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Part 1

Solutions



We begin with some elementary techniques for solving some very special and
simple di¤erential equations, and describe the type of equations we will actually try
to solve in these notes. We use Picard iterations to prove existence and uniqueness
of solutions to initial value problems, and then begin a more systematic investigation
of �rst order and higher order equations, especially linear equations, and derive the
method of variation of parameters for solving nonhomogeneous equations. After
computing elementary solutions to linear equations with constant coe¢ cients, we
turn to the derivation of power series solutions when the coe¢ cients are analytic
functions. Then we investigate applications of the Laplace transform to solving
linear equations, and end with a more systematic study of �rst order systems.



CHAPTER 1

Some simple di¤erential equations

Given a function y (x) de�ned for x in an open interval (a; b) of the real line R,
the derivative y0 (x) at x 2 (a; b) is given by

(0.1) y0 (x) � dy

dx
(x) = lim

h!0

y (x+ h)� y (x)
h

;

provided the limit exists.

0.1. Derivatives and continuity. If the limit in (0.1) does exist, then f
must be continuous at x. Indeed,

lim
h!0

y (x+ h) = lim
h!0

�
y (x) +

y (x+ h)� y (x)
h

h

�
= y (x) + y0 (x) lim

h!0
h = y (x) :

The converse however is false.

Example 1. If y (x) =
�
x cos 1x if x 6= 0
0 if x = 0

, then for x 6= 0, the product

rule and chain rule from elementary calculus show that y0 (x) exists, and moreover
that y0 (x) is given by the formula

y0 (x) =

�
d

dx
x

�
cos

1

x
+ x

�
d

dx
cos

1

x

�
= cos

1

x
� x sin 1

x

�
d

dx

1

x

�
= cos

1

x
+
1

x
sin

1

x
:

On the other hand at x = 0, we see that y0 (0) doesn�t exist since

y
�
0 + 1

n�

�
� y (0)

1
n�

=
1
n� cosn� � 0

1
n�

= cosn� =

�
1 if n is even
�1 if n is odd

:

Indeed, the di¤erence quotients
y(0+ 1

n� )�y(0)
1
n�

are all equal to 1 on the sequence�
1
n�

	
n even of numbers that tend to 0, while the same di¤erence quotients are all

equal to something else, namely �1, on the sequence
�
1
n�

	
n odd of numbers that

also tend to 0.

3
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The graph of y = x cos 1x

0.2. Exponential rates of change. Exponential growth and decay problems
from elementary calculus can be modelled by the di¤erential equation

y0 = ky;

where k is a real number, referred to as a constant, or constant function. This
equation is shorthand for the more explicit formulation

(0.2) y0 (x) = ky (x) ; x 2 (a; b) ;

and we say that a function y (x) de�ned for x 2 (a; b) is a solution to this equation
if y0 (x) exists for all x 2 (a; b) and if y0 (x) = ky (x) for all x 2 (a; b). Note that
the speci�cation of an interval (a; b) is part of the de�nition of a solution y.

In elementary calculus it is shown that the exponential functions

yC (x) � Cekx; x 2 (�1;1) ;

for C a real constant, are solutions to the di¤erential equation (0.2) when restricted
to the interval (a; b). In fact they are the only solutions since if y (x) is an arbitrary
solution to (0.2), and if we de�ne C = y (0), then assuming C 6= 0 (what happens
if C = 0?) we have

d

dx

y (x)

yC (x)
=
yC (x) y

0 (x)� y (x) y0C (x)
yC (x)

2 =
Cekxky (x)� y (x)Ckekx

yC (x)
2 = 0:

This shows that y(x)
yC(x)

is constant, hence equals the constant y(0)
yC(0)

= 1, and we
conclude that y = yC .

Example 2. Newton�s Law of Cooling says that a body cools down or warms
up at a rate proportional to the di¤erence between the ambient temperature and the
temperature of the body. This means that if we de�ne T (t) to be the temperature
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of the body at time t, and if the ambient temperature is T , then there is a constant
of proportionality k so that

d

dt
(T � T (t)) = k (T � T (t)) ; t 2 (�1;1) :

The solutions are thus given by

T � T (t) = Cekt; t 2 (�1;1) ;

for a real constant C.
For instance, if a body is discovered in a snowbank at 6 am and the temperature has
held steady at �5�C overnight, the medical examiner can determine the approximate
time of death by taking two readings of the temperature T (t) of the body (where t
is hours since midnight), say at 6 : 15 am when T (6:25) = 13�C and again at
6 : 30 am when T (6:5) = 11�C. Then the two equations

�5� 13 = T � T (6:25) = Cek6:25;

�5� 11 = T � T (6:5) = Cek6:5;

determine the constant of proportionality k to satisfy

ek
1
4 =

Cek6:5

Cek6:25
=
�5� 11
�5� 13 =

8

9
;

and the real constant C to satisfy

25 � 32 = (�5� 13) (�5� 11) = C2ek12:75

Assuming the temperature of the body was 37�C at the time of death tod, we calculate
that

�5� 37 = T � T (tod) = Cektod = �
r
25 � 32
ek12:75

�
ek

1
4

�4tod
= �

s
25 � 32�
8
9

�4�(12:75) �89
�4tod

= � 12
p
2�

8
9

�25:5 �89
�4tod

;

and hence

tod =
ln

42( 89 )
25:5

12
p
2

4 ln 89
� 4:4516;

so the time of death was approximately 4 : 27 am.

0.3. Classi�cation of di¤erential equations. The function y = xex satis-
�es y0 = (1 + x) ex and so also the equations

y0 = e�x
y2

x
+
y

x
;

y00 = 2y0 � y;

y

�
ln

y0

1 + x

�
= y0 � y

x
:
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� The �rst equation is an example of a nonlinear di¤erential equation since
the right hand side of y0 = e�x y

2

x +
y
x is not a linear function of the

variable y; to be linear it would have to be of the form f (x) y+ g (x), but
there is y2 in the formula.

� The second equation is an example of a second order di¤erential equation
since a derivative of order two appears in it. More generally, the order of
an equation is de�ned to be the largest order of a derivative appearing in
it.

� The third equation involves a composition y � ln y0

1+x of the unknown func-
tion and a function of its derivative, and is therefore considered �out of
bounds�for us - such equations will not be considered at all in these notes.
The equation y ln y0

1+x = y0 � y
x is of course acceptable - it is a �rst order

nonlinear equation.

1. Explicit and implicit families of solutions on intervals

We start with a metaphor. The problem of �solving�for the solutions x to a
polynomial equation

P (x) � xn + an�1x
n�1 + :::+ a1x+ a0 = 0;

begins with solving the �pure�case xn+a0 = 0, in which we get x = n
p
�a0 by taking

nth roots. This is called solution by radicals, and motivated the classical attempt
to solve all polynomial equations by radicals, using clever tricks and substitutions.
For example, the general quadratic equation

x2 + a1x+ a0 = 0;

can be solved by the trick of completing the square

x2 + a1x+ a0 =
�
x+

a1
2

�2
�
�a1
2

�2
+ a0;
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and then taking square roots to get the quadratic formula,

x = �a1
2
�
r�a1

2

�2
� a0:

Cubic equations were solved in a similar spirit by del Ferro (1515) and quartic
equations by Ferrari (1545). It was Abel who �nally showed that this is impossible
for quintic equations, and Galois who gave an alternate proof using one of the most
beautiful arguments ever constructed in mathematics.

The problem of �solving�for the solutions y to a di¤erential equation

y(n) = f
�
x; y; y0; :::; y(n�1)

�
;

also begins with solving the �pure�case y(n) = f (x), in which we get y =
R
:::
R
f (x) dx,

the nth antiderivative of f . One now hopes to solve more general equations by an-
tidi¤erentiations, using clever tricks and substitutions. We will begin with some
special cases of the �rst order equation y0 = f (x; y).

Consider now the di¤erential equation dy
dx = y2 + 1, i.e.

(1.1) y0 (x) = y (x)
2
+ 1:

We can compute the solutions y (x) to (1.1) explicitly by antidi¤erentiation using
the following trick. Since d

dt tan
�1 (t) = 1

t2+1 , we have

1 =
y0 (x)

y (x)
2
+ 1

=
d

dx
tan�1 (y (x)) ;

and then integrating from 0 to x gives

x = tan�1 (y (x))� tan�1 (y (0)) ;(1.2)

y (x) = tan
�
x+ tan�1 (y (0))

�
; x � 0:

But the tangent function blows up at��
2 , and so we have blowup when x approaches

x1 = �
2 � tan

�1 (y (0)) for any of the in�nitely many values of tan�1 (y (0)) (which
di¤er from each other by an integer multiple of �).

1.1. Families of solutions. The constant y (0) in (1.2) can be taken to be
any real number. It is often labelled c and we say that the general solution of (1.1)
is given by

y (x) = tan
�
x+ tan�1 (c)

�
; c 2 R:

Here tan�1 (c) is a multi-valued function whose values are all the angles whose
tangent is c. By a general solution we mean a family of functions that are solutions,
and moreover includes all solutions. Since the constants tan�1 (c) cover all of the
real numbers for c 2 R, we can replace tan�1 (c) by C and write the general solution
as

yC (x) = tan (x+ C) ; C 2 R:

This general solution is called a one-parameter family fyc (x)gc2R of solutions. How-
ever, we must be careful about the domain of de�nition of solutions.
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1.2. Intervals of de�nition of a solution. The solutions yC (x) are not
de�ned at the singular points x1 = �

2 �tan
�1 (c) if C 2 tan�1 (c). Now tan�1 (0) =

fn�gn2Z and so when c = 0 the singular points are

x1 =
�

2
� tan�1 (0) = �

2
� n�; n 2 Z;

and the maximal intervals of de�nition of the solution y0 (x) = tan (x) are the open
intervals f(n�; (n+ 1)�)gn2Z, i.e.

:::; (��; 0) ; (0; �) ; (�; 2�) ; :::

Now we consider the somewhat more challenging di¤erential equation dy
dx =

� sin (x) y2 + y, i.e.

(1.3) y0 (x) = � sin (x) y (x)2 + y (x) :
If we make the substitution v = 1

y then the equation for the new unknown function
v (x) is

v0 (x) =
d

dx

1

y (x)
= � 1

y (x)
2 y

0 (x) = sin (x)� 1

y (x)
= sin (x)� v (x) ;

v0 + v = sinx:

This is now a linear equation and we can integrate the left hand side if we �rst
multiply by the integrating factor � (x) = ex:

d

dx
(exv (x)) = exv (x) + exv0 (x) = ex (v0 + v) (x) = ex sinx;

exv (x) =

Z
ex sinx =

1

2
ex sinx� 1

2
ex cosx+

1

2
C;

v (x) =
1

2

�
sinx� cosx+ Ce�x

�
:
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Thus a one parameter family of solutions to (1.3) is given by

(1.4) yC (x) =
1

v (x)
=

2

sinx� cosx+ Ce�x ; C 2 R:
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Here the solution yC (x) is de�ned only for x not equal to a root of the equation
sinx � cosx + Ce�x = 0. For x large enough, Ce�x is negligibly small, and these
roots are approximately the roots of the equation sinx� cosx = 0, i.e. tanx = 1,
i.e.

�
�
4 + n�

	
n2Z.

Remark 1 (Caveat). We may have divided by zero in de�ning our substitution
v = 1

y , and if so we may have lost a singular solution in the process. That is indeed
the case in our one parameter family of solutions to (1.3) above; the function y � 0
is a solution to (1.3), but is not included in the one parameter family (1.4). The
general solution of (1.3) is given by fyCgC2R [ f0g, where 0 here denotes the
function that is identically zero on the real line. The mystery of singular solutions
will be cleared up when we consider initial value problems in the next chapter.

1.3. Implicit solutions. Now we change the di¤erential equation (1.1) to
dy
dx =

1+ex

y2+ey , i.e.

(1.5) y0 (x) =
1 + ex

y (x)
2
+ ey(x)

:

Using
d

dt

�
1

3
y (t)

3
+ ey(t)

�
=
�
y (t)

2
+ ey(t)

�
y0 (t) = 1 + et;

we see that we must have the identity or relation,

1

3
y (x)

3
+ ey(x) � 1

3
y (0)

3 � ey(0) =
Z x

0

�
1 + et

�
dt = x+ ex � 1:
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But this time we cannot solve explicitly for the function y (x) as an elementary
function of x. Instead we say that the general solution of (1.5) is given implicitly
by the family of algebraic equations

1

3
y3 + ey =

�
1

3
c3 + ec � 1

�
+ x+ ex; c 2 R:

Since 13c
3+ec�1 covers all real numbers for c 2 R, we can write the general solution

implicitly as

1

3
y3 + ey = C + x+ ex; C 2 R:

Example 3. The folia of Descartes are the members of the one parameter
family of functions de�ned implicitly by

x3 + y3 = 3Cxy; C 2 R:

To �nd a di¤erential equation satis�ed by this family, solve for the parameter and
eliminate it by di¤erentiation,

0 =
d

dx
(3C) =

d

dx

x3 + y3

xy
=

d

dx

�
x2

y
+
y2

x

�
=

y2x� x2y0
y2

+
x2yy0 � y2

x2
=

�
2y

x
� x2

y2

�
y0 �

�
y2

x2
� 2x

y

�
;

to obtain

(1.6) y0 =

y2

x2 �
2x
y

2y
x �

x2

y2

=
x2y2

x2y2

y2

x2 �
2x
y

2y
x �

x2

y2

=
y
�
y3 � 2x3

�
x (2y3 � x3) :
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1.4. Solution techniques. Using the method in the example above, we see
that it is quite easy to �nd a di¤erential equation if we are given a family of
prospective solutions. But the reverse problem, that of �nding a family of solutions
if we are given a di¤erential equation, can be quite daunting. However, all of the
equations above were solved using elementary techniques of solution.

(1) Equations (0.2), (1.1) and (1.5) are examples of separable equations, i.e.
having the form

dy

dx
= y0 = a (x) b (y) ;

and were solved by the method of separation of variables:Z
dy

b (y)
=

Z
a (x) dx:

(2) Equation (1.3) is an example of a Bernoulli equation, i.e. having the form

y0 (x) = �p (x) y (x)n + q (x) y (x) ;
and can be reduced to a linear equation by the substitution v = y1�n:

v0 = (1� n) y�ny0 = (1� n) y�n f�pyn + qyg
= (n� 1)

�
p� qy1�n

	
= (n� 1) fp� qvg ;

v0 + (n� 1) qv = (n� 1) p:
(3) The general linear equation

v0 (x) + f (x) v = g (x) ;

can be integrated after multiplying by the integrating factor � (x) = e
R x f :

(� (x) v (x))
0
= �v0 + �0v = � fv0 + fvg = � (x) g (x) ;

v (x) =
�
e�

R x f� Z x �
e
R t f� g (t) dt:

(4) Equation (1.6) is an example of a homogenous equation, i.e. having the
form

dy

dx
= y0 = f

�y
x

�
;

and could have been solved by using the substitution v = y
x to reduce it

to a separable equation:

f (v) = f
�y
x

�
= y0 =

dy

dx
=

d

dx
(xv) = xv0 + v;(1.7)

so v0 =
f (v)� v

x
and

dv

f (v)� v =
dx

x
giveZ

dv

f (v)� v =
Z
dx

x
:

For the equation (1.6) we have

f (v) = v
v3 � 2
2v3 � 1 ;

and the solution is given implicitly by

ln jxj+ c =
Z
dx

x
=

Z
dv

f (v)� v =
Z

1� 2v3
v (1 + v3)

dv:
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Maple then gives
R

1�2v3
v(1+v3)dv = ln v � ln

�
v3 + 1

�
, and we can replace v

by y
x in (1.7) and exponentiate to get

�ecx =
y
x

y3

x3 + 1
=

x2y

y3 + x3
;

x3 + y3 = �e�cxy = 3Cxy;
if we replace �e�c with 3C (both expressions cover all real numbers).

Here are two second order di¤erential equations that are really �rst order equa-
tions disguised by a substitution:

y00 = f (x; y0) and y00 = f (y; y0) ;

where the �rst equation is missing y on the right, and the second equation is
missing x on the right. Both equations are reduced to �rst order by the substitution
v = y0 = dy

dx , but with di¤erent independent variables. Namely, the �rst equation
becomes

dv

dx
= y00 = f (x; y0) = f (x; v) ;

which is a �rst order equation for v as a function of x; while the second equation
becomes

dv

dy
=
dv

dx

dx

dy
= y00

1
dy
dx

= f (y; y0)
1

y0
=
f (y; v)

v
;

which is a �rst order equation for v as a function of y. For example, to solve

y00 = 4y (y0)
3
2 ;

we let v = y0 to obtain

dv

dy
=

4yv
3
2

v
= 4v

1
2 y;

v
1
2 =

Z
1

2
v�

1
2 dv =

Z
2ydy = C1 + y

2;

dy

dx
= v =

�
C1 + y

2
�2
;Z

dy

(C1 + y2)
2 =

Z
dx = x+ C2;

which gives x as an antiderivative of
�
C1 + y

2
��2

, and hence de�nes an implicit
solution. The antiderivative can of course be worked out with partial fractions.
The CAS in this editor gives that

R
dy

(A+y2)2
equals 1

2A(y2+A) times

y +
1

2
A2

 
ln

 
y +A2

r
� 1

A3

!!r
� 1

A3
� 1
2
A2

 
ln

 
y �A2

r
� 1

A3

!!r
� 1

A3

+
1

2
Ay2

 
ln

 
y +A2

r
� 1

A3

!!r
� 1

A3
� 1
2
Ay2

 
ln

 
y �A2

r
� 1

A3

!!r
� 1

A3
:

Next we investigate an important theoretical point, the existence and unique-
ness of initial value problems.



CHAPTER 2

Initial value problems

Suppose that f (x; y) is a function of two variables x and y that is de�ned for
(x; y) in a region R of the plane R2. We will suppose that R is open in the sense
that for any point P0 = (x0; y0) that lies in R, there is some small disk D (P0; r) of
positive radius r centered at P0 such that D (P0; r) � R. The problem of �nding a
solution y (x) to the di¤erential equation y0 = f (x; y) whose graph passes through
a given point P0 2 R, is called an initial value problem. Here is a precise de�nition
of what a solution to an initial value problem is.

Definition 1. Suppose R is an open region of the plane R2, that f : R ! R is
continuous, and that P0 = (x0; y0) 2 R. Then a function y : (x0 � �; x0 + �)! R,
where � is a positive number, is said to be a solution to the initial value problem�

y0 = f (x; y)
y (x0) = y0

;

if these three conditions are met:

(1) The graph

G �
�
(x; y) 2 R2 : x 2 (x0 � �; x0 + �) and y = f (x)

	
of the function y (x) is contained in R,

(2) The function y (x) is di¤erentiable and satis�es the identity

y0 (x) = f (x; y (x)) for all x 2 (x0 � �; x0 + �) ;

(3) The function y (x) takes the value y0 when x = x0, i.e. y (x0) = y0 or
equivalently, P0 2 G.

Example 4. Let f (x; y) = 3y
2
3 for (x; y) 2 R � R2 and let P0 = (0; 0). Then

f is continuous on R and P0 2 R. The associated initial value problem�
y0 = 3y

2
3

y (0) = 0

has the trivial solution y0 (x) � 0, but also the solution y1 (x) = x3. Thus we see
that in general, an initial value problem may have more than one solution.

Example 5. Let f (x; y) = y2+1 for (x; y) 2 R � R2 and let P0 = (0; 0). The
initial value problem �

y0 = y2 + 1
y (0) = 0

has the solution y (x) = tanx, but is de�ned on no larger an interval than
�
��
2 ;

�
2

�
.

Thus we see that in general, a solution to an initial value problem may not be de�ned
on as large an interval as we might expect.

13
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There are two important theorems regarding initial value problems. The �rst
gives conditions under which a solution exists, and the second gives more restrictive
conditions under which the solution is unique.

Theorem 1 (Existence theorem). Suppose R is an open region of the plane
R2, that f : R ! R is continuous, and that P0 = (x0; y0) 2 R. Then there exists
a (possibly very small) positive number � and a function y : (x0 � �; x0 + �) ! R
that is a solution to the initial value problem�

y0 = f (x; y)
y (x0) = y0

:

Theorem 2 (Uniqueness theorem). Suppose R is an open region of the plane
R2, that f : R ! R is continuous, and that P0 = (x0; y0) 2 R. Suppose in addition
that f (x; y) satis�es a Lipschitz condition in the y variable. This means that there
is a positive constant K such that

(0.8) jf (x; y1)� f (x; y2)j � K jy1 � y2j ; for all (x1; y1) ; (x2; y2) 2 R:

The previous theorem guarantees the existence of a solution to the initial value
problem �

y0 = f (x; y)
y (x0) = y0

;

and this solution is unique in the sense that any two solutions must agree on their
common interval of de�nition around x0.

In applications of the Uniqueness theorem, the Lipschitz hypothesis (0.8) can
often be veri�ed using boundedness of the partial derivative @f

@y on the region R.
Indeed if ����@f@y (x; y)

���� �M for all (x; y) 2 R;

then the mean value theorem gives

jf (x; y1)� f (x; y2)j =

����Z y1

y2

@f

@y
(x; t) dt

����
�

����Z y1

y2

����@f@y (x; t)
���� dt���� � ����Z y1

y2

Mdt

���� =M jy1 � y2j ;

so that (0.8) holds with K =M .
We can now explain the mystery of the singular solution 0 to the Bernoulli

equation (1.3).

Example 6. The Existence and Uniqueness theorems above apply to the initial
value problem

(0.9)
�

y0 = � sin (x) y (x)2 + y (x)
y (0) = y0

;

to show that there exists a unique solution (how does Lipschitz apply here?) for
every choice of value y0 for y (0). Now the one parameter family of solutions ob-
tained in (1.4) is

yC (x) =
2

sinx� cosx+ Ce�x ; C 2 R;
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and since y0 = yC (0) =
2

C�1 for C = 1 + 2
y0
, we see that y1+ 2

y0

(x) is the unique

solution to (0.9) when y0 6= 0. When y0 = 0 the unique solution is the constant
function 0, which we can interpret as the limit limC!1 yC (x).

