):

(2.1) f(w)=g(w)+/0wh(w—t)f(t)dt=g(x)+h*f(w), 230,
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This equation can be solved with the aid of the Laplace transform and the Convo-
lution Theorem. Indeed, taking the Laplace transform we obtain

F(s)=G(s)+H(s)F(s),
where F, G, H are the Laplace transforms of f, g, h respectively. Thus we have

_ G
FG) = —mey
_ -1 G (s)
f(z) = L {1H(s)}($)’ z > 0.

ExAMPLE 35. To solve the integral equation

f(z) =322 e — /x "L (t) dt,

0
we must compute

ro =S @,

g(z) = 322 —e™® and h(x—1t)= —eTt,

where

Thus we have

(}'(.9)23533—5+L1 andH(s)z—%,
and so
G(s) 1 6 1
1-H(s) 141 <s3_s+1>
_ s—16s+6—s> (s—1)(65+6—s%)
B s s3(s+1) st(s+1)
The partial fraction decomposition is
G _ A B C D B
1—H(s) st 83 s2 s s+1
-6 6 0 1 -2
S wtetetitay

and finally, taking inverse Laplace transforms yields
f(x)= -2 +32% +1—2e7, x> 0.

2.2. A more general Volterra equation. The pair of functions {cos z,sinz}
is a fundamental solution set on the real line R for the homogeneous second order
equation

y'(z)+y(x) =0, =z€R,
and the general solution is given by
(2.2) Yhom (Z) = Ynom (0) cosz + yp, (0)sinz,  z €R.
We now wish to solve the more general equation
y' (x) +y(x) =0 (z)y(z),

where ¢ is a continuous function on R. First we solve the inhomogenoeous equation

y' (z) +y () = f ()
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by writing it as a system in y = [ 5, } :

yfjﬂ:mé}{m{ﬂ

Then the Wronskian matrix

W(.’L‘) _ |: COS ™ S-Hll' :| _ |: CO.SI sSinx :|

cos'z sin'z —sinz  cosx

satisfies
= AW and (Wﬁl)/ =W A
Thus
Wly) = wly'+ (W )y
= Wiy —wW Ay =W~ 'f
implies

y :W/W’lf

and so a particular solution ype. () is derived from

e ] = [wewomes
/ [f:;z iifiﬂ ][]
d

{ Sinxcost—cosmsint][ 0 ]

* f(t)
Now we see from (2.2) and (2.3) that the solution to the initial value problem

y+y:oy
= 1
= 0

t

fowsm (x —t) f(t)dt ]

satisfies the integral equation

y(x) =cosz + sin(z —t)o (t)y(t)dt, xR,

0

and vice versa. If we write u (z) = cosz and

Lh(z) = / sin (z —t) o (t) h (t) dt = (sinxoh) (x),
0
we can rewrite this equation as
(2.4) y=u+ Ly,

an example of a more general type of Volterra integral equation than that considered
n (2.1).
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2.2.1. Picard iterations. To solve the Volterra equation (2.4) for x € [-N, N],
we start with a guess yo = yo () where yq is any continuous function on [—-N, N
and plug it into the right side of (2.4), defining

no= @) =)+ L)
= cosm—l—/ sin(z —t)o (t)yo (¢)dt, =€ [-N,N].
0

i

If it happens that y; = yo (highly unlikely!) we are done. Otherwise set yo = u+Ly;
and inductively

(25) Yn = U + Lyn—l on [_N’ N]7 n= 172737

We hope that this sequence of functions {y, } -, converges in some sense. Since
uniform convergence yields a continuous limit, we define

Al = max |h ()]

and hope that ||y, — yn|| — 0 as m,n — oo (the Cauchy criterion for uniform

convergence).
Now we compute inductively that
(26) Yn = UF Lynfl

= u+L(u+ Lyp_2)

= u+Lu+..+L" tu+ L y.
Thus we have for n > m,
(2.7) lym —ynll = [|[L™u+ ...+ L" tu+ L yo — L™y ||
< " ull 4 L2l 4 L ol + 12 woll

and in particular this will tend to zero as m,n — oo provided we have the “absolute
convergence of orbit series”:

o0
(2.8) Z |IL"v]|| < oo for every continuous v on [—N, N]J.

n=0

Indeed, if (2.8) holds, then {y,},- , satisfies the Cauchy criterion for uniform

convergence and hence there is a continuous function y = y(x) on [—N, N] such
that y, — y uniformly on [—N, N]. We now claim that y satisfies (2.4) on [-N, N].
For this we use the inequality