­5 ­4 ­3 ­2 ­1 1 2 3 4 5
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The graph of y = y2 (x)

­5 ­4 ­3 ­2 ­1 1 2 3 4 5
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x

y

The graph of y = y3 (x)

­5 ­4 ­3 ­2 ­1 1 2 3 4 5

­3

­2

­1

1

2

3

x

y

The graph of y = y5 (x)

1. Direction �elds

The graphs of solutions y (x) to a di¤erential equation y0 = f (x; y) can be vi-
sualized, without actually solving the equation, by plotting the associated direction



16 2. INITIAL VALUE PROBLEMS

�eld

v (x; y) � (1; f (x; y))

k(1; f (x; y))k =

0@ 1q
1 + f (x; y)

2
;

f (x; y)q
1 + f (x; y)

2

1A :

Here the vector v (x; y) is a unit vector tangent to the graph of the solution y (x)
that passes through the point (x; y). This solution y (x) exists and is unique when
the hypotheses of the Existence and Uniqueness theorems hold, which is typically
the case. This plot provides qualitative information on solutions that is often useful
even when explicit solutions are available, since one can �see�the rough shape of
the solution y (x) to an initial value problem�

y0 = f (x; y)
y (x0) = y0

;

by starting at the point P0 = (x0; y0) in the plot of the direction �eld and �following
the arrows�. The direction �eld for the equation in (0.9) is given by

v (x; y) =

0@ 1q
1 + (� sin (x) y2 + y)2

;
� sin (x) y2 + yq

1 + (� sin (x) y2 + y)2

1A ;

and depicted here:

­5 ­4 ­3 ­2 ­1 1 2 3 4 5

­5

­4

­3

­2

­1

1

2

3

4

5

x

y

The direction �eld v (x; y) for f (x; y) = � (sinx) y2 + y
If you start at the point (0; 2) in the plot, and �follow the arrows�, you �see� the
graph of y = y2 (x) displayed above.

Here is the direction �eld0@ x
�
2y3 � x3

�q
(x (2y3 � x3))2 + (y (y3 � 2x3))2

;
y
�
y3 � 2x3

�q
(x (2y3 � x3))2 + (y (y3 � 2x3))2

1A
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for the equation

y0 =
y
�
y3 � 2x3

�
x (2y3 � x3)

whose solutions are the folia of Descartes.

­5 ­4 ­3 ­2 ­1 1 2 3 4 5
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­4

­3

­2

­1

1

2
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y

2. Picard iterations

We will prove the Existence and Uniqueness theorems assuming the Lipschitz
hypothesis (0.8). The proof of the Existence theorem is more di¢ cult without this
assumption. There are six basic steps to the existence proof, and the uniqueness is
an easy seventh step.

Step 1: We convert the initial value problem

(2.1)
�

y0 = f (x; y)
y (x0) = y0

:

into an equivalent integral equation:

(2.2) y (x) = y0 +

Z x

x0

f (s; y (s)) ds:

Indeed, if y solves the initial value problem (2.1) then part (2) of the fundamental
theorem of caluclus shows that

y (x)� y0 = y (x)� y (x0) = y (s) jxx0=
Z x

x0

y0 (s) ds =

Z x

x0

f (s; y (s)) ds;

which shows that y solves the integral equation (2.2). Conversely, if y solves the
integral equation (2.2), then

y (x0) = y0 +

Z x0

x0

f (s; y (s)) ds = y0 + 0;
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and part (1) of the fundamental theorem of calculus shows that

y0 (x) =
d

dx

�
y0 +

Z x

x0

f (s; y (s)) ds

�
= 0 + f (x; y (x)) :

Thus y solves the initial value problem (2.1).
The advantage of an integral equation over a di¤erential equation is twofold:

(1) to make sense of each side of the integral equation requires only that y
be a continuous function, while the di¤erential equation requires that its
solutions be di¤erentiable functions, a much more restrictive class.

(2) the operation of integration only improves functions, i.e. the antideriva-
tive of a continuous function is di¤erentiable, hence continuous; while the
operation of di¤erentiation can worsen functions, i.e. the derivative of a
di¤erentiable function may not be di¤erentiable.

Step 2: We consider Picard�s approximation operator T which takes a continu-
ous function ' (x) to another continuous (actually di¤erentiable!) function (T') (x)
de�ned by

T' (x) = y0 +

Z x

x0

f (s; ' (s)) ds:

If ' solves the integral equation (2.2) then ' = T', and so we can think of the
di¤erence

'� T'
as a function whose �size�that measures how far ' is from being a solution to (2.2).
This is why we call T an approximation operator, and in fact, this suggests the
hope that if we start with any given continuous function ', the function T' might
be �closer�to being a solution than ' is. Then T 2' � T (T'), which is T applied
to T', might be closer still, and T 3' yet closer.

Example 7. In the case of the initial value problem�
y0 = y
y (0) = 1

;

Picard�s approximation operator is

T' (x) = 1 +

Z x

0

' (s) ds;

and if we choose ' (x) � 1, we get

T' (x) = 1 +

Z x

0

1ds = 1 + x;

T 2' (x) = 1 +

Z x

0

(1 + s) ds = 1 + x+
x2

2
;

T 3' (x) = 1 +

Z x

0

�
1 + s+

s2

2

�
ds = 1 + x+

x2

2
+
x3

3!
;

...

Tn' (x) = 1 + x+
x2

2
+ :::+

xn

n!
; n � 1:
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Thus in this case, the Picard approximations Tn' (x) are the Taylor polynomials
for ex, and so converge to y = ex, which is indeed a solution to the given initial
value problem.

Recall that in order to de�ne

T' = y0 +

Z x

x0

f (s; ' (s)) ds;

we need that the integrand f (s; ' (s)) is de�ned, which in turn requires that
(s; ' (s)) stays in the region R, i.e. that graph ' � R. Similarly, in order to
de�ne the iteration

T 2' (x) = y0 +

Z x

x0

f (s; T' (s)) ds;

we need that the integrand f (s; T' (s)) is de�ned, which in turn requires that
(s; T' (s)) stays in the region R, i.e. that graph T' � R.

Step 3: Given positive numbers � > 0 and � > 0 denote by R�;� (x0; y0) the
rectangle

R�;� (x0; y0) � [x0 � �; x0 + �]� [y0 � �; y0 + �] :
We claim that there are � > 0 and � > 0 (possible quite small) with the two
properties

R�;� (x0; y0) � R;
and

graph T' � R�;� (x0; y0) whenever graph ' � R�;� (x0; y0) :

Indeed, if
jf (x; y)j �M for all (x; y) 2 R;

then we have

jy0 � T' (x)j =

����Z x

x0

f (s; ' (s)) ds

���� � ����Z x

x0

jf (s; ' (s))j ds
����

� M jx� x0j � �

for (x; y) 2 R�;� (x0; y0). So if we choose � small enough to ensure that M� � �,
we will have (x; T' (x)) 2 R�;� (x0; y0).

Step 4: Let I denote the interval [x0 � �; x0 + �]. Consider the vector space
of functions

C (I) � f' : I ! R : ' is continuousg :
De�ne a distance function d ('; ) that measures the �distance�between two con-
tinuous functions '; 2 C (I) by

d ('; ) = max
x2I

j' (x)�  (x)j :

In particular we have

(2.3) j' (x)�  (x)j � d ('; ) for every x 2 I:
From Step 3 we conclude that T takes functions ' in C (I) to functions that are
again in C (I), i.e.

T : C (I)! C (I) :
Such a map T is called a linear operator on the vector space of functions C (I). We
think of it as taking a given continuous function ' to a new function T', that is
hopefully closer to being a solution to the integral equation (2.2). To get this to
actually work we will need to use the Lipschtiz condition (0.8).
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Step 5: Start with any �xed ' 2 C (I). By Step 4 we can construct the in�nite
sequence of Picard approximations fTn'g1n=0 in C (I), where we set T 0' = ' for
convenience. Now we estimate the distance between successive approximations Tn'
and Tn+1'. Since

Tn' (x)� Tn+1' (x) = T
�
Tn�1'

�
(x)� T (Tn') (x)

=

�
y0 +

Z x

x0

f
�
s; Tn�1' (s)

�
ds

�
�
�
y0 +

Z x

x0

f (s; Tn' (s)) ds

�
=

Z x

x0

�
f
�
s; Tn�1' (s)

�
� f (s; Tn' (s))

�
ds;

we have for each n � 1,
d
�
Tn'; Tn+1'

�
= max

x2I

��Tn' (x)� Tn+1' (x)��
= max

x2I

����Z x

x0

�
f
�
s; Tn�1' (s)

�
� f (s; Tn' (s))

�
ds

����
� max

x2I

����Z x

x0

K
��Tn�1' (s)� Tn' (s)�� ds����

� �Kmax
s2I

��Tn�1' (s)� Tn' (s)��
= �Kd

�
Tn�1'; Tn'

�
:

By induction we obtain

d
�
Tn'; Tn+1'

�
� (�K)n d ('; T') ; n � 0:

Thus by (2.3) we have��Tn' (x)� Tn+1' (x)�� � d
�
Tn'; Tn+1'

�
� (�K)n d ('; T') ; x 2 I:

The in�nite series of nonnegative terms,
1X
n=0

��Tn' (x)� Tn+1' (x)�� ;
will converge provided

P1
n=0 (�K)

n
<1, i.e. provided �K < 1. So let us choose �

small enough that �K � 1
2 . Then, since absolute convergence implies convergence,

we see that the series
1X
n=0

�
Tn' (x)� Tn+1' (x)

�
must converge to a real number, that we will call  (x). But then

 (x) = lim
N!1

NX
n=0

�
Tn' (x)� Tn+1' (x)

�
= lim

N!1

�
[' (x)� T' (x)] + :::+

�
TN' (x)� TN+1' (x)

�	
= lim

N!1

�
' (x)� TN+1' (x)

	
shows that

lim
N!1

TN+1' (x) =  (x)� ' (x) ; x 2 I:
Step 6: We claim that the limit function

y (x) =  (x)� ' (x) ; x 2 I;
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from Step 5 solves the integral equation (2.2), or what is the same thing, that
Ty (x) = y (x) for x 2 I (one says that y is a �xed point of T in this case). Indeed,
for x 2 I,

y (x) = lim
N!1

TN+1' (x) = lim
N!1

T
�
TN'

�
(x)

= lim
N!1

�
y0 +

Z x

x0

f
�
s; TN' (s)

�
ds

�
= y0 +

Z x

x0

n
lim
N!1

f
�
s; TN' (s)

�o
ds

= y0 +

Z x

x0

f
�
s; lim
N!1

TN' (s)
�
ds

= y0 +

Z x

x0

f (s; y (s)) ds;

where the limit has been taken inside both the integral and the function f . It is a
standard theorem in real analysis that limits can be taken inside integrals when the
convergence is uniform (which we have here from our de�nition of distance in C (I)),
and of course the limit can be taken inside continuous functions by the de�nition
of continuity.

Step 7: Now we show uniqueness. Suppose that both y1 (x) and y2 (x) are
solutions to the initial value problem (2.1). By Step 1 they both solve the integral
equation (2.2) and so the di¤erence y (x) = y1 (x)� y2 (x) satis�es

y (x) = y1 (x)� y2 (x)

=

�
y0 +

Z x

x0

f (s; y1 (s)) ds

�
�
�
y0 +

Z x

x0

f (s; y2 (s)) ds

�
=

Z x

x0

ff (s; y1 (s))� f (s; y2 (s))g ds:

From the Lipschitz condition (0.8) we obtain

(2.4) jy (x)j �
Z x

x0

K jy1 (s)� y2 (s)j ds = K

Z x

x0

jy (s)j ds;

and hence (assuming y (x) is de�ned for x0 � x � x0 +
1
2K )

sup
x0�x�x0+ 1

2K

jy (x)j � K
1

2K
sup

x0�s�x0+ 1
2K

jy (s)j = 1

2
sup

x0�x�x0+ 1
2K

jy (x)j :

But this implies that y1 (x) � y2 (x) = y (x) = 0 for x0 � x � x0 +
1
2K . Similarly,

y1 (x) � y2 (x) = 0 for x0 � 1
2K � x � x0.Thus y1 (x) and y2 (x) coincide on the

interval
�
x0 � 1

2K ; x0 +
1
2K

�
, and we can now repeat this argument with the initial

point x0 replaced by the endpoints x0 � 1
2K and x0 + 1

2K , and then repeat as often
as necessary.

Alternatively, if y (x1) 6= 0 at some point x1, then in a neighbourhood N of x1
we have from (2.4), ���� ddx ln jy (x)j

���� = ����y0 (x)y (x)

���� � K;
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which shows that ln jy (x)j is bounded in the neighbourhoodN . But this contradicts
the fact that eventually, a large enough neighbourhood of x1 will have to encounter
a point x where y (x) = 0, this because y (x0) = 0.

Problem 1. Solve the intial value problem�
y0 = 2x (1 + y)
y (0) = 0

using Picard approximations 'n (x) � Tn'0 (x) beginning with '0 (x) � 0.

Solution 1. We have

T' (x) =

Z x

0

2s (1 + ' (s)) ds;

and so

'1 (x) = T'0 (x) =

Z x

0

2s (1 + 0) ds = x2;

'2 (x) = T'1 (x) =

Z x

0

2s
�
1 +

�
s2
��
ds = x2 +

2

4
x4;

'3 (x) = T'2 (x) =

Z x

0

2s

�
1 +

�
s2 +

2

4
s4
��

ds = x2 +
2

4
x4 +

2 � 2
4 � 6x

6;

'4 (x) = T'3 (x) =

Z x

0

2s

�
1 +

�
s2 +

2

4
s4 +

2 � 2
4 � 6s

6

��
ds

= x2 +
2

4
x4 +

2 � 2
4 � 6x

6 +
2 � 2 � 2
4 � 6 � 8x

8:

By induction on n we obtain

'n (x) = x2 +
2

4
x4 +

2 � 2
4 � 6x

6 + :::+
2n�1

4 � 6 � (2n)x
2n

= x2 +
1

2
x4 +

1

2 � 3x
6 + :::+

1

n!
x2n; n � 1:

(Prove the inductive step!) Thus we have

lim
n!1

Tn'0 (x) = lim
n!1

'n (x) =

nX
k=1

1

k!
x2k = ex

2

� 1;

and so the unique solution to the initial value problem is y (x) = ex
2 � 1.



CHAPTER 3

Solution methods for �rst order equations

We can write a �rst order equation

dy

dx
= y0 = f (x; y)

in di¤erential form
f (x; y) dx� dy = 0:

Of course we can then always multiply by any function of two variables � (x; y) and
get another equation with the same solutions (and maybe more):

� (x; y) f (x; y) dx� � (x; y) dy = 0:

In this chapter we begin by considering the general �rst order equation in di¤erential
form

(0.5) M (x; y) dx+N (x; y) dy = 0:

1. Exact equations

Consider the di¤erential equation�
2x+ y2

�
dx+ 2xydy = 0;

which is neither linear, separable, homogeneous nor Bernoulli. However, a clever
observation is that the function � (x; y) = x2 + xy2 has the properties

@

@x
� (x; y) = 2x+ y2 and

@

@y
� (x; y) = 2xy;

which means that our equation can be written as

0 =
�
2x+ y2

�
dx+ 2xydy =

@

@x
� (x; y) +

@

@y
� (x; y)

dy

dx

=
d

dx
� (x; y (x)) =

d

dx

�
x2 + xy2

�
by the chain rule if we view y = y (x) as a function of x. Thus we have the family
of solutions

x2 + xy2 = C or y =

r
C

x
� x:

Note that what made this method work here was the existence of a function � (x; y)
with partial derivatives M and N , i.e. @@x� = M and @

@y� = N . Such a function

can only exist provided @
@yM = @

@y

�
@
@x�

�
= @

@x

�
@
@y�

�
= @

@xN by the equality of

mixed second order partial derivatives of �.

23
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The above example suggests that we start with a discussion of exact equations,
which have a very special di¤erential form in which the coe¢ cient functionsM and
N have their partial derivatives My and Nx equal :

(1.1)
@

@y
M (x; y) =My (x; y) = Nx (x; y) =

@

@x
N (x; y) :

When this condition holds, we say the equation (0.5) is exact. It turns out that in
this case there is a function � (x; y) of two variables whose gradient r� = (�x;�y)
equals the vector (M;N):

@

@x
� (x; y) = �x (x; y) =M (x; y) ;(1.2)

@

@y
� (x; y) = �y (x; y) = N (x; y) :

Note the following calculation, that shows (1.1) and (1.2) are consistent with the
equality of mixed second order partial derivatives. Indeed, if � (x; y) satis�es the
gradient equation (1.2), and if � is twice continuously di¤erentiable, then the equal-
ity of mixed second order derivatives

@

@y

@

@x
� (x; y) =

@

@x

@

@y
� (x; y) ;

shows that
@

@y
M (x; y) =

@

@y

�
@

@x
� (x; y)

�
=

@

@x

�
@

@y
� (x; y)

�
=

@

@x
N (x; y) ;

which is (1.1). Before proving the existence of such a function � (x; y) for an exact
equation, we look at two examples.

Example 8. We consider the equation�
(cosx) ln

�
1 + x2

�
+ (sinx+ ey)

2x

1 + x2

�
dx+ ey ln

�
1 + x2

�
dy = 0;

in which

M = (cosx) ln
�
1 + x2

�
+ (sinx+ ey)

2x

1 + x2
;

N = ey ln
�
1 + x2

�
:

Let us now check the exactness condition (1.1) for this pair M and N . We compute

My = ey
2x

1 + x2
and Nx = ey

2x

1 + x2
;

so they are indeed equal, and (1.1) holds. If we accept the theorem that says there
exists a function � (x; y) satisfying (1.2), then we have the two gradient equations:

@

@x
� (x; y) = M = (cosx) ln

�
1 + x2

�
+ (sinx+ ey)

2x

1 + x2
;

@

@y
� (x; y) = N = ey ln

�
1 + x2

�
:

The second gradient equation looks easier to solve so we start by integrating it with
respect to the variable y. We then have

� (x; y) =

Z
ey ln

�
1 + x2

�
dy = ey ln

�
1 + x2

�
+ C;
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but we must be careful here! The constant of integration could be a di¤erent constant
for each choice of x, in other words, C is really a function of x, which we will call
g (x):

� (x; y) = ey ln
�
1 + x2

�
+ g (x) :

To �gure out what this function g is we substitute this answer back into the �rst
gradient equation to get

(cosx) ln
�
1 + x2

�
+ (sinx+ ey)

2x

1 + x2

=
@

@x

�
ey ln

�
1 + x2

�
+ g (x)

	
= ey

2x

1 + x2
+ g0 (x) ;

which when solved for g0 (x) gives

g0 (x) = (cosx) ln
�
1 + x2

�
+ (sinx)

2x

1 + x2
:

Note how conveniently the variable y dropped out of the right hand side of this
equation - otherwise we could not continue to solve it! This is the magic performed
by the exactness condition (1.1). Finally we integrate in x to get

g (x) =

Z �
(cosx) ln

�
1 + x2

�
+ (sinx)

2x

1 + x2

�
dx = (sinx) ln

�
1 + x2

�
+ C;

where this time C is indeed a constant. Thus we have obtained the implicit solution

0 = � (x; y) = ey ln
�
1 + x2

�
+ g (x) = (sinx+ ey) ln

�
1 + x2

�
+ C:

Example 9. Consider the equation y0 = y
x which we can write as �ydx+xdy =

0. This latter equation is not however in exact form since My = �1 while Nx = 1.
However if we multiply through by 1

x2+y2 we get an equation

�y
x2 + y2

dx+
x

x2 + y2
dy = 0;

with

M =
�y

x2 + y2
and N =

x

x2 + y2
;

that is indeed exact since

@

@y
M =

@

@y

�
�y

x2 + y2

�
=
�
�
x2 + y2

�
+ y2y

(x2 + y2)
2 =

y2 � x2

(x2 + y2)
2 ;

@

@x
N =

@

@x

�
x

x2 + y2

�
=

�
x2 + y2

�
� x2x

(x2 + y2)
2 =

y2 � x2

(x2 + y2)
2 :

Then integrating the second gradient equation in y we get

� (x; y) =

Z
Ndy =

Z
x

x2 + y2
dy = tan�1

y

x
+ g (x) ;

and then substituting this in the �rst gradient equation we get

�y
x2 + y2

=M =
@

@x
� (x; y) =

@

@x

n
tan�1

y

x
+ g (x)

o
=

�y
x2 + y2

+ g0 (x) ;
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which gives g0 (x) = 0 and g (x) = C. Thus the implicit solution is

0 = tan�1
y

x
� C;

i.e. the rays � = C emanating from the origin, and is given expicitly by

y = (tanC)x and x = 0.

Notice however that the function � (x; y) = tan�1 yx = � is not de�ned in the open
region R � R2+ n f0g where the coe¢ cient functions M and N are de�ned and
in�nitely di¤erentiable. The problem with the global de�nition of the function �
in R lies in the fact that the coe¢ cient functions M and N have a singularity
at a point, namely the origin 0, that is surrounded by the region R. Of course,
this problem with the global de�nition of � does not stop us from solving � = C
implicitly for solutions y (x) to the di¤erential equation. But we must be careful in
stating our theorem regarding the existence of such functions �.

We say that an open region is simply connected if there are no �holes�in the
region. For example, any disk is simply connected, while the plane minus the origin
is not simply connected.

Theorem 3. Suppose that R is an open simply connected region in the plane,
and that M (x; y) and N (x; y) are continuously di¤erentiable functions in R. Then
there is a twice continuously di¤erentiable function � (x; y) satisfying

(1.3)
�
@

@x
� (x; y) ;

@

@y
� (x; y)

�
= r� (x; y) = (M (x; y) ; N (x; y))

if and only if

(1.4) My (x; y) = Nx (x; y) :

Proof. If (1.3) holds, then the continuity of mixed second order partial deriv-
atives gives @

@yM = @
@y

@
@x� =

@
@x

@
@y� =

@
@xN , which is (1.4).

Conversely, if (1.4) holds, �x a point (x0; y0) 2 R and de�ne a function
� (x1; y1) as follows:

� (x1; y1) =

Z (x1;y1)

(x0;y0)

M (s; t) ds+N (s; t) dt

where the integral
R (x1;y1)
(x0;y0)

stands for any path integral
R


, with 
 a di¤erentiable

path in R that joins (x0; y0) to (x1; y1).
The key point here is that the exact condition (1.4) implies that this de�nition

is independent of the de�ning path we choose to joint (x0; y0) to (x1; y1)! Indeed, if

 and � are two such de�ning paths, and if we assume that the closed path 
 � �
surrounds a subregion D of R, then by Green�s theorem applied to the closed path

 � �, we haveZ




fM (s; t) ds+N (s; t) dtg �
Z
�

fM (s; t) ds+N (s; t) dtg

=

Z

��

fM (s; t) ds+N (s; t) dtg =
Z
@D
fM (s; t) ds+N (s; t) dtg

=

Z Z
D

�
� @

@t
M (s; t) +

@

@s
N (s; t)

�
dsdt =

Z Z
D
0dsdt = 0:
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Now it is easy to verify that (1.3) holds. For example, if we choose de�ning
paths 
 that end in a horizontal segment near the point the (x1; y1) then

@

@x
� (x1; y1) = lim

y!y1

� (x1; y)� � (x1; y1)
y � y1

= lim
y!y1

R (x1;y)
(x1;y1)

fM (s; t) ds+N (s; t) dtg
y � y1

= lim
y!y1

R (x1;y)
(x1;y1)

M (s; t) ds

y � y1
=M (x1; y1) ;

since dt vanishes along a horizontal segment, and the average of the continuous
function M (x1; �) on the interval (y1; y) tends to M (x1; y1) as y ! y1. �

2. Integrating factors

Given a �rst order equation

Mdx+Ndy = 0;

we say that � = � (x; y) is an integrating factor for this equation if the equation

�Mdx+ �Ndy = � � 0 = 0
is exact, i.e.

(�M)y = (�N)x :

But the product rule gives

(�M)y = �yM + �My and (�N)x = �xN + �Nx;

so that we need

�yM + �My = �xN + �Nx;

i.e. My �Nx = �
�y
�
M +

�x
�
N:

In general this partial di¤erential equation is at least as hard to solve for � as a
function of x and y, than our original equation is to solve for y as a function of x.
But there are cases in which � can be easily obtained. Here are two such cases:

Case 1. My�Nx

M =  (y) is a function of y alone. Then we can solve ��y
� =

 (y) =
My�Nx

M to obtain an integrating factor � (y) that is also a function of y
alone.

Case 2. My�Nx

N = ' (x) is a function of x alone. Then we can solve �x
� =

' (x) =
My�Nx

N to obtain an integrating factor � (x) that is also a function of x
alone.

Example 10. We solve the equation

y (3x+ y) + x (x+ y) y0 = 0:

by �nding an integrating factor. Now

M = y (3x+ y) = 3xy + y2;

N = x (x+ y) = x2 + xy;

My �Nx = (3x+ 2y)� (2x+ y) = x+ y;
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and we note that
My �Nx

N
=

x+ y

x (x+ y)
=
1

x

just happens to be a function of x alone, so that we can apply Case 2 above. First,
we solve for the integrating factor � (x),

�x
�

=
My �Nx

N
= ' (x) =

1

x
;

ln j�j = ln jxj ;
� (x) = x;

and then multiply the equation through by � (x) = 1
x to get�

3x2y + xy2
�
+
�
x3 + x2y

�
y0 = 0;

which is now an exact equation. To solve this exact equation we compute

� =

Z
Mdx =

Z �
3x2y + xy2

�
dx = x3y +

1

2
x2y2 + f (y) ;

x3 + x2y = N = �y = x3 + x2y + f 0 (y) ;

which gives f 0 (y) = 0, hence f (y) = C. Thus a family of implicit solutions is given
by

x3y +
1

2
x2y2 + C = 0:

3. Modelling with separable, linear, homogeneous and Bernoulli
equations

We consider a variety of �real life�problems that can be modelled by �rst order
di¤erential equations, and solved using the methods we have developed so far.

Problem 2. A cannonball of mass m is shot upward, and perpendicular to the
earth�s surface, with an initial velocity v0. Assume that the force F of gravity is
directed down toward the center of the earth, and has magnitude inversely propor-
tional to the square of the distance from the center of the earth. Moreover, assume
that
(1) at the surface of the earth F is given by �mg where g = 9:8 m= sec2 is the
acceleration due to gravity at sea level, and
(2) the radius of the earth is R = 6; 371 km.
Assuming there are no friction or other forces acting on the cannonball, �nd the
escape velocity vescape, the smallest initial velocity v0 for which the cannonball will
not return to earth.

Solution 2. From (1) we have

F =
�k

(R+ h)
2 ;

where h is the height of the cannonball above the earth�s surface, and k is the
constant of proportionality. From (2) we see that

�mg = �k
(R+ 0)

2 ; i:e: k = mgR2;
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and so we have Newton�s law

F =
�mgR2

(R+ h)
2 :

Since there are no other forces acting on the cannonball, Newton�s second law of
motion F = ma then gives

�mgR2

(R+ h)
2 = F = ma = m

d2h

dt2
;

which is a second order di¤erential equation for h = h (t) in terms of time t.

In order to transform this into a �rst order di¤erential equation we rewrite every-
thing in terms of the velocity

v (t) � d

dt
h (t) ;

but viewed as a function of height h = h (t). Thus we view v as a function of
h and eliminate the time variable t in the process. To accomplish this we use

d

dt
v (t) =

d2

dt2
h (t) =

�gR2

(R+ h (t))
2 ;

together with the chain rule dv
dh =

dv
dt

dt
dh and 1 =

dh
dt

dt
dh to obtain:

dv

dh
=
dv

dt

dt

dh
=
1
dh
dt

dv

dt
=
1

v

dv

dt
=
1

v

�gR2

(R+ h)
2 :

This equation,
dv

dh
=
1

v

�gR2

(R+ h)
2 ;

is separable and has solution

v2

2
=

Z
vdv = �gR2

Z
dh

(R+ h)
2 = gR2

1

R+ h
+ C;

v = �
r
g
2R2

R+ h
+ 2C:

At time t = 0 we have h = 0 and v = v0 > 0 so that

v0 =
p
2gR+ 2C;

which gives
2C = v20 � 2gR;

and thus

v =

r
g
2R2

R+ h
+ v20 � 2gR

=

s
v20 � 2gR

�
1� R

R+ h

�
:

The cannonball will return to earth if and only if v vanishes at some height h > 0
(since then it will reverse direction and start falling back to earth), i.e. if

v20 = 2gR

�
1� R

R+ h

�
for some h > 0;
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which means v20 < 2gR. Thus with initial velocity v0 �
p
2gR, the cannonball will

never return, so vescape =
p
2gR. Using the values given above for g and R we

obtain

vescape =

r
2 (9:8)

m

sec2
(6; 371; 000)m

� 11; 175
m

sec
= 40; 230 km=hr:

Problem 3. Suppose your nephew has deposited B0 dollars in a special bank
account that pays interest at an annual constant rate r that is compounded every
second. Suppose moreover that your nephew actively withdraws and deposits money
every second at a constant rate k. Approximately how much money B (t) is in
his account after t years? If the initial deposit is $1; 000 at 5% interest, and he
withdraws on average $50 a year, how much is in the bank account after a long
time?

Solution 3. There are about

n = 365
1

4
� 24 � 60 � 60 = 31557600

seconds in an average year. If interest is compounded every second, i.e. n times
a year, then the value of the bank deposit is increased by a factor of 1 + r

n each
second, and so after t years, the value would be

B (t) = B0

�
1 +

r

n

�nt
= B0

�
1 +

1
n
r

�n
r rt

= B0

��
1 +

1

m

�m�rt
where m = n

r o 1 is much larger than 1. It is thus reasonable to approximate the
factor

�
1 + 1

m

�m
by

lim
m!1

�
1 +

1

m

�m
= e;

and we obtain the approximation

B (t) � B0e
rt:

Since the function B0ert solves the initial value problem�
d
dtB = rB
B (0) = B0

;

we are justi�ed in making the approximating assumption that interest is compounded
continuously, i.e.

d

dt
B (t) = rB (t) ; for all t > 0:

If we also approximate the active withdrawals and deposits by a constant rate of
change k over time, we obtain the following di¤erential equation for the value B (t)
of the bank account after t years:

d

dt
B (t) = rB (t) + k:
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This is a linear equation with integrating factor � (t) = e�rt, so that

d

dt
f� (t)B (t)g = �re�rtB (t) + e�rt (rB (t) + k) = ke�rt;

e�rtB (t) =

Z
ke�rtdt = �k

r
e�rt + C:

The initial condition B (0) = B0 gives C = B0 +
k
r and we obtain the solution

B (t) = Cert � k

r
= B0e

rt +
k

r

�
ert � 1

�
:

In the special case B0 = 1000, r = 1
20 and k = �50 we get

B (t) = 1000e
t
20 � 1000

�
e

t
20 � 1

�
= 1000;

so that the value stays steady at $1; 000 over time.

Problem 4. A population of S (t) squirrels increases over time t from an initial
value S0, at a rate b (t)S (t) proportional to the number of squirrels S (t) at time t,
and simultaneously decreases at a rate d (t) S(t)(S(t)�1)2 proportional to the number

of pairs of squirrels
�
S (t)
2

�
at time t. Both the birth and death proportionality

functions b (t) and d (t) are assumed to be positive and to vary periodically over
time t, e.g. due to seasonal e¤ects. Solve the resulting initial value problem�

d
dtS =

�
b+ d

2

�
S � d

2S
2

S (0) = S0
:

Solution 4. The equation is a Bernoulli equation so we make the substitution
v = S1�2 = S�1 to get the linear equation

d

dt
v = �S�2 d

dt
S = �S�2

��
b+

d

2

�
S � d

2
S2
�
= �

�
b+

d

2

�
v +

d

2
:

An integrating factor is � (t) = e
R t
0 (b(x)+

d(x)
2 )dx, and so

d

dt
f�vg =

�
b+

d

2

�
�v + �

�
�
�
b+

d

2

�
v +

d

2

�
= �

d

2
;

e
R t
0 (b(x)+

d(x)
2 )dxv (t) =

Z t

0

� (s)
d (s)

2
ds;

1

S (t)
= v (t) = e�

R t
0 (b(x)+

d(x)
2 )dx

�Z t

0

� (s)
d (s)

2
ds+ C

�
:

The initial condition S (0) = S0 gives 1
S0
= C and so

S (t) =
1

e�
R t
0 (b(x)+

d(x)
2 )dx

nR t
0
e
R s
0 (b(x)+

d(x)
2 )dx� (s) d(s)2 ds+ C

o
=

1R t
0
e
R s
t (b(x)+

d(x)
2 )dx d(s)

2 ds+ 1
S0
e�

R t
0 (b(x)+

d(x)
2 )dx

=
S0

S0
R t
0
e
R s
t (b(x)+

d(x)
2 )dx d(s)

2 ds+ e�
R t
0 (b(x)+

d(x)
2 )dx

:
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4. Euler�s numerical tangent line method

Consider the intial value problem�
y0 = y
y (0) = 1

;

whose unique solution we know is y = ex. Suppose that we do not actually know
the solution explicitly, and that we wish to compute the numerical value of the
solution at x = 1, i.e. we want to compute y (1). Or even if we know the answer is
y (1) = e, we wish to numerically approximate the value y (1). Of course we could
use the most crude estimate available, y (1) � y (0) = 1. However, an inspection of
the direction �eld for this equation

­1.0 ­0.5 0.5 1.0
­1

1

2

3

x

y

reveals that we can do better by instead approximating y (1) by the value 2 of the
tangent line function x+ 1 at x = 1, as pictured below:

­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8 1.0

­1

1

2

3

x

y

Euler�s method with one step

Notice that the divergence between the solution ex and its tangent line function
x+ 1 increases the further away from the initial point x = 0 we go. This suggests
that instead, we only go half as far to x = 0:5, approximate by the tangent line
function x+ 1 to get y (0:5) � 1 + 0:5 = 1:5, and then start over with a new initial
value problem using this approximate value 1:5 as intial condition at the point
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x = 0:5:

�
y0 = y

y (0:5) = 1:5
:

Of course we again know the actual solution to this problem explicitly, namely
y = 3

2e
x� 1

2 , but we do not need this in order to continue! We can just use its tangent
line function 3

2x+
3
4 to approximate y (1) as in the picture below. Again, a glance

at the direction �eld indicates that this should indeed give a better approximation
than before.

­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8 1.0

­1

1

2

3

x

y

Euler�s method with two steps

The graphs of ex and 3
2e
x� 1

2 are the green and blue curves respectively, while their
tangent line graphs x+1 and 3

2x+
3
4 are the sienna and red lines respectively. The

value of the red tangent line at x = 1 is 3
2 � 1 +

3
4 =

9
4 = 2:25, which is a better

approximation to e = 2:718 than the result of our �rst attempt, which gave 2.
We can of course get an even better approximation by applying this procedure

four times with step size 1
4 as pictured below. Here the successive tangent line

functions are x + 1, 54x +
15
16 ,

25
16x +

25
32 and

125
64 x +

125
256 (pictured in sienna, red,

purple and black), and the �nal approximation is 12564 � 1+
125
256 =

625
256 = 2:44, better

yet than before.
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­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8 1.0

­1

1

2

3

x

y

Euler�s method with four steps

Note how our approximations 2, 2:25 and 2:44, obtained from Euler�s method
with �rst one, then two and �nally four steps, become successively closer to e =
2:718. But they don�t appear to converge very rapidly! In fact we can dramatically
improve the rate of convergence by using a modi�cation of these steps due to Runge
and Kutta, and this will be addressed in a later chapter.

4.1. The general setup. Here is the general setup for applying Euler�s nu-
merical method to approximate solutions to the initial value problem�

y0 = f (x; y)
y (x0) = y0

:

Pick a (small) positive number h, called the step size, and de�ne points (xn; yn)
successively in the plane by

x1 = x0 + h and y1 = y0 + f (x0; y0)h;

x2 = x1 + h and y2 = y1 + f (x1; y1)h;

x3 = x2 + h and y3 = y2 + f (x2; y2)h;

...

xn+1 = xn + h and yn+1 = yn + f (xn; yn)h;

...

as long as f (xn; yn) is de�ned. Note that we can rewrite the general inductive step
as

yn+1 = yn + f (xn; yn)h ;

where xn = x0 + nh.
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Example 11. We use Euler�s method with step size h = 0:1 to approximate
the solution to the initial value problem

�
y0 = x

p
y

y (1) = 4
;

at the points x = 1:1; 1:2; 1:3; 1:4 and 1:5. We are given the data f (x; y) = x
p
y

and (x0; y0) = (1; 4). Then the general formulas are

xn = x0 + n (0:1) ;

yn+1 = yn + (xn) (
p
yn) (h) ;

and so we compute

x1 = 1 + 0:1 = 1:1;

y1 = 4 + (1)
�p
4
�
(0:1) = 4:2;

then

x2 = 1 + 2 (0:1) = 1:2;

y2 = 4:2 + (1:1) �
p
4:2 (0:1) = 4:42543;

then

x3 = 1 + 3 (0:1) = 1:3;

y3 = 4:42543 + (1:1) �
p
4:42543 (0:1) = 4:45210;

which leads to the following table:

2666666664

n xn yn y (xn)
0 1 4 4
1 1:1 4:2 4:21276
2 1:2 4:42543 4:45210
3 1:3 4:67787 4:71976
4 1:4 4:95904 5:01760
5 1:5 5:27081 5:34766

3777777775
;

where we have included the values y (xn) of the exact solution y (x) =
�
x2+7
4

�2
,

which is obtained from

2
p
y =

Z
dy
p
y
=

Z
xdx =

x2

2
+ C and 2

p
4 =

12

2
+ C:
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1.0 1.1 1.2 1.3 1.4 1.5
4.0

4.5

5.0

5.5

x

y

The graph of y =
�
x2+7
4

�2
.

It is more common to approximate the value of the solution to an initial value
problem �

y0 = f (x; y)
y (x0) = y0

;

at a �xed point x, and to use a �xed number n of steps in the Euler method to get
to x, i.e. to use step size

h =
x� x0
n

:

Then xn = x0 + nh = x and so we use yn as our approximation to y (xn) = y (x).

Example 12. Consider again the initial value problem�
y0 = x

p
y

y (1) = 4
;

and this time approximate the solution at x = 1:5 using n = 10 steps. Then
h = 1:5�1

10 = 0:05 and we get

yn+1 = yn + (1 + (0:05)n)
p
yn (0:05) :

We will now compute the values yn iteratively but rounding these values o¤ to only
four decimal places. This leads to the sequence

y0 = 4

y1 = 4 + (1)
p
4 (0:05) = 4:1

y2 = 4:1 + (1:05)
p
4:1 (0:05) = 4:2063

y3 = 4:2063 + (1:1)
p
4:2063 (0:05) = 4:3191

y4 = 4:3191 + (1:15)
p
4:3191 (0:05) = 4:4386

y5 = 4:4386 + (1:2)
p
4:4386 (0:05) = 4:565

y6 = 4:565 + (1:25)
p
4:5654 (0:05) = 4:6985

y7 = 4:6985 + (1:3)
p
4:6985 (0:05) = 4:8394

y8 = 4:8394 + (1:35)
p
4:8394 (0:05) = 4:9879

y9 = 4:9879 + (1:4)
p
4:9879 (0:05) = 5:1442

y10 = 5:1442 + (1:45)
p
5:1442 (0:05) = 5:3086:
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Note how using ten steps has resulted in an estimate y10 = 5:3086 that is closer
to the actual value y (1:5) = 5:34766 than the previous estimate 5:27081 using just
�ve steps. Since the solutions to the equation y0 = x

p
y are all convex up in the

vicinity of the solution y (x) whose graph passes through (1; 4) (as an inspection of
the direction �eld reveals), the Euler approximation to y (1:5) will always be less
than y (1:5) for any n � 1, but will increase as n increases.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
2

3

4

5

6

7

8

x

y

Direction �eld of y0 = x
p
y.

In general, the error in using Euler�s method for small step sizes, is bounded
by some constant mulitple C (that depends on the nature of the function f (x; y)
near the initial point (x0; y0)) times the step size h, i.e. Error � Ch. However,
the error can actually be worse than this because of roundo¤ error, the additional
error introduced when rounding o¤ the intermediate values y1,...,y9.





CHAPTER 4

Higher order di¤erential equations

In this chapter we consider nth order di¤erential equations of the form

(0.1) y(n) = f
�
x; y; y0; :::; y(n�1)

�
;

where n > 1 and y(k) denotes the kth derivative of y as a function of x:

y(k) (x) =
dk

dxk
y (x) =

k timesz }| {
d

dx
:::
d

dx
y (x) :

A solution y (x) to equation (0.1) on an interval I is an n times di¤erentiable
function y : I ! R that satis�es the identity

y(n) (x) = f
�
x; y (x) ; y0 (x) ; :::; y(n�1) (x)

�
; x 2 I:

Example 13. The functions y1 (x) = sinx and y2 (x) = cosx both satisfy the
second order equation

(0.2) y00 + y = 0:

Moreover the collection of functions

fc1 sinx+ c2 cosxg(c1;c2)2R2

is a two-parameter family of solutions to (0.2).

1. Equivalence with �rst order systems

It is an extremely useful theoretical observation that the nth order equation
(0.1) is equivalent to the following system of n �rst order equations for the n
unknown functions y1 (x), y2 (x),...yn (x),

(1.1)

8>>>>><>>>>>:

y01 = y2
y02 = y3
...

...
...

y0n�1 = yn
y0n = f (x; y1; y2; :::; yn�1)

;

in the sense that y (x) solves (0.1) if and only if y (x) = y1 (x) where the functions
fy1; y2; :::; yng solve the system (1.1). Indeed, if y (x) solves (0.1), then the set of
functions fy1; y2; :::; yng =

�
y; y0; :::; y(n�1)

	
clearly satis�es the �rst n�1 equations

in (1.1) by de�nition; and the �nal equation is satis�ed because (0.1) gives

y0n =
�
y(n�1)

�0
= y(n) (x) = f

�
x; y; y0; :::; y(n�1)

�
= f (x; y1; y2; :::; yn�1) :

39
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Conversely, if fy1; y2; :::; yng satis�es (1.1) and y = y1, then the �rst n�1 equations
in (1.1) give

yk = y0k�1 = ::: = y
(k�1)
1 = y(k�1); 1 � k � n;

by induction on k; and then the �nal equation in (1.1) gives

y
(n)
1 =

�
y
(n�1)
1

�0
= y0n = f (x; y1; y2; :::; yn�1) = f

�
x; y; y0; :::; y(n�1)

�
;

which is (0.1).
Of course the system (1.1) is very special in that the �rst n� 1 equations are

extremely simple. The general �rst order system of n equations in n unknown
functions fy1; y2; :::; yng is

(1.2)

8>>>>><>>>>>:

y01 = f1 (x; y1; y2; :::; yn�1)
y02 = f2 (x; y1; y2; :::; yn�1)
...

...
...

y0n�1 = fn�1 (x; y1; y2; :::; yn�1)
y0n = fn (x; y1; y2; :::; yn�1)

;

where the functions fk (x; y1; y2; :::; yn�1) are typically arbitrary for k = 1; 2; :::; n�
1; n. Without further thought, it might appear that the the n�n �rst order system
(1.2) is simply much worse than the nth order equation (0.1).

However, matters appear much brighter if we rewrite the system (1.2) in vector
form

(1.3) y0 = f (x;y) ;

where we use boldface type to denote n-dimensional vectors,

y = (y1; y2; :::; yn) =

0BBB@
y1
y2
...
yn

1CCCA ;

f (x;y) = (f1 (x;y) ; f2 (x;y) ; :::; fn (x;y)) =

0BBB@
f1 (x;y)
f2 (x;y)

...
fn (x;y)

1CCCA ;

which we write as either row vectors or column vectors depending on context. In the
vector form (1.3), our system looks much more like the �rst order scalar equation
y0 = f (x; y) considered in our Existence and Uniqueness theorems above.