(2.9) Lo ()] = /Ozsin(xt)a(t)v(t)dt <llol flvfff=,

from which follows
(2.10) [ L[l < (N o)) llvll = C o]l
for all continuous v on [-N, N]. If we now let n — oo in the equation (2.5) we
obtain
y= lim y, = lim (u+ Ly,—1) =u+ Ly

n—oo

since by (2.10),
ILy — Lyn—1ll = 1L (v = yn-1)| < Clly —yn-1ll =0, asn — oo.
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Finally we establish the “absolute convergence of orbit series” in (2.8). By (2.9)
we have

msin:c—o v xsinzfa ol llv 020@
/0 (x—t)o(t) Lu(t)dt S/O sin (z —t) o (&) {llo[| [lv] ¢} dt < flof|” [[o]l =

and continuing by induction we obtain

z n
@l = | [0 0 D@ < ol o) -
0 n.

N’I’L

Izl <l ol =5

IN

from which (2.8) follows immediately:
3 S ol ol 2 = oMol
DIl < D el lo] — = el o] < oo.
n=0 n=0 ’

3. Transforms of integrals, periodic functions and the delta function

If we set f =1 in the Convolution Theorem, we get

Llgl ()= L] () Lo} (5) = L) (5).
where .
teg()= [ gl

is the antiderivative of g that vanishes at the origin. Thus with F (s) = L[f] (s) we
have the formulas

(3.1) L onf(t)dt] (s) = £ls) and £7! {Fés)} () = /Ogcf(t)dt.

s
Now suppose that f (x) is periodic with period T on [0, 00), i.e.
fl@+T)=f(z), x>0,

as well as being piecewise continuous and of exponential order ¢. Then the Laplace
transform is given by the following integral over the initial period:

(3.2) LI[f(x)](s) = ﬁ/o e f(x)de, s>c.

Indeed, using the substitution x — x + T in the second integral below, followed by
the periodicity of f, we have

T o
Clf@)(s) = / ¢ f (x) da + / 57 f () da

T

T oo
= / e ¥ f(x)dx + / e @D f (x4 T) da
0

0

T 0o
= / e T f (x)dx + / e D) f (1) da
0 0

T
= [ @t L @) ).
Solving for L[f (x)] (s) gives (3.2).
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Finally we consider the simplest of the "generalized functions" or "distribu-
tions", namely the ‘Dirac delta function with pole at z¢’ § (x — zp), where z is any
fixed real number, and x is the independent variable. This generalized function is
assumed to have the following two properties:

(1) §(z —x0) =0 for all = # zo,
(2) [, 0 (x — o) dx =1 for all fixed .

Of course there is no actual function with these apparently contradictory prop-
erties, but the following sequence {f,} -, of step functions has these properties ‘in
the limit’:

fu(z) = nl[m@ﬁ%] (), zeRneN,

where 1[ =U(x—x0) - U (:c —x9 — %) is the indicator function of the

1
Ioﬂﬂo—&-;]

interval [zo,xo 4+ +]. So also does the sequence of continuous functions
fn(x)z%sin(ﬂnm)l[oi] (), zeRmneN,

as well as many other sequences of functions whose supports shrink to zy and whose
integrals tend to 1 as n — oo. It is for this reason that the Dirac delta function
d (x — ) is referred to as a ‘generalized’ function.

The Laplace transform of § (x — z) can be taken to be the limit of the Laplace
transform of any such sequence, and choosing the sequence of step functions { f,, }, -,
above, we get

LI6(x—1x0)](s) = lim L[f,(z)](s) = lim n{ﬁ[l/{(x —x9)](s) = L [L{ (m B
) e~ 5To 6—8(9304-%) 1 . e—s(wo-i-%) — e—5%0
= lim n - = —— lim T
n—oo S S S n—o0 E
_ 1 i —sT | _ _—sx0
- s\ 2=20= €
and hence the formulas
(3.3) L[(z—a)(s)=e**and L' {e*}(2) =6(z—a).
EXAMPLE 36. The initial value problem
2y +y' +2y = 6(z—05)
y (0) = o,
y' (0) = 0

has a forcing function that is a unit impulse at x = 5. To solve this problem, we
take the Laplace transform to obtain

(25> +542) Y (s) = e

_ e e 1 )

S 252+542 2 2 2
o (s+4)"+ ()