Indeed, if we simply replace numbers by vectors in the appropriate places in
the seven step proof of the Existence and Uniqueness theorems above, we obtain
Existence and Uniqueness theorems for systems of �rst order equations that read
almost exactly the same!

Theorem 4 (Existence theorem). Suppose R is an open region of the Euclidean
space Rn+1, that f : R ! Rn is continuous, and that P0 = (x0;y0) 2 R. Then
there exists a (possibly very small) positive number � and a vector function y :
(x0 � �; x0 + �)! Rn that is a solution to the n� n initial value problem�

y0 = f (x;y)
y (x0) = y0

:
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Theorem 5 (Uniqueness theorem). Suppose R is an open region of the Euclid-
ean space Rn+1, that f : R ! Rn is continuous, and that P0 = (x0;y0) 2 R.
Suppose in addition that f (x;y) satis�es a Lipschitz condition in the y variables.
This means that there is a positive constant K such that

kf (x;y1)� f (x;y2)k � K ky1 � y2k ; for all (x1;y1) ; (x2;y2) 2 R:
The previous theorem guarantees the existence of a solution to the n�n initial value
problem �

y0 = f (x;y)
y (x0) = y0

;

and this solution is unique in the sense that any two solutions must agree on their
common interval of de�nition around x0.

In the theorems above, y =

0BBB@
y1
y2
...
yn

1CCCA and f (x;y) =

0BBB@
f1 (x;y)
f2 (x;y)

...
fn (x;y)

1CCCA are n-

dimensional vectors. The length of a vector y is kyk =
p
y21 + :::+ y

2
n and the

notation y1 and y2 is used to denote two di¤erent vectors - the subscripts here do
not stand for components of the vectors.

When applied to the nth order equation (0.1), these theorems give existence
and uniqueness for an initial value problem for (0.1), one that involves specifying
the values of the derivatives y(k) (x0) for k = 0; 1; 2; :::; n� 1 at an initial point x0.

Theorem 6. Suppose R is an open region of the Euclidean space Rn+1, that
f : R ! R is continuous, and that P0 = (x0;y0) 2 R, where y0 =

�
y00 ; y

1
0 ; :::; y

n�1
0

�
is a point in Rn. Then there exists a (possibly very small) positive number � and
a (scalar) function y : (x0 � �; x0 + �) ! R that is a solution to the nth order
equation initial value problem

(1.4)

8>>>>><>>>>>:

y(n) = f
�
x; y; y0; :::; y(n�1)

�
y (x0) = y00
y0 (x0) = y10
...

...
...

y(n�1) (x0) = yn�10

:

If in addition there is K > 0 such that f satis�es the Lipschitz condition

jf (x;y1)� f (x;y2)j � K ky1 � y2k ; for all (x1;y1) ; (x2;y2) 2 R;
then this solution y (x) is unique in the sense that any two solutions must agree on
their common interval of de�nition around x0.

2. Linear nth order equations

We say that the nth order equation (0.1) is linear if f
�
x; y; y0; :::; y(n�1)

�
is an

a¢ ne function of the variables y; y0; :::; y(n�1) with coe¢ cients that are functions of
x, i.e.

f
�
x; y; y0; :::; y(n�1)

�
= h (x) + f0 (x) y ++f1 (x) y

0 + :::+ fn�1 (x) y
(n�1);
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which we can rewrite in the form

an (x) y
(n) + an�1 (x) y

(n�1) + :::+ a1 (x) y
0 + a0 (x) y = g (x) ;

and more usually as

(2.1) an (x)
dn

dxn
y + an�1 (x)

dn�1

dxn�1
y + :::+ a1 (x)

d

dx
y + a0 (x) y = g (x) :

We often abbreviate the left hand side by writing

(2.2) L [y] = an (x)
dn

dxn
y + an�1 (x)

dn�1

dxn�1
y + :::+ a1 (x)

d

dx
y + a0 (x) y;

where it is understood that the coe¢ cient functions ak (x) are associated with the
linear operator L, which we refer to as a linear nth order di¤erential operator. We
also refer to the function g (x) on the right hand side of (2.1) as the forcing function.

The existence and uniqueness theory for linear equations is better behaved than
in the general case because the Lipshitz condition is (locally) automatic, and in fact
the solutions exist on the interval of de�nition of the coe¢ cients ak (x), provided
the top coe¢ cient an (x) doesn�t vanish there.

Theorem 7. Suppose the functions ak (x) are continuous on an interval I for
0 � k � n and that an (x) 6= 0 for x 2 I. Then the initial value problem

(2.3)

8>>>>><>>>>>:

L [y] = g (x)
y (x0) = y00
y0 (x0) = y10
...

...
...

y(n�1) (x0) = yn�10

has a unique solution y : I ! R de�ned and n times di¤erentiable on the interval
I.

The set of solutions to a linear equation has a great deal of structure that is
missing in the general case, due mainly to the fact that

(2.4) L [c1y1 + c2y2] = c1L [y1] + c2L [y2]

for any two functions y1 and y2, and any two constants c1 and c2. This equation
says that the operator L is a linear operator on functions, and its proof is immediate
from the corresponding properties for derivatives, e.g.

(c1y1 + c2y2)
0
= c1y

0
1 + c2y

0
2:

In fact, we have the following properties for solutions to the homogeneous equa-
tion L [y] = 0 (the word �homogeneous�is used here just to indicate that the right
hand side of the equation (2.1) vanishes).

Claim 1. Let L [y] be as in (2.2) with ak (x) continuous and an (x) nonvanish-
ing.

(1) If y1 and y2 are both solutions to the homogeneous equation L [y] = 0, and
if c1 and c2 scalars, then the linear combination y � c1y1 + c2y2 is also a
solution. Indeed, if L [y1] = 0 = L [y2], then (2.4) gives L [c1y1 + c2y2] =
0.
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(2) Given an interval I, a point x0 2 I, an operator L as in Theorem 7,
and an integer 0 � k � n � 1, let yk (x) be the unique solution to the
homogeneous initial value problem8>>>>>>>><>>>>>>>>:

L [y] = 0
y (x0) = 0
...

...
...

y(k) (x0) = 1
...

...
...

y(n�1) (x0) = 0

;

where g (x) � 0, y(j)k (x0) = 0 for j 6= k, and y(k)k (x0) = 1. Then the
unique solution y (x) to the initial value problem (2.3) with g (x) � 0 is
given by

y = y00 y0 (x) + y
1
0 y1 (x) + :::+ y

n�1
0 yn�1 (x) ; x 2 I;

as can be seen by direct substitution. In other words, we simply take the
linear combination of the special solutions yk (x) with constants equal to
the speci�ed initial conditions yk0 !

(3) The general solution of the homogeneous equation L [y] = 0 is given by the
n-parameter family of solutions

fc0 y0 (x) + c1 y1 (x) + :::+ cn�1 yn�1 (x)g(c0;:::cn�1)2Rn :

Indeed, each such function is seen to be a solution to L [y] = 0 upon
applying (2.4) repeatedly. Conversely, if y (x) satis�es L [y] = 0, then let
ck = y(k) (x0) for 0 � k � n � 1. Then each of the functions y (x) and
c0y0 (x)+ :::+ cn�1yn�1 (x) satisfy the same initial value problem, and so
must be the same function by the uniqueness of solutions:

d`

dx`
fc0y0 + :::+ cn�1yn�1g (x0)

= c0y
(`)
0 (x0) + :::+ cn�1y

(`)
n�1 (x0)

= c00 + :::+ c`y
(`)
` (x0) + :::+ cn�10

= c` = y(`) (x0) ;

for each 0 � ` � n� 1.

Definition 2. We say that a set of n functions Y = fy1; y2; :::; yng is a funda-
mental solution set for the homogeneous equation L [y] = 0 if the general solution
is given by the n-parameter family

fc1y1 + :::+ cnyng(c1;:::cn)2Rn :

Claim (3) above shows that there is always a fundamental solution set for
the equation L [y] = 0, provided the coe¢ cients of L are continuous and an is
nonvanishing. Note that we are here relabeling the functions as y1; :::; yn instead of
y0; :::; yn�1.

Conclusion 1. With a fundamental solution set Y to L [y] = 0 in hand, and
together with just one particular solution yp to the nonhomogeneous equation L [y] =
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g, the general solution to the nonhomogeneous equation L [y] = g is given by

y = yc + yp; yc = c1y1 + :::+ cnyn:

Here yp is called a particular solution (to the nonhomogeneous equation) and yc is
called a complementary solution (to the homogeneous equation).

2.1. Second order linear equations. We divide the linear second order
equation (2.1) (in which n = 2) through by the top coe¢ cient a2 (x), which we
assume is nonvanishing. The result is this equation in which we have rede�ned the
operator L and the forcing function g (x):

(2.5) L [y] � y00 + p (x) y0 + q (x) y = g (x) :

We cannot in general �nd solutions to this linear equation (although we can in
the special case when the coe¢ cient functions are constant), but if we are lucky or
clever enough to �nd just one nontrivial solution to the associated homogeneous
equation

L [y] = 0

(the trivial solution is y (x) � 0), we can use the method of reduction of order to
reduce the task of �nding all the other solutions of (2.5), to that of solving a �rst
order linear equation. The idea is to make two successive substitutions as follows.

Assume that y1 (x) is a nontrivial solution to the homogeneous equation L [y] =
0. Make the substitution

y (x) = y1 (x) v (x)

in the nonhomogeneous equation L [y] = g, and compute the equation satis�ed by
the new unknown function v (x). We expande L [y1v], and regroup terms according
to v and its derivatives, to get

g (x) = L [y] = L [y1v] = (y1v)
00
+ p (x) (y1v)

0
+ q (x) (y1v)(2.6)

= (y01v + y1v
0)
0
+ p (x) (y01v + y1v

0) + q (x) (y1v)

= (y001 v + 2y
0
1v
0 + y1v

00) + p (x) (y01v + y1v
0) + q (x) (y1v)

= fy001 + p (x) y01 + q (x) y1g v + f2y01 + p (x) y1g v0 + y1v00

= f2y01 + p (x) y1g v0 + y1v00;
since y001 +p (x) y

0
1+q (x) y1 = L [y1] = 0. Now make the second substitution z = v0.

Then z satis�es the linear equation

y1 (x) z
0 + f2y01 (x) + p (x) y1 (x)g z = g (x) ;

z0 +

�
2y01
y1

+ p

�
z =

g

y1
:

An integrating factor for this equation is

� = e
R 2y01

y1
+p = e2 lnjy1j+

R
p = y21e

P ;

where P =
R
p is an antiderivative of p. Thus we have

(�z)
0
=

�
y21e

P
�0
z + y21e

P z0 = �
g

y1
= y21e

P g

y1
= y1e

P g;

z = y�21 e�P
Z
y1e

P g:

We can now antidi¤erentiate z = v0 to obtain v.
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Finally, we obtain that y � y1v is a solution to the nonhomogeneous equation
L [y] = g. Since there were two antiderivatives taken in the method above, there
are two constants of integration in the formula for the solution y, and we have
thus constructed a two-parameter family of solutions. This somewhat complicated
procedure is best illustrated with an example.

Example 14. Given that y1 (x) � 1
x solves the homogeneous equation

2x2y00 + 3xy0 � y = 0,
we will use the method of reduction of order to �nd a general solution to the non-
homogeneous equation

2x2y00 + 3xy0 � y = x3:

Let y = y1v =
1
xv, and write the nonhomogeneous equation in standard form

y00 +
3

2x
y0 � 1

2x2
y =

x

2
;

with p (x) = 3
2x , q (x) = �

1
2x2 and g (x) =

x
2 . From (2.6) we have

x

2
= f2y01 + p (x) y1g v0 + y1v00

=

�
� 2

x2
+
3

2x

1

x

�
v0 +

1

x
v00

= � 1

2x2
v0 +

1

x
v00;

and so z = v0 satis�es

z0 � 1

2x
z =

x2

2
:

Then with � = e�
R

1
2xdx = e�

1
2 ln x = 1p

x
, we obtain�

1p
x
z

�0
= (�z)

0
= �

x2

2
=
x
3
2

2
;

1p
x
z =

Z
x
3
2

2
dx =

1

5
x
5
2 + c2;

z =
1

5
x3 + c2

p
x:

Then we antidi¤erentiate z = v0 to get

v =

Z
z =

Z �
1

5
x3 + c2

p
x

�
=
1

20
x4 +

2

3
c2x

3
2 + c1;

and �nally from y = 1
xv we obtain the two parameter family of solutions,

y =
1

20
x3 +

2

3
c2x

1
2 + c1

1

x
; (c1; c2) 2 R2:

It is worth noting that in the above example, the general solution has a very
special form, namely

y = yp + c2y2 + c1y1; (c1; c2) 2 R2;

where y1 = 1
x and y2 =

2
3x

1
2 are di¤erent solutions to the homogeneous equation

2x2y00 + 3xy0 � y = 0;
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while yp = 1
20x

3 is a particular solution to the nonhomogeneous equation

2x2y00 + 3xy0 � y = x3:

We now turn to making precise this notion that solutions are di¤erent, and this
involves the concept of linearly independent functions.

2.2. Linear independence and Abel�s formula. Two functions f and g
de�ned on an interval I are said to be linearly dependent on I if one of them is a
constant multiple of the other, i.e. either f (x) = c1g (x), x 2 I, for some scalar c1
or g (x) = c2f (x), x 2 I, for some scalar c2. The reason we consider both c1 and
c2 is to include the possibility that one of the functions, say g, is identically zero,
but not the other. Then we can write g = 0 �f but f 6= c1g for any constant c1. We
can combine all possible cases in a single equation by simply requiring that there
exist scalars c1 and c2 that are not both zero, such that

c1f (x) + c2g (x) = 0; x 2 I:
The way to extend this concept to more than two functions is now evident. We

say that a (�nite) set of functions ff1; f2; :::; fng is linearly dependent on I if there
exist scalars (c1; c2; :::; cn) 6= (0; 0; :::; 0) such that

c1f1 (x) + c2f2 (x) + :::+ cnfn (x) = 0; x 2 I;
i.e. c1f1 + c2f2 + :::+ cnfn � 0 is the identically zero function on I.

Example 15. The set of four functions(
1;

1

(1� x)2
;

x

(1� x)2
;

x2

(1� x)2

)
is linearly dependent on any interval I not containing 1, since with

(c1; c2; c3; c4) = (�1; 1;�2; 1) ;
we have

c11 + c2
1

(1� x)2
+ c3

x

(1� x)2
+ c4

x2

(1� x)2

= �1 + 1� 2x+ x
2

(1� x)2
= �1 + (1� x)

2

(1� x)2
= 0; x 6= 1:

We say the set ff1; f2; :::; fng is linearly independent on I if it is not linearly
dependent on I. For a general collection of functions ff1; f2; :::; fng, the concept
of linear independence cannot be easily characterized directly - it is simply the
negation of linear dependence, which can be expressed as

(2.7) c1f1 + c2f2 + :::+ cnfn � 0 =) c1 = c2 = ::: = cn = 0:

Example 16. The set of three functions fsinx; sin 2x; sin 3xg is linearly inde-
pendent on R . One of many ways to see that (2.7) holds is to assume that

c1 sinx+ c2 sin 2x+ c3 sin 3x � 0;
and then let x = �

2 to obtain

c1 � c3 = c1 sin
�

2
+ c2 sin� + c3 sin

3�

2
= 0:
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Then di¤erentiate the identity twice using (sin!x)00 = �!2 sin!x to get
�c1 sinx� 4c2 sin 2x� 9c3 sin 3x � 0:

Then set x = �
2 again to obtain

�c1 + 9c3 = �c1 sin
�

2
� 4c2 sin� � 9c3 sin

3�

2
= 0:

Thus we have 9c3 = c1 = c3 which gives c3 = 0, then c1 = 0, and then c2 sin 2x �
0 gives c2 = 0, and this completes the demonstration of the linear independence
condition (2.7).

But for special classes of functions we can do much better than verifying (2.7),
especially when the functions fy1; y2; :::; yng are solutions for the homogeneous
equation L [y] = 0 on an interval I, where

(2.8) L [y] = y(n) + an�1y
(n�1) + :::+ a1y

0 + a0y

is a linear nth order di¤erential operator as de�ned in (2.2), but with an � 1.
Indeed, if c1y1 + c2y2 + :::+ cnyn � 0 on I, then we can di¤erentiate both sides n
times with respect to x 2 I to obtain

c1y1 (x) + c2y2 (x) + :::+ cnyn (x) = 0;

c1y
0
1 (x) + c2y

0
2 (x) + :::+ cny

0
n (x) = 0;

...

c1y
(n�1)
1 (x) + c2y

(n�1)
2 (x) + :::+ cny

(n�1)
n (x) = 0;

for every x 2 I. In matrix form this equation is26664
y1 y2 � � � yn
y01 y02 � � � y0n
...

...
. . .

...
y
(n�1)
1 y

(n�1)
2 � � � y

(n�1)
n

37775 (x)
26664
c1
c2
...
cn

37775 =

26664
0
0
...
0

37775 ; x 2 I;

M (x) c = 0; x 2 I;
Mc � 0:

We now conclude that the linear independence criterion (2.7) holds if and only if

(2.9) Mc � 0 =) c = 0:

Note that so far we have only used that the functions fy1; y2; :::; yng are n � 1
times continuously di¤erentiable, and we haven�t yet exploited the fact that they
are solutions to an nth order linear homogeneous equation L [y] = 0.

To link (2.9) with the di¤erential equation L [y] = 0, we recall from linear
algebra that for a �xed x 2 I,

M (x) c = 0 =) c = 0;

if and only if detM (x) 6= 0. We de�ne this important determinant to be the
Wronskian W (y1; :::; yn) (x) of the functions fy1; y2; :::; yng on I:

W (y1; :::; yn) (x) � detM (x) = det

26664
y1 (x) y2 (x) � � � yn (x)
y01 (x) y02 (x) � � � y0n (x)
...

...
. . .

...
y
(n�1)
1 (x) y

(n�1)
2 (x) � � � y

(n�1)
n (x)

37775 :
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The connection of the Wronskian with a set of solutions is twofold. First
we have a nonvanishing property from which we obtain the equivalence of linear
independence and fundamental solution.

In the next three lemmas, the linear nth order operator L [y] is as in (2.8) with
continuous coe¢ cients ak (x) on an interval I.

Lemma 1. Suppose fy1; y2; :::; yng is a set of solutions for the linear nth order
equation L [y] = 0 on I. Then the Wronskian W (y1; :::; yn) (x) is either identically
zero on I, or never vanishing on I.

Lemma 2. Suppose fy1; y2; :::; yng is a set of solutions for the linear nth order
equation L [y] = 0 on I. Then the following four conditions are equivalent:

(1) fy1; y2; :::; yng is a fundamental solution set for L [y] = 0 on I,
(2) the Wronskian W (y1; :::; yn) (x) is nonzero for all x 2 I,
(3) the Wronskian W (y1; :::; yn) (x0) is nonzero for some x0 2 I,
(4) the set fy1; y2; :::; yng is linearly independent on I.

Second, if we work a bit harder, we can derive an explicit formula connecting
the Wronskian W (y1; :::; yn) at two di¤erent points x; x0 2 I, and that gives the
conclusion of Lemma 1 above as an immediate corollary. This is Abel�s formula
involving the coe¢ cient an�1 (x) of the linear di¤erential operator L.

Lemma 3 (Abel�s formula). Suppose fy1; y2; :::; yng is a fundamental solution
set for the linear nth order equation L [y] = 0 on I. Then for x; x0 2 I, we have

W (y1; :::; yn) (x) = e
�
R x
x0
an�1(s)dsW (y1; :::; yn) (x0) :

We will only give proofs in the simplest case n = 2, but will give them in a
form which is not hard to generalize to the case n > 2. To establish Abel�s formula,
let y1 and y2 be two solutions of the second order linear homogenous equation

y00 + a1 (x) y
0 + a0 (x) y = 0:

We di¤erentiate the Wronskian of y1 and y2 using the product rule for derivatives,
and the multilinear and alternating properties of determinants:

d

dx
W (y1; y2) (x) =

d

dx
det

�
y1 (x) y2 (x)
y01 (x) y02 (x)

�
= det

�
d
dxy1 (x)

d
dxy2 (x)

y01 (x) y02 (x)

�
+ det

�
y1 (x) y2 (x)
d
dxy

0
1 (x)

d
dxy

0
2 (x)

�
= det

�
y01 (x) y02 (x)
y01 (x) y02 (x)

�
+ det

�
y1 (x) y2 (x)
y001 (x) y002 (x)

�
= 0 + det

�
y1 (x) y2 (x)

�a1 (x) y01 � a0 (x) y1 (x) �a1 (x) y02 � a0 (x) y2 (x)

�
= det

�
y1 (x) y2 (x)

�a1 (x) y01 �a1 (x) y02

�
+ det

�
y1 (x) y2 (x)

�a0 (x) y1 (x) �a0 (x) y2 (x)

�
= �a1 (x)W (y1; y2) (x) + 0:
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This is both a linear and a separable equation for the Wronskian. Using the inte-
grating factor e

R x
x0
a1(s)ds we get Abel�s formula:

d

dx

n
e
R x
x0
a1(s)dsW (y1; y2) (x)

o
= e

R x
x0
a1(s)ds

�
a1 (x)W (y1; y2) (x) +

d

dx
W (y1; y2) (x)

�
= 0;

W (y1; y2) (x) = Ce
�
R x
x0
a1(s)ds =W (y1; y2) (x0) e

�
R x
x0
a1(s)ds:

Since the exponential function e
�
R x
x0
a1(s)ds never vanishes, we immediately

obtain Lemma 1 as a corollary.
We prove the equivalence of the four statements in Lemma 2 by linking the

�rst to the second, and the third to the fourth. Of course the second and third are
equivalent by Lemma 1.

We �rst show that (1) and (2) are equivalent. Indeed, (1) fails if and only if
there is a triple (x0; y0; y00) such that the solution y (x) to the initial value problem8<: y00 = �a1y0 � a0y

y (x0) = y0
y0 (x0) = y00

fails to have the form y = c1y1 + c2y2 for any choice of scalars c1 and c2. Thus if
and only if there is no solution c = (c1; c2) to the matrix equation

y0 =

�
y0
y00

�
=

�
y1 (x0) y2 (x0)
y01 (x0) y02 (x0)

� �
c1
c2

�
=M (x0) c;

i.e. the vector y0 = (y0; y00) is not in the range of the matrixM (x0). It follows from
linear algebra that this holds if and only if detM (x0) = 0. Since W (y1; y2) (x0) =
detM (x0), this is equivalent to the failure of (2).

Now we demonstrate the equivalence of (3) and (4), beginning with (3) implies
(4). Indeed, suppose that (3) holds, and in order to derive a contradiction, that (4)
fails. Then by (3) there is some x0 2 I such that detM (x0) 6= 0, and by the failure
of (4) there is a vector c 6= 0 such that

0 =

�
0
0

�
=

�
y1 (x) y2 (x)
y01 (x) y02 (x)

� �
c1
c2

�
=M (x) c;

for all x 2 I, and in particular for x = x0. But detM (x0) 6= 0 implies c = 0 by
linear algebra, and this is our desired contradiction. Conversely, we suppose that
(3) fails and prove that (4) fails. Indeed, the failure of (3) shows that for any x 2 I
we have W (y1; y2) (x) = 0, and in particular for a �xed x0 2 I. Then the equation

0 =

�
0
0

�
=

�
y1 (x0) y2 (x0)
y01 (x0) y02 (x0)

� �
c1
c2

�
=M (x0) c;

has a solution c 6= 0. De�ne the function ' (x) � c1y1 (x)+ c2y2 (x). Then ' solves
the initial value problem 8<: y00 = �a1y0 � a0y

y (x0) = 0
y0 (x0) = 0

;

but so does the identically zero function 0! By the uniqueness of solutions, we
conclude that ' (x) = 0, which says that the set fy1; y2g is linearly dependent on
I, hence that (4) fails.
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Caution!: For functions ff1; f2g that are not solutions to an equation, it
remains true that if f1 and f2 are linearly dependent, then their Wronskian

vanishes. But the converse is false: The pair of functions
n
x3; jxj3

o
has

vanishing Wronskian on the entire real line,

W
�
x3; jxj3

�
= det

"
x3 jxj3
3x2 3x2 x

jxj

#
= 3x5

x

jxj � 3x
2 jxj3 � 0;

but they are not linearly independent on any open interval containing the
origin 0. Exercise: prove this!

2.2.1. Using the Wronskian to �nd a second independent solution. Now we
show how to use Abel�s formula to �nd a second linearly independent solution
y2 to the homogeneous equation L [y] = 0, if we are given a �rst nontrivial solu-
tion y1. This provides a convenient alternative to carrying out the substitutions

z = v0 =
�
y
y1

�0
in the method of reduction of order. Of course, if we wish to

solve the nonhomogenous equation L [y] = g, we must still use the substitutions

z = v0 =
�
y
y1

�0
in the method of reduction of order. We illustrate the use of Abel�s

formula by returning to the equation in Example 14.

Example 17. Given that y1 = 1
x solves the homogeneous equation

L [y] � y00 +
3

2x
y0 � 1

2x2
y = 0;

we �x any point x0 other than the singular point 0, and assume that there is a second
solution y2 with W (y1; y2) (x0) = 1. Note that such a solution y2 is automatically
independent of y1 by Lemma 2. Now we write out Abel�s formula for the unknown
function y2:

1

x
y02 +

1

x2
y2 = y1y

0
2 � y01y2 = det

�
y1 y2
y01 y02

�
= W (y1; y2) (x) = e�

R
a1(x)dx = e�

R
3
2xdx

= e�
3
2 ln x = x�

3
2 :

This equation is linear,

y02 +
1

x
y2 = x�

1
2 ;

with integrating factor � = x, and so

(xy2)
0
= x

�
y02 +

1

x
y2

�
= xx�

1
2 = x

1
2 ;

xy2 =

Z
x
1
2 dx =

2

3
x
3
2 ;

y2 =
2

3
x
1
2 ;

gives a second independent solution y2.
Note that we ignore the constant of integration here since we are only interested in
�nding the �other�independent solution. Indeed, writing in the constant of integra-
tion C at the end would only give back a multiple of the known solution 1

x , since
xy2 =

R
x
1
2 dx = 2

3x
3
2 + C gives y2 = 2

3x
1
2 + C 1

x .
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3. Constant coe¢ cient linear equations

Now we consider the special case of the nth order linear operator L [y] in (2.2),
where the coe¢ cients ak (x) of the operator L are constants ak:

(3.1) L [y] � an
dn

dxn
y + an�1

dn�1

dxn�1
y + :::+ a1

d

dx
y + a0y:

In this case we will be able to give an explicit fundamental solution set to the
homogeneous equation L [y] = 0, and develop very e¤ective methods for solving the
corresponding nonhomogeneous equations L [y] = f .

3.1. Fundamental solutions sets for the homogeneous case. The �rst
order linear homogenous equation with constant coe¢ cients L [y] � a1

d
dxy+a0 = 0

is easily solved by separation of variables:

dy = �a0
a1
dx; y = Ce�

a0
a1
x:

In particular we note that the exponent �a0
a1
of the exponential is the unique root of

the linear algebraic equation a1r + a0 = 0. This suggests that we might search for
a solution to the nth order equation L [y] = 0 by plugging in exponential functions
erx and see if they happen to satisfy the equation for certain exponents r. Since
dk

dxk
erx = rkerx, we compute that

L [erx] = anr
nerx + an�1r

n�1erx + :::+ a1re
rx + a0e

rx

=
�
anr

n + an�1r
n�1 + :::+ a1r + a0

�
erx;

which vanishes identically in x if and only if r is a root of the polynomial

(3.2) P (r) = PL (r) � anr
n + an�1r

n�1 + :::+ a1r + a0;

which we refer to as the characteristic polynomial of the constant coe¢ cient linear
nth order operator L.

The fundamental theorem of algebra: It is a fundamental theorem in
algebra that every polynomial P of order n has exactly n roots counting
multiplicities in the �eld of complex numbers.

If r is a real root of P , then

y = Cerx

is a solution to the homogeneous equation L [y] = 0. If r = a+ ib is a complex root
of P , then

y = Cerx = Ce(�+ib)x = Ce�x (cos�x+ i sin�x)

by deMoivres formula ei� = cos � + i sin � and properties of exponents. Thus we
have produced a complex-valued solution y (x) = erx to the di¤erential equation
L [y] = 0. We can write this solution uniquely in terms of its real and imaginary
parts as

y (x) � u (x) + iv (x) ;

where both u (x) = Re y (x) and v (x) = Im y (x) are real-valued functions. If the
coe¢ cients ak are real numbers, then it is easy to see that both u (x) and v (x) are
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themselves solutions to the homogeneous equation:

L [u] (x) = an
dn

dxn
u (x) + an�1

dn�1

dxn�1
u (x) + :::+ a1

d

dx
u+ a0u (x)

= an
dn

dxn
Re y (x) + an�1

dn�1

dxn�1
Re y (x) + :::+ a1

d

dx
Re y (x) + a0Re y (x)

= Re

�
an

dn

dxn
y (x) + an�1

dn�1

dxn�1
y (x) + :::+ a1

d

dx
y + a0y (x)

�
= ReL [y] (x) = Re 0 = 0;

and similarly L [v] (x) = 0. We can also easily compute that

u (x) = Re y (x) = Re erx = Re e(�+i�)x = Re fe�x (cos�x+ i sin�x)g = e�x cos�x;

v (x) = Im y (x) = Im erx = Im e(�+i�)x = Im fe�x (cos�x+ i sin�x)g = e�x sin�x:

Thus in this case we have produced two linearly independent solutions,

y1 (x) = e�x cos�x;

y2 (x) = e�x sin�x;

to the homogeneous equation L [y] = 0. They are linearly independent because
� 6= 0 by assumption that the root r = � + i� is complex, and their Wronskian is
nonzero:

W (y1; y2) (x) = det

�
y1 y2
y01 y02

�
= det

�
e�x cos�x e�x sin�x

ae�x cos�x� �e�x sin�x ae�x sin�x+ �e�x cos�x

�
= e2�x det

�
cos�x sin�x
�� sin�x � cos�x

�
= e2�x�

�
cos2 �x+ sin2 �x

�
= �e2�x:

Remark 2. Note that in the case the coe¢ cients ak of L are all real numbers,
then the complex roots appear in complex conjugate pairs: � + i� is a root of the
characteristic polynomial P (r) in (3.2) if and only if �� i� is root since

P (�+ i�) = an(�+ i�)
n
+ an�1(�+ i�)

n�1
+ :::+ a1(�+ i�) + a0

= an (�� i�)n + an�1 (�� i�)n�1 + :::+ a1 (�� i�) + a0 = P (�� i�) :

Thus it is not surprising that a complex root delivers two independent solutions -
namely �one for each root in the complex pair�.

Example 18. The general solution of the equation

y00 + 5y0 + 6y = 0

is found by computing the roots of the associated characteristic polynomial

0 = r2 + 5r + 6 = (r + 2) (r + 3) :

The roots are r = �2;�3, and the general solution is then given by

y = c1e
�2x + c2e

�3x:
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Example 19. The solution to the initial value problem8<: y00 � 2y0 + 5y = 0
y (0) = 1
y0 (0) = 2

;

can be found as follows. First, �nd the general solution of the di¤erential equation:

0 = r2 � 2r + 5; r =
2�

p
4� 20
2

= 1� 2i;

y = c1e
x cos 2x+ c2e

x sin 2x:

Second, di¤erentiate y to get

y0 = c1e
x (cos 2x� 2 sin 2x) + c2ex (sin 2x+ 2 cos 2x) ;

and then substitute these formulas into the initial conditions to solve for the con-
stants c1, c2:

1 = y (0) = c1 � 1 + c2 � 0 = c1;

2 = c1 (1� 2 � 0) + c2 (0 + 2 � 1) = c1 + 2c2:

This gives c1 = 1, c2 = 1
2 , and the solution to the initial value problem is hence

y = ex cos 2x+
1

2
ex sin 2x:

Example 20. Try to �nd the general solution to the equation

y00 � 6y0 + 9y = 0:

The characteristic polynomial is r2 � 6r + 9 = (r � 3)2, and has a single repeated
root 3. Thus we know that

y1 = c1e
3x

is a solution but this method doesn�t produce a second independent solution. Of
course we could take y1 = e3x in Abel�s formula, and solve for y2:

y1y
0
2 � y01y2 = det

�
y1 y2
y01 y02

�
=W (y1; y2) (x) = e6xW (y1; y2) (x0) = e6x;

e3xy02 � 3e3xy2 = e6x;�
e�3xy2

�0
= e�3x (y02 � 3y2) = e�3xe3x = 1;

e�3xy2 = x+ C;

y2 = xe3x + Ce3x:

Thus we have found a second independent solution y2 = xe3x, and the general
solution is

y = c1e
3x + c2xe

3x = (c1 + c2x) e
3x:

The three examples above suggest the following theorem.

Theorem 8. Let L [y] be a constant coe¢ cient nth order linear di¤erential
operator as in (3.1). Suppose that the characteristic polynomial P (r) of the (real)
constant coe¢ cient nth order linear di¤erential operator L [y] factors as

P (r) = (r � r1)k1 (r � r2)k2 ::: (r � rM )kM

�f(r � [�1 + i�1]) (r � [�1 � i�1])g
`1 ::: f(r � [�N + i�N ]) (r � [�N � ib�N ])g

`N ;
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where the rj, �j, �j are all real numbers, and

n = k1 + :::+ kM + 2`1 + :::+ 2`N :

Thus each rj is a real root of multiplicity kj and each pair of complex conjugate
roots

�
�j + i�j ; �j � i�j

�
has multiplicity `j. Then the set of n functions

er1x; xer1x; :::xk1�1er1x;(3.3)

er2x; xer2x; :::xk2�1er2x;

...

erMx; xerMx; :::xkM�1erMx;

e�1x cos�1x; xe
�1x cos�1x; :::x

k1�1e�1x cos�1x;

e�1x sin�1x; xe
�1x sin�1x; :::x

k1�1e�1x sin�1x;

...

e�Nx cos�Nx; xe
�Nx cos�Nx; :::x

`N�1e�Nx cos�N1x;

e�Nx sin�Nx; xe
�Nx sin�Nx; :::x

`N�1e�Nx sin�Nx;

is a fundamental solution set for the homogeneous equation L [y] = 0, and the
general solution is given by

y =

MX
j=1

8<:
kjX
s=1

cj;s x
s�1

9=; erjx

+
NX
j=1

8<:
`jX
s=1

�
dj;s cos�jx+ ej;s sin�jx

�
xs�1

9=; e�jx ;

where cj;s, dj;s and ej;s are real constants.

Here is how we can informally remember the conclusion of this theorem:

(1) For each repetition of a real root rj , there is a solution

xs�1erjx;

with 1 � s � kj , and
(2) for each repetition of a complex conjugate pair of roots �j� i�j , there are

two solutions

xs�1e�jx cos�jx and x
s�1e�jx sin�jx;

with 1 � s � `j .

Problem 5. Find a fundamental solution set for the equation

y(4) � y000 � 3y00 + 5y0 � 2y = 0:

Solution 5. The characteristic polynomial is,

P (r) = r4 � r3 � 3r2 + 5r � 2:

To factor this polynomial, we hope there is a rational root p
q in reduced form, in

which case we must have that p divides the constant coe¢ cient �2, and that q
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divides the highest power coe¢ cient 1. Thus our only choices for a rational root
are �1;�2. Substitution shows that

P (1) = 0; P (�1) = �8; P (2) = 4; P (�2) = 0;
and so we know that

(r � 1) (r + 2) = r2 + r � 2
is a factor of P (r). We now apply the long division algorithm due to Euclid to get

r2 �2r +1
r2 + r � 2 ! r4 � r3 � 3r2 + 5r � 2

r4 + r3 � 2r2
�2r3 � r2 + 5r � 2
�2r3 � 2r2 + 4r

r2 + r � 2

:

Thus we have the factorization

P (r) = (r � 1) (r + 2)
�
r2 � 2r + 1

�
= (r � 1)3 (r + 2) ;

and guided by point (1) above, Theorem 8 gives the fundamental solution set�
ex; xex; x2ex; e�2x

	
:

Problem 6. Find a fundamental solution set for the equation

y(4) � 8y000 + 26y00 � 40y0 + 25y = 0;
given that its characteristic polynomial factors as

r4 � 8r3 + 26r2 � 40r + 25 =
�
r2 � 4r + 5

�2
:

Solution 6. The roots of the quadratic polynomial r2 � 4r + 5 are

� (�4)�
q
(�4)2 � 4 � 1 � 5
2 � 1 = 2� i:

Guided by point (2) above, Theorem 8 gives the fundamental solution set�
e2x cosx; e2x sinx; xe2x cosx; xe2x sinx

	
:

3.2. Undetermined coe¢ cients in the nonhomogeneous case. Now we
consider the nonhomogeneous equation

L [y] = f;

where L is a constant coe¢ cient nth order linear di¤erential operator as in (3.1),

L [y] � an
dn

dxn
y + an�1

dn�1

dxn�1
y + :::+ a1

d

dx
y + a0:

We assume the forcing function f is a �nite linear combination of the type of
functions arising in the fundamental solutions sets to arbitrary homogeneous linear
constant coe¢ cient equations, namely functions of the form:

xke�x cos�x; xke�x sin�x; k = 0; 1; 2; ::: and �; � 2 R:
Such functions include all polynomials Q (x) in x,

Q (x) = bMx
M + bM�1x

M�1 + b1x+ b0;
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and all products Q (x) e�x of polynomials Q (x) with exponentials e�x and sines
and cosines cos�x and sin�x, and of course sums of such. We will denote the set
of linear combinations of these functions by F :

F �

8<:
MX
j=1

Qj (x) e
�jx cos�jx+Rj (x) e

�jx sin�jx

9=; ;

where the sums are taken over all M = 0; 1; 2; :::; and where �j ; �j 2 R, and Qj
and Rj are polynomials in x. Remember that we can take the polynomials to be
the constant 1, and the numbers �j ; �j to be 0, so that functions like e

5x cos 2x+

x3 sin 4x belong to F .
There are two important properties of this vector space of functions

(1) F contains the general solutions of all homogeneous nth order linear dif-
ferential equations with constant coe¢ cients;

(2) F is closed under the operation of di¤erentiation, namely, if f 2 F then
f 0 2 F , which we can abbreviate by writing

d

dx
: F ! F :

To see property (2), we simply note that the product rule, together with for-
mulas for derivatives of elementary functions, give

d

dx

�
xke�x cos�x

�
= kxk�1e�x cos�x+ xk�ex cos�x� xke�x� sin�x 2 F ;

and similarly
d

dx

�
xke�x sin�x

�
2 F :

Of course it now follows that

dk

dxk
: F ! F ; k = 0; 1; 2; :::

Conclusion 2. From the facts that F contains all solutions yc to the homo-
geneous equation

L [y] = 0;

and is closed under repeated di¤erentiation, it is reasonable to conclude that if the
forcing function f lies in F , then a particular solution yp to the nonhomogeneous
equation

L [y] = f;

also lies in F . It remains only to narrow our search by making an intelligent guess
with undetermined coe¢ cients for the form of yp, and then to plug our guess for
yp into the equation L [y] = f to determine the coe¢ cients.

In order to motivate our scheme for intelligently guessing the form of a partic-
ular solution yp, we look at a few examples �rst.

Example 21. In order to solve the equation

y00 + 4y = 5x2ex;
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we assume there is a particular solution yp 2 F , and since f = 5x2ex and all of
its derivatives are linear combinations of x2ex, xex and ex, we might guess that yp
has the special form

yp (x) = Ax2ex +Bxex + Cex =
�
Ax2 +Bx+ C

	
ex

where A, B and C are undetermined coe¢ cients. Then

y0p (x) = f2Ax+Bg ex +
�
Ax2 +Bx+ C

	
ex

=
�
Ax2 + (2A+B)x+ (B + C)

	
ex;

y00p (x) = f2Ax+ (2A+B)g ex +
�
Ax2 + (2A+B)x+ (B + C)

	
ex

=
�
Ax2 + (4A+B)x+ (2A+ 2B + C)

	
ex:

We now plug this form into the equation and use the above expressions for y00p and
yp to get

5x2ex = y00p + 4yp

=
�
Ax2 + (4A+B)x+ (2A+ 2B + C)

	
ex + 4

�
Ax2 +Bx+ C

	
ex

= (5A)x2ex + (4A+ 5B)xex + (2A+ 2B + 5C) ex:

Since the functions
�
x2ex; xex; ex

	
are linearly independent, the above identity gives

equality of the coe¢ cients:

5A = 5;

4A+ 5B = 0;

2A+ 2B + 5C = 0;

from which we obtain

A = 1; B = �4
5
; C = � 2

25
:

Thus a particular solution is

yp (x) =

�
x2 � 4

5
x� 2

25

�
ex:

Example 22. To solve the equation

y00 + 3y0 + 2y = sinx;

we note that f = sinx and all of its derivatives are linear combinations of sinx and
cosx, and so we might guess that yp has the special form

yp (x) = A sinx+B cosx;

where A and B are undetermined coe¢ cients. Then

y0p (x) = A cosx�B sinx;
y00p (x) = �A sinx�B cosx:

We now plug this form into the equation and use the above expressions for y00p , y
0
p

and yp to get

sinx = y00p + 3y
0
p + 2yp

= (�A sinx�B cosx)
+3 (A cosx�B sinx) + 2 (A sinx+B cosx)

= (A� 3B) sinx+ (B + 3A) cosx:



58 4. HIGHER ORDER DIFFERENTIAL EQUATIONS

Since fsinx; cosxg are linearly independent, we can equate coe¢ cients to get
A� 3B = 1;

B + 3A = 0;

from which we obtain

A =
1

10
; B = � 3

10
:

Thus a particular solution is

yp (x) =
1

10
sinx� 3

10
cosx =

sinx� 3 cosx
10

:

Thus it appears that a general rule is emerging from these two examples, namely
that given f 2 F , a particular solution yp has the same form as that of f and all
of its derivatives. This is not quite true as the next example shows.

Example 23. To �nd a particular solution of the equation

y00 + 2y0 + y = 5xe�x;

we might guess, based on our experience with the �rst two examples, that a particular
solution has the form

yp (x) = Axe�x +Be�x;

since f = 5xe�x and all of its derivatives are linear combinations of xe�x and
Be�x. But clearly this is not the case! Both of the functions xe�x and e�x are
solutions to the homogeneous equation L [y] = 0, hence

L [yp] = A+BL
�
e�x

�
= 0 + 0 = 0:

This is the �rst time we have come across the situation where the forcing function
is (or includes) a solution of the homogeneous equation. The �trick� is to assume
that yp has the special form

yp = x2
�
Axe�x +Be�x

�
;

where the exponent of the extra power of x is chosen to be the multiplicity of the
corresponding root in the characteristic polynomial,

P (r) = r2 + 2r + 1 = (r + 1)
2
:

Then

yp =
�
Ax3 +Bx2

	
e�x;

y0p =
�
3Ax2 + 2Bx

	
e�x �

�
Ax3 +Bx2

	
e�x

=
�
�Ax3 + (3A�B)x2 + 2Bx

	
e�x;

y00p =
�
�3Ax2 + (6A� 2B)x+ 2B

	
e�x

�
�
�Ax3 + (3A�B)x2 + 2Bx

	
e�x

=
�
Ax3 + (B � 6A)x2 + (6A� 4B)x+ 2B

	
e�x:

We now plug this form into the equation and use the above expressions for y00p , y
0
p

and yp to get

5xe�x = y00p + 2y
0
p + yp

= f6Ax+ 2Bg e�x:
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Since fxe�x; e�xg are linearly independent, we can equate coe¢ cients to get

6A = 5; 2B = 0;

from which we obtain

A =
5

6
; B = 0:

Thus a particular solution is

yp (x) =
5

6
x3e�x:

One �nal comment. The linearity of the operator L shows that if f = g + h
is a sum of forcing functions g and h, and if yp and zp solve the nonhomogeneous
equations L [yp] = g and L [zp] = h respectively, then the sum yp + zp of the
particular solutions is a particular solution to the nonhomogeneous equation

L [yp + zp] = L [yp] + L [zp] = g + h:

For example, we showed above that with L [y] = y00 + 4y, the function yp (x) =�
x2 � 4

5x�
2
25

�
ex satis�es L [yp] = 5x2ex. We also note that a simple calculation

shows that zp � e�x satis�es L [zp] = 5e�x. Hence by linearity of L, we have

L

��
x2 � 4

5
x� 2

25

�
ex + e�x

�
= L [yp + zp]

= L [yp] + L [zp] = 5x
2ex + 5e�x;

and so
�
x2 � 4

5x�
2
25

�
ex + e�x is a particular solution of the nonhomogeneous

equation L [y] = 5
�
x2ex + e�x

�
.