_ 2 L TRALT
y(x)—\/—ﬁl/{(x—!i)e sin = (z—5),

. r-1 1 _ 4 -z
since {(S+i)2+(ﬁﬁ)z} JE¢ *sin



CHAPTER 7

First order systems

Recall that in Chapter 4, in connection with higher order equations, we intro-
duced the general first order system (1.1) of n equations in n unknown functions,

{ylayQa EE) yn}7

yi = fl (m7y17y2a"'7yn—1)

yl2 = f2 (maylay%'"ayn—l)
y’;l—l = fn—l (xvylay%--';yn—l)

y;L = fn (IayhyQa"'ayn—l)

where the functions fx (x,y1, y2, ..., Yyn—1) are typically arbitrary for k = 1,2,...,n—
1,n. The system (1.2) can be written more profitably in vector form

y =f(2,y),
where we use boldface type to denote n-dimensional vectors,
hn
Y2
y = (ylayQa"'7yn): : 3
Yn
1 (ZI?, y)
f2 (Z‘, Y)
f(an) = (fl (m7y)af2 (‘T7y)7~-~7fn (907}’)): . ’
fo (2,y)

which we write as either row vectors or column vectors depending on context. In
our Existence and Uniqueness Theorem, we showed that if

e R is an open region of the Euclidean space R™t!,

e if f : R — R"™ is continuous,

o if Py = (.’L‘Q,y()) eER,

e and if f (z,y) satisfies a Lipschitz condition in R in the y variables,

then the n x n initial value problem
{ y' = f(zy)
y(@o) = o

has a unique solution defined in some open interval containing x.

This ‘system’ point of view proved useful not only in establishing existence and
uniqueness for higher order equations, but also in

?

(1) characterizing fundamental solution sets to homogeneous linear equations
in terms of the Wronskian via Abel’s formula,

119
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(2) deriving the method of variation of parameters for solving higher order
nonhomogeneous linear variable coefficient equations,
(3) and proving the existence of power series solutions for linear equations
when the coefficients are analytic.
It turns out that we can easily establish analogues of Abel’s formula and vari-
ation of parameters for n x n systems, to which we now turn.

1. Abel’s formula and variation of parameters

Recall that in Chapter 5, we introduced the first order linear system of n
equations in n unknown functions {y1,y2, ..., Yn},

v = e @yt ain (T) Yn
y/2 = as.1 (LL‘) Y1+ -.a2.n (.’L‘) Yn
Yp—1 = An-1,1(T)Y1 + tn-1n () Yn
y;L = an,1 (l’) Y1 + «Qnon (.CL') Yn
which with
a1p(z) a12(x) -+ ain(2) Y1
az1 (z) a2 (x) -+ azn(2) Y2
an1(T) an2(x) - ann(2) Yn
we rewrote succinctly as
(1.1) y (z) = A(z)y (z).
A fundamental solution set (of column vector solutions)
Y11 Y1,2 Yin
Y21 Y2,2 Y2,n
o= {Y1aY2,~-~,Yn}= . 3 . PRREE} . 3
yn,l yn,2 yn,n
can be written in the form of a matrix with columns yy,
yi1(@) yi2(@) oy (@)
Y2, (2) y22(z) - Y2 (2)
O (z) = . . ) n
yn1 () yn2(®) - Y (2)
and satisfies the matrix equation,
' (z) = A(x)®(z),
det® (z) # 0.

The fundamental solution set ® is normalized at xo if the matrix ® (z¢) is the
identity matrix.
Recall that the trace of a matrix A = [aij]?jzl is defined to be the sum of the

diagonal elements,

n
trace A = E ai; = a11 + a2 + ... + apn-
i=1
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THEOREM 15 (Abel’s formula). If ® is a fundamental solution set for the linear
n X n system (1.1), then

det ® () = det ® (z) o ltrace A(t)dt

PROOF. We compute using the product rule and the equation (1.1),

Y11 Ewg Y1,2 ESC; Ui Exg
d d Y21 (@ Y22 \T o Yon \T
@det@(m) = o : :
yn,l (.’E) yn,2 (-73) e yn,n (.’L’)
i Y11 (95) Y1,2 (x) Ui (IE)
= Ydet| va @ wale) o ua ()
1 (@) o2 (@) o g (@)

y1,1 (2) Y12 (2) e Yi,n (2)

= Z det ZZ:1 aik () Y1 (@) ZZ:1 aik () yr2 () - 22:1 ik (T) Yrn ()

yn,l (Z') yn,Q (SC) tee yn,n (1')
Now using the multilinear and alternating properties of determinants, we get that
only the case k = ¢ in the sum survives to give

Y11 (x) Y1,2 (x) T Yi,n (x)
idetq)(:lc) = idet a;; -: () ai; 4. (x) a'l(x). in (T)
de - i:1 l,zyz.,l 'L,lyz.,Z 1,1 .yl,n

yn,l (.’IJ) yn,2 (.’17) e y’ﬂ,n (.’L‘)

= Z a;; (z)det ® (z) = [trace A (z)]det @ ().