The examples above suggest the following theorem.

Theorem 9. Let L [y] be a constant coe¢ cient nth order linear di¤erential
operator as in (3.1), and consider the nonhomogeneous equation

L [y] = xke�x cos�x or xke�x sin�x;

where k = 0; 1; 2; ::: and �; � 2 R. A particular solution yp is given by

yp = xs fQ (x) e�x cos�x+R (x) e�x sin�xg ;

where Q (x) =
Pk

j=0Bjx
j and R (x) =

Pk
j=0 Cjx

j are polynomials in x of degree
k, and with undetermined coe¢ cients Bj and Cj which can be determined by sub-
stitution in the equation, and �nally, where s is the multiplicity of the root � + i�
in the characteristic polynomial P (r) associated with L [y] (if �+ i� is not a root,
then its multiplicity is 0).

Example 24. The form of a particular solution yp to the equation

y00 + 2y0 + 2y = e�x cosx+ x2

is

yp = x1
�
Be�x cosx+ Ce�x sinx

�
+A2x

2 +A1x+A0;

since the characteristic polynomial r2+2r+2 has a conjugate pair of roots �2�
p
4�8

2 =
�1� i with multiplicity s = 1.
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Example 25. The form of a particular solution yp to the equation

y000 � 2y00 + y0 = x� ex

is

yp = x1 (A0 +A1x) + x
2 (Bex) = A0x+A1x

2 +Bx2ex;

since the characteristic polynomial

r3 � 2r2 + r = r (r � 1)2

has root r = 0 with multiplicity s = 1, and root r = 1 with multiplicity s = 2.

4. Variation of parameters

Suppose L is an nth order linear di¤erential operator as in (2.2). We present
a general method, called variation of parameters, that applies even in the variable
coe¢ cient case, for solving the nonhomogeneous equation

L [y] = g;

provided we know a fundamental solution set for the associated homogeneous equa-
tion L [y] = 0. In the special case that L has constant coe¢ cients, then we do
indeed know a fundamental solution set for L [y] = 0 (if we can factor the charac-
teristic polynomial), and so the method of variation of parameters always applies
in this case, and for any choice of forcing function, not just those in the space F
introduced in the previous section.

The idea in this method is to consider a fundamental solution set fy1; :::; yng
to L [y] = 0, and replace the constants cj in the general solution to L [y] = 0,

yc (x) = c1y1 (x) + :::+ cnyn (x) ;

with functions vj (x) in the hope that for some choice of vj�s the function

yp (x) = v1 (x) y1 (x) + :::+ vn (x) yn (x)

will be a particular solution to the nonhomogeneous equation L [y] = g. This does
indeed work, and the functions vj can be determined by substitution in the nonho-
mogeneous equation, followed by quite lengthy calculations. In order to minimize
both the e¤ort and the chance of computational error, we can greatly streamline
the organization of the calculations by returning to the connection between nth

order equations and �rst order n � n systems as discussed earlier. This approach
also proves that the method will always succeed.

Recall that y (x) solves

y(n) + an�1 (x) y
(n�1) + :::+ a1 (x) y

0 + a0 (x) y � L [y] = g (x) ;

if and only if the vector function

y �

2666664
y1
y2
...

yn�1
yn

3777775 =
2666664

y
y0

...
y(n�2)

y(n�1)

3777775
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solves the n� n system

y0 (x) =

266664
0 1

0 1
0 1
0 1

�a0 (x) �a1 (x) �an�1 (x)

377775
2666664

y1
y2
...

yn�1
yn

3777775+
2666664

0
0
...
0

g (x)

3777775
� M (x)y (x) + g (x) ;

where g (x) �

264 0
...

g (x)

375. If f'1; :::; 'ng is a fundamental solution set for L [y] =
0, then each vector function 'j �

264 'j (x)
...

'
(n�1)
j (x)

375 solves the equation '0j (x) =
M (x)'j (x), and so if we arrange the columns 'j into a matrix

� �

264 '1 (x) � � � 'n (x)
...

. . .
...

'
(n�1)
1 (x) � � � '

(n�1)
n (x)

375 ;
we get the matrix equation

�0 (x) =M (x)� (x) :

In the simple case n = 2 we can write this out in full as

d

dx

�
'1 (x) '2 (x)
'01 (x) '02 (x)

�
=

�
0 1

�a0 (x) �a1 (x)

� �
'1 (x) '2 (x)
'01 (x) '02 (x)

�
:

Now we treat matrices like numbers, and with v �

264 v1 (x)
...

vn (x)

375, we compute
using the product rule that

(� (x)v (x))
0
= �0 (x)v (x) +� (x)v0 (x)

= M (x)� (x)v (x) +� (x)v0 (x) :

Thus the vector function y (x) = � (x)v (x) satis�es the system

y0 (x) =M (x)y (x) + g (x) ;

if and only if the derivative v0 (x) of the vector function v (x) satis�es

� (x)v0 (x) = g (x) :

If we can solve this latter equation, then the �rst component y (x) of the vector
y (x) = � (x)v (x), which is

y (x) = '1 (x) v1 (x) + :::+ 'n (x) vn (x) ;

is a solution to the nonhomogeneous nth order equation

L [y] = g:
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But the determinant of the matrix� (x) is precisely theWronskianW ('1; :::; 'n) (x)
of the solutions in the fundamental solution set, so is nonvanishing for all x! Thus
the matrix � (x) is invertible for all x, and we can solve for v0 (x) and then v (x):

v0 (x) = � (x)
�1
g (x) ;

v (x) =

Z
� (x)

�1
g (x) dx:

Remark 3. This latter formula

v (x) =

Z
� (x)

�1
g (x) dx;

is particularly easy to remember, along with the fact that the �rst component in
� (x)v (x) is then a particular solution yp to the nonhomogeneous equation L [y] =
g. In fact, in the order one case y0 + a0y = g, we see that this formula is the usual
integrating factor formula,

� (x) y (x) =

Z
� (x) g (x) dx;

once we have observed that the integrating factor � (x) = e
R
a0(x)dx is the reciprocal

of the solution ' (x) = e�
R
a0(x)dx to the homogeneous equation y0 + a0y = 0; then

v = �y and ��1 = 1
' = �.

4.1. The second order case. In the special case n = 2 these calculations
can be written out in full, making them perhaps more transparent. Repeating the
above with n = 2 we have from the product rule,

d

dx

��
'1 '2
'01 '02

� �
v1
v2

��
=

�
d

dx

�
'1 '2
'01 '02

���
v1
v2

�
+

�
'1 '2
'01 '02

�
d

dx

�
v1
v2

�
Thus the vector function �

y
y0

�
=

�
'1 '2
'01 '02

� �
v1
v2

�
satis�es the system

d

dx

�
y
y0

�
=

�
0 1
�a0 �a1

� �
y
y0

�
+

�
0
g

�
if and only if �

'1 '2
'01 '02

� �
v1
v2

�0
=

�
0
g

�
:

But det
�
'1 '2
'01 '02

�
= W ('1; '2) is nonzero, thus the matrix

�
'1 '2
'01 '02

�
is in-

vertible, and so we can solve for
�
v1
v2

�0
:

�
v1
v2

�0
=

�
'1 '2
'01 '02

��1 �
0
g

�
:



4. VARIATION OF PARAMETERS 63

Now we use the familiar formula for inverting a 2� 2 matrix,�
a b
c d

��1
=

1

ad� bc

�
d �b
�c a

�
;

to obtain�
v1
v2

�0
=

1

W ('1; '2)

�
'02 �'2
�'01 '1

� �
0
g

�
=

1

W ('1; '2)

�
�'2g
'1g

�
;

and hence �nally (
v1 (x) = �

R
1

W('1;'2)(x)
'2 (x) g (x) dx

v2 (x) =
R

1
W('1;'2)(x)

'1 (x) g (x) dx
:

Thus a particular solution yp to the nonhomogeneous equation L [y] = g is given

by the �rst component of
�
'1 '2
'01 '02

� �
v1
v2

�
, which is

yp (x) = '1 (x) v1 (x) + '2 (x) v2 (x)(4.1)

= �'1 (x)
Z x 1

W ('1; '2) (s)
'2 (s) g (s) ds

+'2 (x)

Z x 1

W ('1; '2) (s)
g (s) ds

=

Z x 1

W ('1; '2) (s)
f'1 (s)'2 (x)� '1 (x)'2 (s)g g (s) ds

=

Z x 1

W ('1; '2) (s)
det

�
'1 (s) '2 (s)
'1 (x) '2 (x)

�
g (s) ds;

or written out in full,

(4.2) yp (x) =

Z x det

�
'1 (s) '2 (s)
'1 (x) '2 (x)

�
det

�
'1 (s) '2 (s)
'01 (s) '02 (s)

� g (s) ds:
Remark 4. We can use Abel�s formula

W ('1; '2) (s) = e
�
R s
s0
a1W ('1; '2) (s0)

to calculate the Wronskian, but we must be careful when calculating a particular
solution in formula (4.1), to use the exact value of the Wronskian, and not just an
arbitrary multiple of the function e�

R s a1 .
Example 26. To �nd a particular solution to the equation

y00 + 4y = 3 cscx;

we compute the players in formula (4.2) above. We start with a fundamental solu-
tion set for y00 + 4y = 0, for which we can take

f'1 (x) ; '2 (x)g = fcos 2x; sin 2xg ;
and then compute the determinants

det

�
'1 (s) '2 (s)
'1 (x) '2 (x)

�
= det

�
cos 2s sin 2s
cos 2x sin 2x

�
= cos 2s sin 2x� cos 2x sin 2s;
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and

det

�
'1 (s) '2 (s)
'01 (s) '02 (s)

�
= det

�
cos 2s sin 2s
�2 sin 2s 2 cos 2s

�
= 2 cos2 2s+ 2 sin2 2s = 2:

Thus (4.2), and the double angle formulas cos 2s = 1 � 2 sin2 s and sin 2s =
2 sin s cos s, give

yp (x) =

Z x cos 2s sin 2x� cos 2x sin 2s
2

3 csc sds

=
3

2

Z x
�
1� 2 sin2 s

�
sin 2x� cos 2x (2 sin s cos s)

sin s
ds

=
3

2
sin 2x

Z x

(csc s� 2 sin s) ds� 3
2
cos 2x

Z x

2 cos sds

=
3

2
sin 2x fln jcscx� cotxj+ 2 cosxg � 3 cos 2x sinx

=
3

2
sin 2x ln jcscx� cotxj+ 3 sinx;

since sin 2x cosx� cos 2x sinx = sin (2x� x).

5. Cauchy-Euler equations

There is one very special type of nth order equation with variable coe¢ cients
that we can solve explicitly, namely the Cauchy-Euler equation

(5.1) L [y] � anx
ny(n) + an�1x

n�1y(n�1) + :::+ a1xy
0 + a0y = g;

where the linear operator L [y] has coe¢ cients (akxk) that are constant (ak) mul-
tiples of monomials (xk) whose degree matches the order (k) of the derivative y(k).
This equation has a singular point at x = 0, and so from the existence and unique-
ness theorems, we can only expect solutions to be de�ned on the half lines (0;1)
and (�1; 0), and not at x = 0. We will con�ne our attention to x > 0, the case
x < 0 being similar.

The substitution x = et for x > 0 turns out to reduce the Cauchy-Euler equa-
tion (5.1) to a constant coe¢ cient equation, that we can then solve using the tech-
niques in the previous sections. Indeed, using the chain rule

dx

dt
= et = x;

dt

dx
=

1
dx
dt

=
1

x
;

d

dx
=

dt

dx

d

dt
=
1

x

d

dt
;
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repeatedly then gives

dy

dx
=

d

dx
y =

1

x

d

dt
y =

1

x

dy

dt
;

d2y

dx2
=

d

dx

dy

dx
=
1

x

d

dt

�
1

x

dy

dt

�
=

1

x

�
� 1

x2
x
dy

dt
+
1

x

d2y

dt2

�
=
1

x2

�
d2y

dt2
� dy

dt

�
;

d3y

dx3
=

d

dx

d2y

dx2
=
1

x

d

dt

�
1

x2
d2y

dt2
� 1

x2
dy

dt

�
=

1

x

�
� 2

x3
x
d2y

dt2
+
1

x2
d3y

dt3
+ 2

1

x3
x
dy

dt
� 1

x2
d2y

dt2

�
=

1

x3

�
d3y

dt3
� 3d

2y

dt2
+ 2

dy

dt

�
;

...

and

a1xy
0 = a1

dy

dt
+ a0y;(5.2)

a2x
2y00 + a1xy

0 + a0y = a2

�
d2y

dt2
� dy

dt

�
+ a1

dy

dt
+ a0y

= a2
d2y

dt2
+ (a1 � a2)

dy

dt
+ a0y;

a3x
3y000 + a2x

2y00 + a1xy
0 + a0y = a3

�
d3y

dt3
� 3d

2y

dt2
+ 2

dy

dt

�
+a2

d2y

dt2
+ (a1 � a2)

dy

dt
+ a0y

= a3
d3y

dt3
+ (a2 � 3a3)

d2y

dt2
+ (a1 � a2 + 2a3)

dy

dt
+ a0y;

...

and so by induction we see that

L [y] = bn
dny

dtn
+ bn�1

dn�1y

dtn�1
+ :::b1

dy

dt
+ b0y;

where b0; b2; :::bn are certain constant coe¢ cients depending on the ak�s. Now the
�rst and last coe¢ cients are easily identi�ed as b0 = a0 and bn = an, but the
formulas for the intermediate coe¢ cients bk are not evident at this point. It turns
out however that there is an easy method for computing these constants bk that we
will discover in a moment, so we leave them alone for now.

By Theorem 8 a fundamental solution set for equation (5.1) can be written
down once we have factored the characteristic polynomial of the constant coe¢ cient
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operator,

P (r) = bnr
n + bn�1r

n�1 + :::b1r + b0

= (r � r1)k1 (r � r2)k2 ::: (r � rM )kM

�f(r � [�1 + i�1]) (r � [�1 � i�1])g
`1 ::: f(r � [�N + i�N ]) (r�� [�N � ib�N ])g

`N ;

where the rj , �j , �j are all real numbers, and

n = k1 + :::+ kM + 2`1 + :::+ 2`N :

We replace all the x�s in the fundamental solution set (3.3) by t�s, and then use our
substitution x = et to plug in the identities

ert = xr and tkert = (lnx)k xr;

cos�t = cos (� lnx) and sin�t = sin (� lnx) :

The result is that the set of n functions

xr1 ; (lnx)xr1 ; ::: (lnx)
k1�1 xr1 ;(5.3)

xr2 ; (lnx)xr2 ; ::: (lnx)
k2�1 xr2 ;

...

xrM ; (lnx)xrM ; ::: (lnx)
kM�1 xrM ;

x�1 cos (�1 lnx) ; (lnx)x
�1 cos (�1 lnx) ; ::: (lnx)

k1�1 x�1 cos (�1 lnx) ;

x�1 sin (�1 lnx) ; (lnx)x
�1 sin (�1 lnx) ; ::: (lnx)

k1�1 x�1 sin (�1 lnx) ;

...

x�N cos (�N lnx) ; (lnx)x
�N cos (�N lnx) ; ::: (lnx)

`N�1 x�N cos (�N1 lnx) ;

x�N sin (�N lnx) ; (lnx)x
�N sin (�N lnx) ; ::: (lnx)

`N�1 x�N sin (�N lnx) ;

is a fundamental solution set for the homogeneous Cauchy-Euler equation L [y] = 0.

Conclusion 3. A fundamental solution set for the Cauchy-Euler equation is
obtained from a fundamental solution set for the corresponding constant coe¢ cient
equation, by replacing x with lnx everywhere.

In order to minimize confusion, we will refer to the characteristic polynomial
P (r) of the associated constant coe¢ cient equation, as the indicial polynomial
P (�) associated with the Cauchy-Euler equation (5.1), and write the variable as
� instead of r to help us remember this. In some books the equation P (�) = 0 is
called the auxilliary equation. The above conclusion then suggests that in order to
determine the indicial polynomial P (�) associated with the Cauchy-Euler equation
(5.1), we can just substitute the function x� into the Cauchy-Euler equation (5.1):

L
�
x�
�
= anx

n
�
� (�� 1) ::: (�� (n� 1))x��n

�
+an�1x

n�1
h
� (�� 1) ::: (�� (n� 2))x��(n�1)

i
+ :::+ a1x�x

��1 + a0x
�

= x� fan� (�� 1) ::: (�� (n� 1)) + an�1� (�� 1) ::: (�� (n� 2)) + :::a1�+ a0g
= x�P (�) :

Thus L
�
x�
�
= 0 if and only if P (�) = 0 and we have discovered that the indicial

polynomial P (�) can be computed simply by plugging x� into the Cauchy-Euler
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equation and calculating derivatives. The case n = 2 is particularly simple:

P (�) = a2� (�� 1) + a1�+ a0;
which of course agrees with the characteristic polynomial P (r) = a2r

2+(a1 � a2) r+
a0 of the associated constant coe¢ cient equation, that is obtained from the third
line in (5.2). We are now equipped to solve the Cauchy-Euler equation in three
steps:

(1) Calculate the indicial polynomial P (�),
(2) Write down a fundamental solution set using (5.3),
(3) Solve the nonhomogeneous problem by the method of variation of para-

meters.

Example 27. To solve the nonhomogeneous equation

x2y00 + 5xy0 + 4y = x�1; x > 0;

we compute

P (�) = � (�� 1) + 5�+ 4 = �2 + 4�+ 4 = (�+ 2)
2
;

so that
�
x�2; (lnx)x�2

	
is a fundamental solution set for the homogeneous equa-

tion. To �nd a particular solution to the nonhomogeneous equation we set

yp = v1x
�2 + v2 (lnx)x

�2;

where

v (x) =

Z
� (x)

�1
g (x) dx;

with g (x) =
�

0
x�3

�
(remember to obtain g from the normalized equation!) and

� (x) =

�
x�2 (lnx)x�2

�2x�3 x�3 (1� 2 (lnx))

�
;

� (x)
�1

=
1

x�5

�
x�3 (1� 2 (lnx)) � (lnx)x�2

2x�3 x�2

�
=

�
x2 (1� 2 (lnx)) � (lnx)x3

2x2 x3

�
;

� (x)
�1
g (x) =

�
x2 (1� 2 lnx) � (lnx)x3

2x2 x3

� �
0
x�3

�
=

�
� lnx
1

�
:

Thus we have�
v1 (x)
v2 (x)

�
=

Z
� (x)

�1
g (x) dx =

Z �
� lnx
1

�
dx =

�
�x lnx+ x

x

�
;

and so the top component of

� (x)v (x) =

�
x�2 (lnx)x�2

�2x�3 x�3 (1� 2 (lnx))

� �
�x lnx+ x

x

�
=

�
x�1

� � �

�
is a particular solution, i.e. yp = x�1. Then the general solution is given by

y (x) = yp (x) + yc (x) = x�1 + c1x
�2 + c2 (lnx)x

�2; x > 0:

Remark 5. It is also possible in this example to use the method of undeter-
mined coe¢ cients, for the corresponding constant coe¢ cient equation, to see that a
particular solution yp has the form Ax�1, but in general we must use variation of
parameters.
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Example 28. To solve the homogeneous equation

x2y00 + xy0 + 9y = 0;

we compute

P (�) = � (�� 1) + �+ 9 = �2 + 9 = (�+ 3i) (�� 3i) ;
so that fcos (3 lnx) ; sin (3 lnx)g is a fundamental solution set. The general solution
is given by

y (x) = yc (x) = c1 cos (3 lnx) + c2 sin (3 lnx) ; x > 0:



CHAPTER 5

Power series solutions

In the previous chapter we showed how to successfully solve the nth order linear
equation (2.1),

L [y] = an (x) y
(n) + an�1 (x) y

(n�1) + :::+ a1 (x) y
0 + a0 (x) y = g (x) ;

in the following special cases:

� when the coe¢ cients ak (x) = ak are constants, and the forcing func-
tion g (x) � 0 vanishes, we can �nd a fundamental solution set � =
f'1; '2; :::'ng;

� when the coe¢ cients ak (x) = ak are constants, and the forcing function
g (x) has a special form, we can use undetermined coe¢ cients to �nd a
particular solution yp, and hence the general solution as well;

� when we have a fundamental solution set �, even when the coe¢ cients are
variable, we can use variation of parameters to �nd the general solution;

� when n = 2, and we know a nontrivial solution to the homogeneous equa-
tion L [y] = 0, we can use the method of reduction of order to �nd the
general solution. Abel�s formula can be used instead if we only want to
�nd a second independent solution to the homogeneous equation.

Thus in the absence of any special information regarding solutions, the only
case we can always solve so far is the case when the coe¢ cients ak (x) = ak are
constant. In the general case of variable coe¢ cients, we cannot �nd closed forms for
the solutions, despite the fact that their existence is guaranteed by the Existence
and Uniqueness Theorems. But for a very large class of equations with �nice�
variable coe¢ cients, we can always �nd solutions in the form of power series, i.e.
solutions y (x) having the form

y (x) =
1X
n=0

cn (x� x0)n(0.4)

= c0 + c1 (x� x0) + c2 (x� x0)2 + :::
for �R < x� x0 < R;

where

(1) x0 is a real number called the center of the power series expansion, and
(2) the cn are real numbers called the power series coe¢ cients, and
(3) R is a positive real number, perhaps in�nity, called the radius of conver-

gence of the power series, such that the series
P1

n=0 cn (x� x0)
n converges

for all x 2 (x0 �R; x0 +R), called the interval of convergence of the power

69
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series, i.e.

lim
N!1

NX
n=0

cn (x� x0)n exists for all �R < x� x0 < R:

A function y (x), that is de�ned by a power series as above, is said to be
analytic at the point x0. To be precise, y (x) is analytic at a point x0 if it is de�ned
in some nontrivial open interval (x0 �R; x0 +R) centered at x0, and is given by a
convergent power series as in (0.4). The theory of power series is covered in detail
in virtually every �rst year calculus book, and in particular, in the book by James
Stewart, to which we refer the reader. Before describing the theory surrounding
power series solutions to linear di¤erential equations, we apply the method to Airy�s
equation in order to focus our thoughts:

(0.5) y00 � xy = 0; �1 < x <1:

Here we hope to solve the equation with power series of the form

(0.6) y (x) =

1X
n=0

cnx
n; �1 < x <1;

in which the series is centered at x0 = 0, and the radius of convergence is R = 1
in�nite. The method we use is often called the method of undetermined series
coe¢ cients, and in analogy with the method of undetermined coe¢ cients discussed
in the previous chapter, we simply plug the guessed form (0.6) of the solution into
the equation and solve for the coe¢ cients cn. So we need to know how to compute
both y00 and xy when y is a power series.

Since a power series can be di¤erentiated term by term within its interval of
convergence, we have

y0 (x) =
d

dx

�
c0 + c1x+ c2x

2 + c3x
3 + :::

	
=

d

dx
c0 +

d

dx
c1x+

d

dx
c2x

2 +
d

dx
c3x

3 + :::

= 0 + c1 + c22x+ c33x
2 + :::

= c1 + 2c2x+ 3c3x
2 + :::;

equivalently

y0 (x) =
d

dx

( 1X
n=0

cnx
n

)

=
1X
n=0

d

dx
cnx

n

=

1X
n=0

cnnx
n�1

=

1X
n=1

ncnx
n�1;
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and by another application of term by term di¤erentiation,

y00 (x) =
d

dx

�
c1 + 2c2x+ 3c3x

2 + :::
	

=
d

dx
c1 +

d

dx
2c2x+

d

dx
3c3x

2 + :::

= 0 + 2c2 + c36x+ :::

= 2c2 + 6c3x+ :::;

equivalently

y00 (x) =
d

dx
y0 (x) =

d

dx

( 1X
n=1

ncnx
n�1

)

=
1X
n=1

d

dx
cnnx

n�1

=
1X
n=1

cnn (n� 1)xn�2

=
1X
n=2

n (n� 1) cnxn�2:

By the rule for multiplying series we have

xy = x
�
c0 + c1x+ c2x

2 + c3x
3 + :::

	
= c0x+ c1x

2 + c2x
3 + c3x

4 + :::

equivalently

xy = x
1X
n=0

cnx
n =

1X
n=0

xcnx
n =

1X
n=0

cnx
n+1:

If we now substitute these two expressions into Airy�s equation we get

0 = 2c2 + 6c3x+ 24c4x
2 + :::

�c0x+ c1x2 + c2x3 + c3x4 + :::
= 2c2 + (6c3 � c0)x+ (24c4 � c1)x2 + :::

equivalently

0 = y00 � xy =
1X
n=2

n (n� 1) cnxn�2 �
1X
n=0

cnx
n+1:

Now the �rst form, in which we write out the initial terms, is useful for �seeing�
what is going on, and by equating coe¢ cients of like powers of x (all the coe¢ cients
on the left side vanish) we see that c2 = 0, c3 = 1

6c0, and c4 =
1
24c1; but this form is

not su¢ ciently explicit to help us easily solve for the remainder of the coe¢ cients
cn. Instead we would like to use the second form involving the in�nite summation
notation

P
. But a di¢ culty here is that the powers of x don�t match in the two

series, namely the series for y00 has xn�2 while the series for xy has xn+1. We
remedy this situation by shifting the index of summation so as to have xn appear
in both series.
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In the series for y00, this can be accomplished by making the substitution n =
k + 2,

y00 =
1X
n=2

n (n� 1) cnxn�2

=
1X

k+2=2

(k + 2) (k + 2� 1) ck+2xk+2�2

=
1X
k=0

(k + 2) (k + 1) ck+2x
k

=
1X
n=0

(n+ 2) (n+ 1) cn+2x
n;

where in the last line we have replaced the dummy index k by the dummy index n.
Once familiar with the process of shifting the index of summation, one can simply
replace n with n+2 here, and skip the introduction of the auxilliary dummy index
k. The skeptical reader should write out the initial terms in the above lines to see
what is going on here.

In the series for xy this is accomplished by the substitution n = k � 1,

xy =
1X
n=0

cnx
n+1

=
1X

k�1=0
ck�1x

k�1+1

=
1X
k=1

ck�1x
k

=
1X
n=1

cn�1x
n:

Now the two series have the same power xn appearing, and they only di¤er in
where the summation starts, namely the shifted series for y00 now starts at n = 0,
but the shifted series for xy starts at n = 1. This means that we have to separate
out the case n = 0 and write

0 =
1X
n=0

(n+ 2) (n+ 1) cn+2x
n �

1X
n=1

cn�1x
n

= (0 + 2) (0 + 1) c0+2x
0 +

1X
n=1

f(n+ 2) (n+ 1) cn+2xn � cn�1xng

= 2c2 +

1X
n=1

f(n+ 2) (n+ 1) cn+2 � cn�1gxn:
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Next, we equate coe¢ cients of like powers of x on each side - and all the coe¢ cients
on the left side are 0 - to obtain

0 = 2c2;

0 = 6c3 � c0;
0 = 12c4 � c1;
0 = 20c5 � c2;

...

0 = (n+ 2) (n+ 1) cn+2 � cn�1;
...

which we can write as a recursion relation,

c2 = 0;(0.7)

cn+2 =
1

(n+ 2) (n+ 1)
cn�1; n � 1:

This speci�es all of the coe¢ cients cn for n � 2 in terms of the �rst two coe¢ cients
c0 and c1, which are left unrestricted. Thus we see that for every choice of constants
c0 and c1, we obtain a possible power series solution to Airy�s equation having the
form y (x) =

P1
n=0 cnx

n, where the coe¢ cients cn satisfy the recurrence relation
(0.7). We don�t yet know these series are actually solutions since we don�t even
know at this point if the series converge anywhere other than at x = 0.

This particular recurrence relation (0.7) can be explicitly solved by induction
as follows. In order to start with cn, we make the substitution n ! n � 2 in the
relation to get

cn =
1

n (n� 1)cn�3; n � 3;

and then, since cn�3 appears on the right side, we make the further substitution
n! n� 3 to get

cn�3 =
1

(n� 3) (n� 4)cn�6; n � 6;

so that we have

cn =
1

n (n� 1)cn�3

=
1

n (n� 1)
1

(n� 3) (n� 4)cn�6:

Continuing in this manner, for n = 3k we get by induction on k,

c3k =
1

3k (3k � 1)c3(k�1)

=
1

3k (3k � 1)
1

(3k � 3) (3k � 4)c3(k�2)

...

=
1

3k (3k � 1)
1

(3k � 3) (3k � 4) :::
1

(3) (2)
c0; k � 0;
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where it is understood that when k = 0, the empty product is 1. Similarly we have
for n = 3k + 1,

c3k+1 =
1

(3k + 1) (3k)

1

(3k � 2) (3k � 3) :::
1

(4) (3)
c1; k � 0;

where again, when k = 0, the empty product is 1. Finally

c3k+2 =
1

(3k + 2) (3k + 1)
:::

1

(5) (4)
c2 = 0; k � 0:

Thus we have now constructed the following possible series solutions where we
separate out the sums over n = 3k, 3k + 1 and 3k + 2:

y (x) =
1X
n=0

cnx
n

=
1X
k=0

c3kx
3k +

1X
k=0

c3k+1x
3k+1 +

1X
k=0

c3k+2x
3k+2

= c0

1X
k=0

�
1

3k (3k � 1)
1

(3k � 3) (3k � 4) :::
1

(3) (2)

�
x3k

+c1

1X
k=0

�
1

(3k + 1) (3k)

1

(3k � 2) (3k � 3) :::
1

(4) (3)

�
x3k+1

+

1X
k=0

0 � x3k+2

= c0y0 (x) + c1y1 (x) ;

where

y0 (x) =

1X
k=0

�
1

3k (3k � 1)
1

(3k � 3) (3k � 4) :::
1

(3) (2)

�
x3k �

1X
k=0

b3kx
3k;

y1 (x) =
1X
k=0

�
1

(3k + 1) (3k)

1

(3k � 2) (3k � 3) :::
1

(4) (3)

�
x3k+1 �

1X
k=0

b3k+1x
3k+1:

It remains to see if these possible series solutions actually converge for all
x 2 (�1;1), and moreover to a solution to Airy�s equation. For this we recall the
ratio test for series.

Lemma 4 (Ratio Test). A series
P1

n=0 an converges absolutely if

L � lim
n!1

����an+1an

���� < 1;
and diverges if L > 1.

To apply the Ratio Test to the power series y0 (x) =
P1

k=0 b3kx
3k, we write

ak � b3kx
3k
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and compute

L = lim
k!1

����ak+1ak

���� = lim
k!1

�����b3(k+1)x3(k+1)b3kx3k

����� = jxj3 limk!1

����b3(k+1)b3k

����
= jxj3 lim

k!1

�����
1

3(k+1)(3(k+1)�1)
1

(3(k+1)�3)(3(k+1)�4) :::
1

(3)(2)

1
3k(3k�1)

1
(3k�3)(3k�4) :::

1
(3)(2)

�����
= jxj3 lim

k!1

�����
1

3(k+1)(3(k+1)�1)

1

����� = 0 < 1:
It follows from the Ratio Test that the series for y0 (x) converges for all x 2
(�1;1). A similar calculation shows that the series for y1 (x) also converges
for all x 2 (�1;1).

Then we can show that both y0 (x) and y1 (x) are solutions to Airy�s equation
(0.5), by using the facts that term by term di¤erentiation and multiplication of
power series are valid within their open intervals of convergence. Finally, from

y0 (0) = b0 = 1; y00 (0) = 0;

y1 (0) = b1 = 0; y01 (0) = b1 = 1;

we see that the solutions y0 (x) and y1 (x) are linearly independent since their
Wronskian satis�es

W (y0; y1) (0) = det

�
y0 (0) y1 (0)
y00 (0) y01 (0)

�
= det

�
1 0
0 1

�
= 1 6= 0:

Thus fy0; y1g is a fundamental solution set, and the general solution of Airy�s
equation (0.5) is

y (x) = c0y0 (x) + c1y1 (x) ; x 2 (�1;1) :

Remark 6. For x < 0, we might expect that the Airy solutions y0 (x) and
y1 (x) behave qualitatively like the solutions to y00 + y = 0, namely cosx and sinx.
Similarly, for x > 0, we might expect y0 (x) and y1 (x) to behave qualitatively like the
solutions to y00�y = 0, namely coshx and sinhx. That this is roughly so can be seen
from the graphs of partial sums of the power series for y0 (x) and y1 (x). Pictured
below is the graph of the partial sum for y0 (x) of degree 30. It is a reasonably
accurate approximation to y0 (x) in the range �5:5 < x < 2, but for x < �6, the
graph of y0 (x) continues to oscillate like cosx.
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The graph of y =
P10

k=0 b3kx
3k.

1. Theory of power series solutions

We consider the problem of �nding a fundamental solution set for the nth order
homogeneous linear equation

(1.1) L [y] = an (x) y
(n) + an�1 (x) y

(n�1) + :::+ a1 (x) y
0 + a0 (x) y = 0;

where the variable coe¢ cients ak (x) are all analytic at some point x0. Once we
have a fundamental solution set to the homogeneous equation (1.1), we can use
the method of variation of parameters to solve the associated nonhomogeneous
equations, and so we work only with the homogeneous equation in this chaper.
Recall the de�nition of analytic:

Definition 3. A function a (x) is analytic at a point x0 if it is de�ned in a
nontrivial open interval (x0 �R; x0 +R) in which it is given by a convergent power
series centered at x0:

a (x) =
1X
n=0

an (x� x0)n ; for all x 2 (x0 �R; x0 +R) :

A function a (x) is analytic in an interval I = (b; c) if it is analytic at each point
x0 2 I. Here the interval I can be �nite or semi-in�nite or the entire real line.

Power series solutions are most easily dealt with when the point x0 is especially
�ordinary�.

Definition 4. We say that x0 is an ordinary point for the equation (1.1), if
all the coe¢ cients ak (x) are analytic at x0, and if an (x0) 6= 0. Otherwise we say
x0 is a singular point for the equation (1.1).

If x0 is an ordinary point for (1.1), we can write the equation (1.1) in normal
form

L [y] = y(n) +
an�1 (x)

an (x)
y(n�1) + :::+

a1 (x)

an (x)
y0 +

a0 (x)

an (x)
y = 0;
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where the normalized coe¢ cients ak(x)
an(x)

are all analytic at x0. Then the Existence
and Uniqueness Theorem applies to show that a fundamental solution set exists
on any common interval of de�nition of the normalized coe¢ cients. But we can
actually do better in this case, and obtain a fundamental solution set consisting of
analytic functions. But before stating the theorem, we point out that the de�nition
of ordinary and singular points given above applies as well to complex points x0 2 C.
This plays a role in determining the largest common radius of convergence for the
functions in our fundamental solution set. Here is the main theorem regarding
power series solutions about an ordinary point.

Theorem 10. Suppose x0 is an ordinary point for the equation (1.1). Then
there is a fundamental solution set fy1; y2; :::; yng where each yk has a power series
expansion about x0 with radius of convergence R > 0:

yk (x) =
1X
m=0

ck;m (x� x0)m ; x 2 (x0 �R; x0 +R) ; 1 � k � n;

and where R is the distance from x0 to the nearest singular point in the complex
plane C. Moreover, the coe¢ cients ck;m can be determined by substitution in the
equation (1.1).

1.1. Equivalence with an n�n system. In order to prove Theorem 10, we
again exploit the algebra of square matrices by considering the nth order equation
(1.1) as the n� n system (1.1):8>>>>><>>>>>:

y01 = y2
y02 = y3
...

...
...

y0n�1 = yn
y0n = f (x; y1; y2; :::; yn�1)

;

where f is given by the normalized form,

f (x; y1; y2; :::; yn�1) = �
�
an�1 (x)

an (x)
y(n�1) + :::+

a1 (x)

an (x)
y0 +

a0 (x)

an (x)
y

�
;

and the coe¢ cients ak(x)an(x)
are analytic at an ordinary point x0. In fact we will prove

the analogue of Theorem 10 for the general �rst order linear system of n equations
in n unknown functions fy1; y2; :::; yng,8>>>>><>>>>>:

y01 = f1 (x; y1; y2; :::; yn�1) = a1;1 (x) y1 + :::a1;n (x) yn
y02 = f2 (x; y1; y2; :::; yn�1) = a2;1 (x) y1 + :::a2;n (x) yn
...

...
...

...
...

y0n�1 = fn�1 (x; y1; y2; :::; yn�1) = an�1;1 (x) y1 + :::an�1;n (x) yn
y0n = fn (x; y1; y2; :::; yn�1) = an;1 (x) y1 + :::an;n (x) yn

:

If we de�ne the n� n matrix-valued function

A (x) �

26664
a1;1 (x) a1;2 (x) � � � a1;n (x)
a2;1 (x) a2;2 (x) � � � a2;n (x)
...

...
. . .

...
an;1 (x) an;2 (x) � � � an;n (x)

37775 ;
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and the solution vector

y (x) �

0BBB@
y1
y2
...
yn

1CCCA ;

we can write the n� n system as

y0 (x) =

0BBB@
y01
y02
...
y0n

1CCCA =

26664
a1;1 (x) a1;2 (x) � � � a1;n (x)
a2;1 (x) a2;2 (x) � � � a2;n (x)
...

...
. . .

...
an;1 (x) an;2 (x) � � � an;n (x)

37775
0BBB@

y1
y2
...
yn

1CCCA = A (x)y (x) :

Moreover, if we write a fundamental solution set (of column vector solutions)

� � fy1;y2; :::;yng =

8>>><>>>:
0BBB@

y1;1
y2;1
...

yn;1

1CCCA ;

0BBB@
y1;2
y2;2
...

yn;2

1CCCA ; :::;

0BBB@
y1;n
y2;n
...

yn;n

1CCCA
9>>>=>>>; ;

in the form of a matrix with columns yk,

� (x) �

26664
y1;1 (x) y1;2 (x) � � � y1;n (x)
y2;1 (x) y2;2 (x) � � � y2;n (x)
...

...
. . .

...
yn;1 (x) yn;2 (x) � � � yn;n (x)

37775
then the equation for the fundamental solution set � becomes the following matrix
equation,

�0 (x) =

26664
y01;1 (x) y01;2 (x) � � � y01;n (x)
y02;1 (x) y02;2 (x) � � � y02;n (x)
...

...
. . .

...
y0n;1 (x) y0n;2 (x) � � � y0n;n (x)

37775

=

26664
a1;1 (x) a1;2 (x) � � � a1;n (x)
a2;1 (x) a2;2 (x) � � � a2;n (x)
...

...
. . .

...
an;1 (x) an;2 (x) � � � an;n (x)

37775
26664
y1;1 (x) y1;2 (x) � � � y1;n (x)
y2;1 (x) y2;2 (x) � � � y2;n (x)
...

...
. . .

...
yn;1 (x) yn;2 (x) � � � yn;n (x)

37775
= A (x) � (x) ;

together with the linear independence (of the columns) condition

det� (x) 6= 0:

We say that the fundamental solution set � is normalized at x0 if the matrix � (x0)
is the identity matrix.

Here then is the power series solution theorem for � � � systems, where we
are writing the order of the system as � so as to permit the use of n as a dummy
variable in the series. We will also sometimes use the letter ' instead of c to denote
coe¢ cients.
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Theorem 11. Suppose the coe¢ cients aj;k (x) in the ��� matrix-valued func-
tion A (x) are all analytic at x0, and with radius of convergence at least � > 0. Then
there is a fundamental solution set � = fy1;y2; :::;y�g for the equation �0 = A�
normalized at x0, i.e. a matrix solution � (x) to the initial value problem

�0 (x) = A (x)� (x) ;(1.2)

� (x0) = I =

26664
1 0 � � � 0
0 1 � � � 0
...
...
. . .

...
0 0 � � � 1

37775 ;
where each component yj;k (x) of the matrix � (x) has a power series expansion
about x0 with radius of convergence R � �:

yj;k (x) =
1X
n=0

'j;k;n (x� x0)
n
; x 2 (x0 �R; x0 +R) ; 1 � j; k � �:

Moreover, the coe¢ cients 'j;k;n in the power series can be determined by substitu-
tion in the equation (1.2).

We will write the collection of series yj;k (x) =
P1

n=0 'j;k;n (x� x0)
n in matrix

form as

� (x) = [yj;k (x)]
�
j;k=1 =

" 1X
n=0

'j;k;n (x� x0)
n

#�
j;k=1

=
1X
n=0

�
'j;k;n

��
j;k=1

(x� x0)n �
1X
n=0

�n (x� x0)n ;

where the matrix coe¢ cients �n are given by

�n �
�
'j;k;n

��
j;k=1

; n � 0:

Simliarly, if

aj;k (x) =
1X
n=0

aj;k;n (x� x0)n ; x 2 (x0 � �; x0 + �) ; 1 � j; k � n

we write

A (x) =
1X
n=0

An (x� x0)n ;

where
An � [aj;k;n]�j;k=1 ; n � 0:

1.2. The Root Test. Given a sequence of real numbers fsng1n=1, we say that
an extended real number L 2 [�1;1] is a subsequential limit of fsng1n=1 if there
is a subsequence fsnkg

1
k=1 of fsng

1
n=1 with

lim
k!1

snk = L:

We then de�ne the limit superior of a sequence fsng1n=1, denoted lim supn!1 sn,
to be the largest subsequential limit of fsng1n=1. Similarly, lim infn!1 sn is the
smallest subsequential limit of fsng1n=1. It is a standard theorem that both a largest
and a smallest subsequential limit always exist in the extended real numbers.



80 5. POWER SERIES SOLUTIONS

Example 29. The sequence
n
(�1)nn
n+1

o1
n=1

has two subsequential limits, �1,
and

lim sup
n!1

�
(�1)n n
n+ 1

�1
n=1

= 1;

lim inf
n!1

�
(�1)n n
n+ 1

�1
n=1

= �1:

Example 30. The sequence�
�1; 0; 1; �4

2
;�3
2
;�2
2
;�1
2
; 0;

1

2
;
2

2
;
3

2
;
4

2
;

�16
4
;�15

4
; :::;�1

4
; 0;

1

4
; :::;

15

4
;
16

4
; �64

8
;�63

8
; :::etc

�
has every extended real number as a subsequential limit, and its limit superior is
1, and its limit inferior is �1.

Here is the root test for series.

Lemma 5 (The Root Test). Let L = lim supn!1 janj
1
n . Then

P1
n=1 an con-

verges absolutely if L < 1, and diverges if L > 1.

Proof. Suppose L < 1 and �x any number R with L < R < 1. Since L is the

largest subsequential limit of
n
janj

1
n

o1
n=1

, it follows from a standard theorem that

there is N such that

janj
1
n < R; for all n � N:

But then janj < Rn for n � N , where
P1

n=0R
n = 1

1�R <1, and so the comparison
test shows that

P1
n=0 janj < 1. If on the other hand L > 1, �x any number R

with 1 < R < L. Since L is a subsequential limit of
n
janj

1
n

o1
n=1

, it follows that

there are in�nitely many n for which janj
1
n > R, hence in�nitely many n for which

janj > Rn > 1. Thus the nth term an does not tend to 0 as n ! 1, and so the
series

P1
n=0 an diverges. �

We now have the following corollary for the radius of convergence of a power
series.