Solving this scalar equation for det ® (z), we obtain

x x

% In|det ® (t)| dt = / [trace A (t)]dt,

xo

In |det ® ()| — In|det ® (x0)| = /

xo

which gives Abel’s formula. O

Now we derive the method of variation of parameters for solving the nonho-
mogeneous equation

(1.2) Y (z)=A(2)y (z) +£(2).

Given a fundamental solution set ® = {y1,ya, ..., y»} to the homogeneous equation
(1.1), we substitute the vector

vp(x) = n@)y(@)+...+v, (2)y, ()
= {yuy2, - yatv(z) =2 (2)v(2),



122 7. FIRST ORDER SYSTEMS

into the nonhomogeneous equation (1.2) to get
A(@)®(z)v(z)+f(x) = Ax)y,(2)+1f(2)
= y,(z) =9 (z)v(z)+ @ () v/ ().

Now &' = A since ® is a fundamental solution set, and so we have the following
first order equation for the vector v (x):

O (2)v (z) =f(z).

But det @ # 0 as well since @ is a fundamental solution set, and so ® (z) is invertible
and we have

Vi) = @(2) f(2);

This gives a particular solution

yp (@)= (2)v(z)=d (m)/‘b )£ (t) dt,

and because of the constant vector of integration, we actually get the general solu-
tion from this formula. More precisely we have

® (z) (/I<I>(t)1f(t)dt+c>

Zo

y (z)

{@(x) /:@(t)lf(t) dt} +{c1y1 () + oo+ Cayn ()}

0

Yp () + e (@),

where
yo@) =) [ O 0

is a particular solution to the nonhomogeneous equation (1.2), and

Ye (iL') =CY1 (:C) + ...+ Cr¥n (iL')

is the complementary solution, i.e. the general solution to the homogeneous equa-
tion (1.1).

2. Constant coefficient linear systems

The method of variation of parameters reduces the solution of the nonhomoge-
neous linear variable coefficient equation (1.2) to the problem of finding a fundamen-
tal solution set for the corresponding homogeneous equation (1.1). In general we
cannot find explicit elementary solutions to the homogeneous system (1.1). Recall
however, that in Theorem 8, we found explicit elementary solutions for the scalar
equation L [y] = 0 when L is constant coefficient n'" order linear differential oper-
ator as in (3.1). It turns out that we are also able to find an explicit fundamental

aii1 - QAin

solution set for the system (1.1) when the matrix A (z) = A =

an,1 e Ann

s

is constant. We now describe the details.
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Suppose that A is a constant n x n matrix and consider the homogeneous linear
system

(2.1) y' (z) = Ay (z).

Our strategy here is similar to that used several times previously, namely we devise
a proof in the scalar case n = 1, and generalize it to work for n x n matrices. The
scalar case is the simple equation

(2.2) y' (2) = ay(z),
where ¢ is a 1 X 1 matrix, i.e. a number, and this equation has general solution
y(z)=ce®™, xR, ceR.

Now we note that the solution y = e** has a power series expansion,

oo n

yzza—mn, z €R,

and most importantly, that from this power series expansion alone, we can deduce
that it is a solution to the equation (2.2):

o d - _ _ - 1 n n—1
yl@) = de:Oi Zn' dax _gﬁa n
= Y e et =a) St = ay ()
= (n+1)! o n!

since (nil)!a"“‘l (n+1)= ama (n+1)=a Lan
This observation suggests that the same procedure may work for higher order
matrices. So given an n X n matrix A we consider the matrix-valued power series
® (z) with matrix coefficients given by,
1
J— n, .n
P (z) = z% — A",
n—

and where by convention, we define A° to be the n x n identity matrix

I =

with 1’s down the main diagonal, and 0’s elsewhere. The series above has infinite
radius of convergence, and so converges absolutely for all x € R. Moreover the
following calculations are valid within the open interval of convergence R:

d & .
<I>/(:c) = dmnzo 7nzon' dx nzl — A"z
- ]' n n,_ .n
- ;mAﬂ(n—kl AZ A" = A® (x).

Note how these matrix calulations exactly mirror those with numbers done above!
We have thus obtained a matrix solution ® (z) to the equation ®' (z) = AP (z),
and if we list the columns of the matrix solution ® (z) as y1 (z), ...y, (z), then each
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vector function y; () is a solution to the system (2.1), i.e. y (z) = Ay, (z) for
7=1,2,...,n. We conclude that

® = {y1,..yn}

will be a fundamental solution set for (2.1) provided det ® (z) # 0. But det @ (0) =
det I = 1, and Abel’s formula now shows that

det ® (I) — det ® (0) efol'[trace A(t)]dt _ efol'[trace A(t)]dt ?é 0, zeR.
Thus we have shown that
{yi,yn}

is a fundamental solution set for the system (2.1), where the vectors y; are the

columns of the matrix solution
o0

O (z) = %A”x".
n!
n=0
At this point we define the exponential of an n X n matrix B, and which we
denote by e?, by the series
1
ef = EB".
n=0
With this notation our matrix solution becomes ® (z) = % simply because (Az)" =
Amg™ for all n > 0. In fact the general solution to the system (2.1) is now seen to
be given by
y (z) =eMc, xR,
where c is an arbitrary n-vector. The interpretation of ¢ is that it is the initial
condition satisfied by the solution y (),

y(0)=ec=TIc=c.

2.1. Calculation of the exponential of a matrix. The only problem re-
maining with our general solution y (z) = e4®c to the system (2.1) is the problem
of computing the matrix series e4% so as to identify the components as elementary
functions. For this we turn first to the relatively uncomplicated case n = 2. Given
the 2 x 2 matrix

a b
a-[eal]
we wish to compute
Ax - n
vexalta]

This is relatively easy in the special case when A is a diagonal matrix A = { 8 2 } ,
since then we have

a™ 0
0 a
which is easily proved by induction on n. Plugging this into the series gives us

1 [a* 0 S Lgngn 0
Az - n o _ n!
© - 2&&0 w]x_ij 0 ;ww]

n=0 n=0

B ZZO:O %CL”IL’" 0 B 0 0
= 0 ZOO 1 dr ™ - 0 edw .

n=0 n!

A":{ }, n >0,
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It is now easy to see that for square diagonal matrices of any size, we compute
the exponential matrix just by replacing each entry on the diagonal by its ordinary
exponential!

Now we invoke some trickery from linear algebra. For this we return for the
moment to n X n matrices and recall the notions of eigenvalues and eigenvectors
of an n x n matrix A. An eigenvalue/eigenvector pair (A, v) for A consists of a
nonzero vector v that is mapped into a multiple of itself with magnification factor
A, de.

(2.3) Av = dv.

Note that such a vector is determined by its direction, since any multiple of it will
also satisfy (2.3). For example, a diagonal matrix

ail 0 AN 0
0 a922 0
A= i
0 0 Ann

has eigenvectors e; with corresponding eigenvalues aj;. Thus (\;,v;) = (aj;,€;) is
an eigenpair for A for each 1 < j < n.

Recall also that the eigenvalues can be found by calculating the roots of the
characteristic polynomial of A:

P(\) =det (A —A).
The reason for this is that the following statements are equivalent:

(1) A is an eigenvalue for A,

(2) there is a nonzero vector v such that Av = Av,

(3) (A — A)v =Av — Av =0 for some v # 0,

(4) AI — A is not an invertible matrix,

(5) det (M — A) =0.

Thus we see in particular that there are at most n eigenvalues. If a root A of

P () is repeated m times, we say that A is an eigenvalue of mulitplicity m of A.
Corresponding eigenvectors v for A can be found by solving the matrix equation

(M—-A)yv=0.

If X is an eigenvalue of mulitiplicity m, it can be shown that the vector space
of solutions to this equation, i.e. the space of corresponding eigenfunctions, has
dimension at least 1, and at most m, but not necessarily equal to m. In particular,
if X\ has mulitiplicity 1, there is a unique eigenvector.

EXAMPLE 37. The matriz A = [ (1) } } has characteristic polynomial P (\) =
(A= 1)2, so has the single eigenvalue 1 of multiplicity 2. However, it is easy to see
that [ (1) } (or any multiple) is the only eigenvector.

We will see below that the exponential e of a matrix A has an especially simple
form when A has n linearly independent eigenvectors vi, ..., vy,. This condition on a
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matrix A is easily seen to be equivalent to the requirement that A is diagonalizable,
i.e. there is an invertible matrix B such that

M O - 0

0 Xy --- 0
B 'AB=A=

0 0 - A\

is a diagonal matrix. Indeed, we can take B to be the matrix with columns vy, ..., v,
so that B takes e; to v; for 1 < j < n. Then B~ 1AB takes e; to

B_lABej = B_lAVj = B_l)\jVj = )\jB_1Vj = )\jej,

and hence is the diagonal matrix A with diagonal entries {A1, ..., An }.

We also observe that the eigenvalues of A are precisely the diagonal entries
of A, counted according to multiplicity. Indeed both A and A have the same
characteristic polynomial:

P(\) = det(A —A)=det(\ —BAB™") =det[B (A —A)B™]
1
= det Bdet (\] — A)det B™' = det Bdet (A\] — A) ——
A Bdet (M —4)de et Bdet A =N 3 p

A=X -0

det (A — A) = det : . :
0 o A=A\

[T =2
j=1

It is in general difficult to determine when an n X n matrix A is diagonalizable,

but there are two standard and important sufficient conditions, namely
(1) if A has n distinct eigenvalues, or
(2) if A is symmetric.

Indeed, if the characteristic polynomial of A has n distinct roots, then corre-
sponding eigenvectors are linearly independent! In fact, in the simple case n = 2,
suppose that v; and vo are eigenvectors corresponding to distinct eigenvalues \q
and Ag, and in order to derive a contradiction, that vo = cvi. Then we have

AQ (CVl) = A2V2 = AV2 =A (CVl) = CAV1 = CA1V1,

which implies ¢ (A2 — A1) vy = 0. This contradicts v; # 0 since both ¢ and \; —
Ao are nonvanishing. The case when n > 2 can be proved in similar fashion by
induction on the number ¢ of eigenvectors considered. Indeed, fix n and 1 < ¢ < n,
and with the obvious notation, suppose that the eigenvectors {vi,...,vy_1} are

linearly independent, and in order to derive a contradiction, that v, = Ei;ll CLVE-
ThenB?

-1 £—1 £—1
Z Ck)\gvk = )\g Z CkVE = )\@V@ = AV@ =A (Z ckvk>
k=1 k=1

k=1

—1 —1
= E CkAVk:E CRALVE,
k=1 k=1
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which implies Zi_:ll ¢k (A¢ — A\i) vi, = 0. This contradicts our induction assumption
that the vectors {vy,...,vy—_1} are linearly independent, since Ay — A\ # 0 for all k,
and at least one of the ¢ is nonzero. Altogether we have proved the following.

=1’
has n linearly independent eigenvectors {v; };L:l with Av; = A\jv; for 1 <j <n.

LeMMA 7. If A is an n x n matriz with n distinct eigenvalues {A; };L then A

The standard proof that a symmetric matrix A is diagonalizable involves ele-
mentary row and column operations, and we will not reproduce the proof here.

2.1.1. Diagonalizable matrices. We now return to our task of calculating the
exponential of a 2 X 2 matrix. In the more general case of a diagonalizable 2 x 2

matrix
a b
=15 al;

there is an invertible matrix B, i.e. det B # 0, with the property that

1 I . YR
B AB_A_[O o

is a diagonal matrix. The diagonal entries \; are the eigenvalues of the matrix A,
and hence also the eigenvalues of the matrix A. From above we know that

eAa::|:€)‘1m 0 }

0 el
Now comes the trickery. We have A = BAB~! and so
— 1 — 1
Az __ AN, - —1\" n
(24) e = Z n!A " = Z py (BAB ")z
n=0 n=0
n times

I
NE

%(BAB*) (BAB™') (BAB™') ... (BAB™ )"

3
I
=

I
NE
S

BA(B™'B)A(B'B)AB...(B"'B) AB'2"

n=0
n times

- 1 —-1,.n
= Y = BAA.AB 'z

n:On'

= 1 np-—1,n = 1 n,.n -1 Az p—1
= Y —BA"B'2"=B(Y —A"z"|B™'=BeMB™".

n=0n! n=0n!

Now consider the vectors vi = Be; and vy = Bes. We have for each j =1, 2:
eAg”vj = BeA””B_lBej = BeA””ej = Be)‘j”ej = e’\f”’Bej = e/\jg”vj .

Thus e is an eigenvalue of the matrix eA®

with eigenvector v;, and moreover,
y; = et%v; = e%v; is a solution to the system (2.1). Finally, from linear algebra
we know that the eigenvectors {vi,va} span R?, and so the matrix with columns

V1, Vo is invertible. It follows that

{y1.y2} = {eMvi,eM7 vy}

is a fundamental solution set for the system (2.1). Note that the entries here are
elementary functions, namely exponentials.
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Finally, the above method works just the same when the matrix A isann xn
matrix with n linearly independent eigenvectors {vy, ..., v, }. But first we illustrate
the method in the case n = 2 before giving the general theorem.

PROBLEM 7. Find the general solution of the system
{ Y1 () 21 () — 3yz2 (z)
yo () = () — 22 (2)

SOLUTION 7. We write the system in matrix form as

CRFEIRETE)

2 =3
. . . 2 -3
and compute the eigenvalues and eigenvectors of the matrix A = 1 :

—2

P

-1 A+2
A=2)A+2)—(-D)B) =N -1=A-1)(\+1).

So A has distinct eigenvalues £1. Now we compute the corresponding eigenvectors.
When A =1 we solve

0 o 1-2 3 U1

0 o -1 142 Vg

B -1 3 vy | | —v1+3v2

- -1 3 V2 o —v1 + 3’02 ’

} is an eigenvector for 1. When A = —1 we solve

_ -1-2 3 U1
o -1 —-142 Vg
. -3 3 v | —3v1 + 3vs
o -1 1 vy | —v1 + U2 ’

} s an eigenvector for —1. Thus a fundamental solution set

det(/\I—A):det{)\Q 3 }

which gives vi =

[ —

which gives vo = [
18
3 1
— J.M A2 _ -
{y1,y2} = {e"v1,e™va} = {e’” [ 1 } e " { 1 H
and the general solution is

[ y1 ()

3ci1e” + coe™
Y2 () cre® +coe ™ |

Here is the general theorem for diagonalizable matrices.

] =y (z) = ay1 (2) + coy2 (z) = {

THEOREM 16. Suppose the n x n matriz A has n linearly independent eigen-
vectors {v1,..., v}, with corresponding eigenvalues {1, ..., \p}, where the \; may
be real or complez, and need not be distinct. Then the system (2.1),

¥ (2) = Ay (z), —oo<w< oo,
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has fundamental solution set
A1z AnT
{e vy, .e vn}

on (—00,00), and the general solution is given by

A1 A

v () = c1eMPvy 4 e vy + Cne v, —00 < T < 00.

Now we give an example to illustrate the use of variation of parameters to solve
a nonhomogeneous system with a constant coefficient matrix A,

Y (z) = Ay (z) + f (z).

First we note that in this case, ® (z) = 4% and ® (t)f1 = e~ 4% and so the variation
of parameters formula can be written as

o @(x)/xcp(t)*lf(t)dt

0
xr T
= e‘%/ e~ A () dt = / eA@=OF (1) dt,

Zo Zo
which when zy = 0 is the convolution of the exponential matrix-valued function
exp 4 (s) = e4* with the vector-valued function f (t). We have used here the fact
that for any matrix B, a simple computation with the power series definitions of
eB and e~ B shows that eBe™P = I, hence (eB)f1 =e B,

EXAMPLE 38. In order to solve the nonhomogeneous system

y@=dy@+t@= | g |y ( 1),

we first compute the characteristic polynomial

A -1

P()\)zdet(AI—A):det[ 21

|=@-1=0-p0+y.

. . . . 1 .
The eigenvector corresponding to the eigenvalue A = 1 is ( 1) and the eigen-

vector corresponding to the eigenvalue N\ = —1 is ( _11 ) Thus a fundamental

solution set for the homogenous system is

o= (}) = (1)}

and the complementary solution is

Ve (z) = a1y1 () + coya () = cre” < } > + coe™” < _11 > :

Finally, the variation of parameters formula for a particular solution to the nonho-
mogeneous system with ro =0 is

¢ T— 1 — T— 1 T
yplz) = /eA( t)<1>dt=—A LAl t)<1> 15
0
-1 1 —1_ Az 1
—A (1)+A e (1)
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1
Now the second term A~1leA® < 1 ) solves the homogeneous system, so we can

discard this term and use

= (1)==a(1)--[1 4] (1)--(1)

0
1

O =

since A1 = A for the matriz A = { ] Thus the general solution to the

nonhomogeneous system s

y(@) = ye(@)+y, ()

e (D)ra(4)-(1)

2.1.2. The Jordan Canonical Form. It turns out that when some of the eigen-
values have multiplicity greater than one, there may not be n linearly independent
eigenvectors - this corresponds to the case of repeated roots for the n'” order con-
stant coeflicient linear equation L = 0. This case can be analyzed using the Jordan
Canonical Form of the matrix A (see below), and calculating the exponential of the
£ x £ Jordan blocks

A1 0 0
0 A :
J}\’ZZ 0 '.. '.. '.' O :>\I+N,
Al
0 0 0 A\

where the nilpotent matrix N satisfies N* = 0, and

ro ... 1 - 07
Nr=| oo ], 1<k<e-1
L0 - o 0

In the matrix above, the 1’s appear on the k" superdiagonal. Since AI and N
commute, we then have

-1
1
(25) 6‘]”\’em — 6/\Ix+Nm — eAIxeN:L’ — e)\azl (2 ykak
k=0 "
r 2 -1 7
e)\w xe)\:v 127!6)\9: . (?71)! e)xz
0 e
— . . . 2
0 .. .. .. %ekm
: .. . e/\w xe)\w
0 .- 0 0 e
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In the calculation above we used the fact that if two matrices A and B commute,
then the binomial theorem holds for them, i.e.

n!

n_ k Rt
(A+B)"= > i ABY
k+l=n
and hence the exponent formula eAT8 = e4eB:
M = ii(AJrB)" = ii > gkt

o n! o n! k!

n=0 n=0 k+4=n

=1

_ L ke
B k!é!A B

S 1 k S 1 Y4 A_B
k=0 =0

Recall that every n x n matrix A has a Jordan Canonical Form J that consists
of Jordan blocks Jj ¢ along the main diagonal, where ) is an eigenvalue of A and ¢
is the size of the block. More precisely, there is an invertible n x n matrix B such
that

[ [Iag,ers] 0 0 0 T
0
0 [JAMMI] 0 0
B™'AB=J= : - : : :
0 0 0 [Ineen] 0
0 0 0 {J)\kygkﬁqk} ]

where A1, ..., A\ are the eigenvalues of A, and ¢;1+...+¢; ;. = m; is the multiplicity
of the eigenvalue A; for 1 < j < k. Thus by the calculation in (2.4) we have the
formula

1 _
Ax :eBJB T :BeJacB 1

(2.6) e
[ [erM“} 0 0 0 ]
0
0 {a“lv’fl«nﬂ 0 0
= B : :
0 0 0 [e"kkv%l‘”} 0
0 0 0 [e Wz»’"}

where the exponentials of the Jordan blocks are given by (2.5).

CONCLUSION 4. Thus a fundamental solution set for the system y' = Ay is
given by the columns of the matriz Be’*B~', and we see that the entries in the

371
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columns are linear combinations of polynomials in x times exponentials e * where
A runs through eigenvalues of A.

REMARK 8. In the case n = 2, an arbitrary matriz A has either exactly one
etgenvector, or exactly two eigenvectors. In the case A has exactly one eigenvector,
with eigenvalue X\, the Jordan Canonical Form consists of a single 2 x 2 block J =

Al -1 _
[0 )\].IfB AB = J, then

_ Az Az
(2.7) et = ¢PIB e = petiptl = B { 60 x:m } B~

Here is a simple example that illustrates the use this result.

EXAMPLE 39. In order to solve the system
;L 1=
y =4y = EEENERE
we compute the characteristic polynomial

P (N) = det (AT — A) = det

1 A-3 } =(-2%,

and see that X\ = 2 is the only eigenvalue of A, and has multiplicity 2. Now for

A = 2 we have
1 1
woas[ 0]

and the only eigenvector (up to multiples) is < _11 > Thus one solution of the

yl(a;)zeh(_11>.

The Jordan Canonical Form for A consists of a single Jordan block Js o,

system is

- 2 1
B 1ABJJ2,2{0 2],

and from formula (2.6) or (2.7) for the exponential e**, we see that

2z 2z
Az e xre 1
e _B[ 0 o ]B .

Thus there is a second solution of the form
yo (z) = ze**v + e**'w,
for certain vectors v and w that can be evalutated by plugging into the system:
(€% + 22e*) v + 2e*"w =y} (z) = Ays = ze** Av + " Aw.

2z

FEquating coefficients of the independent functions e2* and xe*® we get

(2I —A)v = 0,
2I-A)w = -—v.
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1 , .
Now v = 1 and w = ( _01 ) satisfy these equations, and so a second
independent solution is given by

yg(x)—xe%( ! )+e2"’”( N >

The general solution is then given by

y(z) = ayi(z)+cy(z)

1 0
- (cle2$ +02$62"’”) ( 4 ) + cpe?® < 1 )