Corollary 1. Let L = lim supn!1 janj
1
n . Then the radius of convergence of

the power series
P1

n=0 an (x� x0)
n is R = 1

L , where we interpret
1
0 as1, and

1
1as

0.

Proof. For any x let

L (x) � lim sup
n!1

jan (x� x0)nj
1
n = jx� x0j lim sup

n!1
janj

1
n = jx� x0jL:

By the Root Test, the series
P1

n=0 an (x� x0)
n converges if jx� x0jL = L (x) < 1,

and diverges if jx� x0jL = L (x) > 1; i.e. converges if jx� x0j < 1
L = R, and

diverges if jx� x0j > 1
L = R. Thus the radius of convergence of

P1
n=0 an (x� x0)

n

is R. �
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Both the Root Test and its corollary for power series extend to matrix-valued
series if we use the following de�nition for the absolute value (or norm) of a matrix
A = [aj;k]

n
j;k=1:

kAk �



[aj;k]nj;k=1


 =









264 a1;1 � � � a1;n

...
. . .

...
an;1 � � � an;n

375







 =

vuut nX
j;k=1

(aj;k)
2
:

In particular we state without proof the corollary for matrix-valued power series.

Proposition 1. Let fAng1n=0 be a sequence of square matrices and set

L = lim sup
n!1

kAnk
1
n :

Then the radius of convergence of the matrix-valued power series
1X
n=0

An (x� x0)n

is R = 1
L , i.e. the series

P1
n=0An (x� x0)

n converges (absolutely) if jx� x0j < R,
and diverges if jx� x0j > R.

1.3. Proof of the power series solution theorem. In our proof of Theorem
11, we �rst demonstrate just the existence of some positive radius of convergence
R for the series � (x) =

P1
n=0 �n (x� x0)

n, and defer the proof that R � � to
the �nal subsection, as it involves a tricky induction. Moreover, we �rst give the
complete details of this assertion only in the case n = 1, when the matrices are
1� 1, hence just numbers. But the proof we give uses only standard properties of
real-valued series that extend readily to matrices and their norms, and in the next
subsection we sketch how to prove the case n > 1. Finally we assume without loss
of generality that x0 = 0.

So the scalar initial value problem corresponding to (1.2) is

(1.3)
�
'0 (x) ; = a (x)' (x)
' (0) = 1

;

where we assume that a (x) =
P1

n=0 anx
n has radius of convergence � > 0. We

begin by assuming there is a power series solution

' (x) =
1X
n=0

'nx
n

and plug it into the equation to get
1X
n=0

(n+ 1)'n+1x
n =

1X
n=1

n'nx
n�1 = '0 (x)

= a (x)' (x) =

 1X
k=0

akx
k

! 1X
`=0

'`x
`

!

=
1X

k;`=0

ak'`x
k+` =

1X
n=0

 1X
k+`=n

ak'`

!
xn:
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Equating coe¢ cients of like powers of x gives the recurrence relation

(n+ 1)'n+1 =
1X

k+`=n

ak'`; n � 0;

which after sending n! n+ 1, we can write as

'n =
1

n

1X
k+`=n�1

ak'`; n � 1:

The initial condition ' (0) = 1 implies that '0 = ' (0) = 1.
If we solve for the �rst few coe¢ cients we get

'0 = 1;

'1 =
1

1

1X
k+`=1�1

ak'` = a0'0 = a0;

'2 =
1

2

1X
k+`=2�1

ak'` =
1

2
(a0'1 + a1'0) =

1

2

�
a20 + a1

�
;

'3 =
1

3

1X
k+`=3�1

ak'` =
1

3
(a0'2 + a1'1 + a2'0)

=
1

6

�
a30 + a0a1

�
+
1

3
a1a0 +

1

3
a2:

This general recursion is di¢ cult to solve, but there is an estimate we can make on
the size of the coe¢ cients 'n if we use the information we have on the sequence
fakg1k=0, namely that

lim sup
k!1

jakj
1
k =

1

�
<1:

From this it follows in particular that the sequence
n
jakj

1
k

o1
k=0

, and so also
n
jakj

1
k+1

o1
k=0

,

is bounded, say by M <1:

jakj
1

k+1 �M equivalently jakj �Mk+1; for all k � 0:
If we use this estimate in the formulas above we get,

j'1j = ja0j �M;

j'2j =
1

2
ja0'1 + a1'0j �

1

2

�
MM +M2

�
=M2;

j'3j =
1

3
ja0'2 + a1'1 + a2'0j �

1

3

�
MM2 +M2M +M3

�
=M3;

which suggests that in general we have

(1.4) j'nj �Mn; n � 0:
And indeed, this can be proved by induction:

j'nj =
����� 1n

1X
k+`=n�1

ak'`

����� � 1

n

1X
k+`=n�1

jak'`j �
1

n

1X
k+`=n�1

Mk+1M ` =Mn;

where we have used the induction assumption j'`j �M ` for ` strictly less than n,
together with the fact that there are exactly n summands in the sum

P1
k+`=n�1

since both k and ` are nonnegative.
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From the estimate (1.4) we obtain

lim sup
n!1

j'nj
1
n �M <1;

and hence from Corollary 1, that the radius of convergence R of the power series
' (x) =

P1
n=0 'nx

n satis�es R � 1
M > 0. It now follows from standard theorems

on power series that ' (x) solves the intial value problem (1.3) for jxj < R.

1.4. The higher order case. The above proof generalizes easily to higher
orders. Here is a sketch of the arguments adapted to �� � square matrices. If we
plug the matrix-valued series � (x) =

P1
n=0 �nx

n into the matrix equation (1.2)
and use A (x) =

P1
n=0Anx

n, we obtain

1X
n=0

(n+ 1)�n+1x
n = �0 (x) = A (x) � (x)

=

 1X
k=0

Akx
k

! 1X
`=0

�`x
`

!

=
1X
n=0

 X
k+`=n

Ak�`

!
xn;

which gives the following recursion relation for the matrix coe¢ cients �n:

(1.5) �n =
1

n

X
k+`=n�1

Ak�`:

Now the matrix-valued series
P1

k=0Akx
k converges for jxj < � by assump-

tion, and so the Root Test for matrix-valued series, Proposition 1, shows that

lim supk!1 kAkk
1
k � 1

� , from which it follows that
n
kAkk

1
k

o1
k=0

and also
n
kAkk

1
k+1

o1
k=0

are sequences bounded by some M <1:

kAkk �Mk+1; for all k � 0:

Just as before, we obtain from this by induction on n that

k�nk �Mn k�0k =Mn
p
�; n � 0:

Indeed,

k�nk =





 1n

1X
k+`=n�1

Ak�`






 � 1

n

1X
k+`=n�1

kAk�`k �
1

n

1X
k+`=n�1

Mk+1M `
p
� =Mn

p
�;

where this time we have used the multiplicativity of the norm on matrices, kABk �
kAk kBk, together with the induction assumption k�`k � M `

p
� for ` < n. Note

that k�0k = k�� � identityk =
p
�.

Thus

lim sup
n!1

k�nk
1
n � lim sup

n!1

�
Mn

p
�
� 1
n =M;

and so Proposition 1 shows that the matrix-valued series
P1

n=0 �nx
n has radius

of convergence R � 1
M > 0, and standard results on series now show that � (x) =P1

n=0 �nx
n is a solution to the initial value problem (1.2) with x0 = 0 for jxj < R.
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1.5. The optimal estimate on R. We end this section on the theory of
power series with a sketch of the tricky induction needed to prove the optimal
inequality

R � �

for the radius of convergence R of the series
P1

n=0 �nx
n in Theorem 11.

Start by choosing positive numbers S and T such that 1
� < S < T , and divide

the recursion relation (1.5) by Tn to obtain

�n
Tn

=
1

n

X
k+`=n�1

�
Ak
T k+1

��
�`
T `

�
=
1

n

n�1X
k=0

�
Ak
T k+1

��
�n�k�1
Tn�k�1

�
:

Since lim supk!1 kAkk
1
k = 1

� < S, we have kAkk � Sk+1 for k su¢ ciently large, say
k � m. And of course we have the estimate established in the previous subsection
in terms of M :

kAkk �Mk+1 for all k � 0:
Altogether then, for n � m we have the estimate



�nTn





 � 1

n

m�1X
k=0





 Ak
T k+1









�n�k�1Tn�k�1





+ 1

n

n�1X
k=m





 Ak
T k+1









�n�k�1Tn�k�1






� 1

n

m�1X
k=0

�
M

T

�k+1 



�n�k�1Tn�k�1





+ 1

n

n�1X
k=m

�
S

T

�k+1 



�n�k�1Tn�k�1






�

 
1

n

m�1X
k=0

�
M

T

�k+1!
sup

0�`�n�1





�`T `




+

 
1

n

n�1X
k=m

�
S

T

�k+1!
sup

0�`�n�1





�`T `






=

 
1

n

m�1X
k=0

�
M

T

�k+1
+

�
S

T

�m+1
1

n

n�1X
k=m

�
S

T

�k�m!
sup

0�`�n�1





�`T `




 :

Now with m �xed, we choose N so large that

1

N

m�1X
k=0

�
M

S

�k+1
� 1�

�
S

T

�m+1
:

Thus using 1
n

Pn�1
k=m

�
S
T

�k�m � 1, we have for n � N that

1

n

m�1X
k=0

�
M

T

�k+1
+

�
S

T

�m+1
1

n

n�1X
k=m

�
S

T

�k�m
� 1

N

m�1X
k=0

�
M

S

�k+1
+

�
S

T

�m+1
� 1;

and hence

(1.6)





�nTn




 � sup

0�`�n�1





�`T `




 ; n � N:

Induction on n now shows that for n � 0 we have

(1.7)





�nTn




 � sup

0�`�N





�`T `




 :

Indeed, the inequality (1.7) is trivial for 0 � n � N , and for n > N (1.6) gives



�nTn




 � sup

0�`�n�1





�`T `




 � sup

0�`�N





�`T `




 ;
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by the induction assumption.
From the inequality (1.7), we thus obtain

k�nk � Tn sup
0�`�N



T�`�`

 = CTn;

where C = sup0�`�N


T�`�`

 is independent of n, and hence
lim sup

n!1
k�nk

1
n � lim sup

n!1
(CTn)

1
n = T:

Proposition 1 now shows that the radius of convergence R of
P1

n=0 �nx
n satis�es

R � 1
T . Since T > 1

� can be chosen arbitrarily close to
1
� , we conclude that

R � 1
1
�

= �.

2. Regular singular points

Every point x0 on the real line is an ordinary point for Airy�s equation

y00 � xy = 0; �1 < x <1;
the prototypical example of the simplest higher order equation with variable coef-
�cients. An almost equally simple example is the equation

(2.1) x2y00 � y = 0; �1 < x <1:
However, if we plug a power series y =

P1
n=0 cnx

n centered at x0 = 0 into this
equation, we get

1X
n=2

n (n� 1) cnxn = x2
1X
n=2

n (n� 1) cnxn�2

= xy00 = y =

1X
n=0

cnx
n;

and equating coe¢ cients of like powers of x we get the recursion relation

0 = c0;

0 = c1;

n (n� 1) cn = cn; n � 2;
which gives cn = 0 for all n! Thus, apart from the trivial solution, there are no
power series solutions centered at x0 = 0 to the equation (2.1). The problem lies
in the fact that 0 is not an ordinary point for the equation (2.1).

On the other hand, (2.1) is a Cauchy-Euler equation with indicial polynomial

P (�) = � (�� 1)� 1 = �2 � �� 1
having roots

1�
p
1 + 4

2
:

We know from the previous chapter that a fundamental solution set for (2.1) with
x > 0 is given by n

x
1+

p
5

2 ; x�
1+

p
5

2

o
:

As we will see below, any equation of the form

(2.2) x2a2 (x) y
00 + xa1 (x) y

0 + a0 (x) y = 0;
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in which the functions ak (x) are analytic at 0, and

(2.3) a2 (0) = 1; a1 (0) = 0; a0 (0) = �1;
will have a fundamental solution set for x > 0 of the formn

x
1+

p
5

2 y0 (x) ; x
1+

p
5

2 y1 (x)
o
= fxr0y0 (x) ; xr1y1 (x)g ;

r0 �
1 +

p
5

2
; r1 �

1�
p
5

2
;

where y0 (x) and y1 (x) are analytic at x = 0, and where moreover, the coe¢ cients
cin in the power series expansions

yi (x) = 1 + c
i
1x+ c

i
2x
2 + :::; i = 1; 2;

can be computed by substitution in (2.2). Of course, if some x0 > 0 is an ordinary
point for (2.2), then we can �nd power series solutions centered at x0, but these
power series will have their intervals of convergence limited by the singular point at
0, a defect avoided by the solutions xr0y0 (x) and xr1y1 (x). Even more importantly,
in some applications a regular singular point has special physical signi�cance, such
as in Bessel�s equation for a radially vibrating circular drumskin (treated below), in
which the regular singular point x = 0 corresponds to the center of the drumskin. In
such cases, an expansion about an ordinary point, away from the point of physical
signi�cance, does not give useful information regarding the physical nature of the
solutions.

Note that because of (2.3), the equation (2.2) can be considered as an analytic
perturbation of the Cauchy-Euler equation (2.1), where the analytic function

aj (x) = aj (0) + a
0
j (0)x+

1

2
a00j (0)x

2:::

replaces the constant function aj (0) for j = 2; 1; 0. Then we can also consider the
fundamental solution

xriyi (x) = xri + ci1x
ri+1 + ci2x

ri+2 + :::

= xri
�
1 + ci1x+ c

i
2x
2 + :::

�
to (2.2), as an analytic perturbation of the fundamental solution xri to the Cauchy-
Euler equation (2.1).

We restrict our attention here to second order homogeneous linear equations,

(2.4) A (x) y00 +B (x) y0 + C (x) y = 0;

with variable coe¢ cients. The reader should have no trouble however, in extending
the methods below to higher order equations. Recall that a point x0 is said to be
singular for the equation (2.4) if it is not ordinary, i.e. if it is not the case that
A (x), B (x) and C (x) are analytic at x0 with A (x0) 6= 0.

The nicest case of a singular point x0 is when A (x), B (x) and C (x) are analytic
at x0, and when in normal form,

(2.5) y00 +
B (x)

A (x)
y0 +

C (x)

A (x)
y = 0;

we can factor (x� x0)�1 out of B(x)A(x) and (x� x0)
�2 out of C(x)A(x) , i.e.

(2.6)
B (x)

A (x)
= (x� x0)�1 p (x) and

C (x)

A (x)
= (x� x0)�2 q (x) ;
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where p (x) and q (x) are analytic at x0.

Definition 5. We say that x0 is a regular singular point for the equation (2.4)
if x0 is not an ordinary point, and if (2.6) holds. Thus at a regular singular point x0,
the normal form (2.5) can be multiplied by (x� x0)2 and put in the Cauchy-Euler
form,

(2.7) (x� x0)2 y00 + (x� x0) p (x) y0 + q (x) y = 0:

It turns out that a fundamental solution set for equation (2.7) is typically an
analytic perturbation of a fundamental solution set for the associated Cauchy-Euler
equation

(x� x0)2 y00 + (x� x0) p (x0) y0 + q (x0) y = 0:
There is however, the possibility of a wrinkle when the roots of the indicial poly-
nomial

P (�) = � (�� 1) + p (x0)�+ q (x0) = 0
di¤er by exactly an integer. To see what is going on here, we investigate the case
x0 = 0 when the roots r1 and r2 are real.

Consider the equation

(2.8) x2y00 + xp (x) y0 + q (x) y = 0;

where

p (x) =
1X
k=0

pkx
k and q (x) =

1X
k=0

qkx
k

are analytic at 0, and the associated indicial polynomial

P (�) = � (�� 1) + p0�+ q0 = (�� r1) (�� r2) ;
r1 � r2;

has two real roots with r1 � r2. Motivated by the fact that the Cauchy-Euler
equation

(2.9) x2y00 + xp0y
0 + q0y = 0;

has a fundamental solution set�
fxr1 ; xr2g when r1 > r2

fxr1 ; xr1 lnxg when r1 = r2
;

we take y (x) to be a series of the form

y (x) = xr
1X
n=0

cnx
n =

1X
n=0

cnx
n+r;

which we think of as an analytic perturbation of xr. Using the products

q (x) y (x) =

 1X
k=0

qkx
k

! 1X
`=0

c`x
`+r

!
=

1X
n=0

 X
k+`=n

qkc`

!
xn+r;

xp (x) y0 (x) = x

 1X
k=0

pkx
k

! 1X
`=0

(`+ r) c`x
`+r�1

!

=
1X
n=0

 X
k+`=n

pk (`+ r) c`

!
xn+r;
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we plug y (x) into equation (2.8) to obtain

0 = x2
1X
n=0

(n+ r) (n+ r � 1) cnxn+r�2

+
1X
n=0

 X
k+`=n

pk (`+ r) c`

!
xn+r +

1X
n=0

 X
k+`=n

qkc`

!
xn+r

=
1X
n=0

(
(n+ r) (n+ r � 1) cn +

X
k+`=n

pk (`+ r) c` +
X

k+`=n

qkc`

)
xn+r:

Now in the expression in braces above, the coe¢ cient of highest index, namely
cn, occurs in three places, and collecting these three terms, we see that cn is mulit-
plied by

(n+ r) (n+ r � 1) + p0 (n+ r) + q0 = P (n+ r) ;

the indicial polynomial P (�) evalutated at � = n + r. If we equate coe¢ cients of
like powers of x we thus get the recursion relation

0 = P (r) c0;

0 = P (n+ r) cn +
X

k+`=n
`<n

pk (`+ r) c` +
X

k+`=n
`<n

qkc`; n � 1;

which can be solved for cn when P (n+ r) 6= 0:

0 = P (r) c0;

cn = � 1

P (n+ r)

0B@ X
k+`=n
`<n

pk (`+ r) c` +
X

k+`=n
`<n

qkc`

1CA ; n � 1:

At this point we should take note of the important role played by the indicial
polynomial P (�) associated with the Cauchy-Euler equation (2.9).

If we take r = r1, then P (r1) = 0 and the recursion relation leaves c0 unre-
stricted. Moreover, since r1 is the largest real root, P (n+ r) 6= 0 for all n � 1, and
the recursion relation inductively determines all of the coe¢ cients cn uniquely in
terms of c0. It can then be shown that the power series portion of

y1 (x) = xr1
1X
n=0

cnx
n

has optimal positive radius of convergence, and that the series y1 (x) is in fact a
solution to the equation (2.8).

Now we take r = r2 in y (x) = xr
P1

n=0 cnx
n, so that again P (r2) = 0, and

the recursion relation leaves c0 unrestricted. But now the wrinkle mentioned above
makes its appearance. If the di¤erence of the roots r1 � r2 is a positive integer N ,
then we cannot in general solve for the N th coe¢ cient cN in the recursion relation

cN = �
1

P (N + r2)

0B@ X
k+`=N
`<N

pk (`+ r2) c` +
X

k+`=N
`<N

qkc`

1CA :
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In fact if the complicated expression in curly brackets

(2.10) EN (r2) �
X

k+`=N
`<N

pk (`+ r2) c` +
X

k+`=N
`<N

qkc`

is nonzero, then the method stalls and there is no second independent solution of the
form y2 (x) = xr2

P1
n=0 cnx

n. On the other hand, if we happen to be lucky enough
that EN (r2) = 0, then the recursion relation leaves the coe¢ cient cN unrestricted,
and there is indeed a second linearly independent series solution of the form

y2 (x) = xr2
1X
n=0

cnx
n:

It turns out that in the (as yet) unresolved cases,
� r1 � r2 = 0,
� r1 � r2 = N 2 N with EN (r2) 6= 0,

there is a second linearly independent solution having the form

y2 (x) = a (lnx) y1 (x) + x
r1

1X
n=0

dnx
n:

This is certainly not surprising when r1 = r2, given that the Cauchy-Euler
equation (2.9) has fundamental solution set fxr1 ; xr1 lnxg in this case. The wrinkle
is that for general analytic coe¢ cients p (x) and q (x), a log factor can also arise in
the second solution for (2.8) when the roots of the indicial polynomial di¤er by an
integer.

Here is our theorem on fundamental solution sets centered at a regular singular
point. For convenience we state the theorem with x0 = 0.

Theorem 12. Suppose that x = 0 is a regular singular point for the equation

x2y00 + xp (x) y0 + q (x) y = 0:

Let r1 and r2 be the roots (either both real, possibly equal, or a complex conjugate
pair) of the indicial polynomial

P (�) = � (�� 1) + p (0)�+ q (0) :
(1) If r1 and r2 are real and do not di¤er by an integer, then there is a

fundamental solution set of the form(
y1 = xr1

1X
n=0

cnx
n; y2 = xr2

1X
n=0

dnx
n

)
; x > 0;

where the power series have optimal positive radius of convergence, and
the coe¢ cients cn and dn can be evaluated by substituting the series in the
equation, and deriving a recurrence relation for the coe¢ cients.

(2) If r1 = r2 is real, then there is a fundamental solution set of the form(
y1 = xr1

1X
n=0

cnx
n; y2 = (lnx) y1 (x) + x

r1

1X
n=1

dnx
n

)
; x > 0;

where the power series have optimal positive radius of convergence, and
the coe¢ cients cn and dn can be evaluated by substituting the series in the
equation, and deriving a recurrence relation for the coe¢ cients (note the
second series starts at n = 1).
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(3) If r1 and r2 are real and r1 � r2 is a positive integer, then there is a
fundamental solution set of the form

(
y1 = xr1

1X
n=0

cnx
n; y2 = a (lnx) y1 (x) + x

r2

1X
n=0

dnx
n

)
; x > 0;

where the power series have optimal positive radius of convergence, and
the coe¢ cients a, cn and dn can be evaluated by substituting the series in
the equation, and deriving a recurrence relation for the coe¢ cients.

(4) If r1 and r2 are a complex conjugate pair � � i�, then there is a funda-
mental solution set of the form

(
x� cos (� lnx)

1X
n=0

cnx
n; x� sin (� lnx)

1X
n=0

dnx
n

)
; x > 0;

where the power series have optimal positive radius of convergence. The
coe¢ cients cn and dn can be evaluated by substituting the series

P1
n=0 cnx

n+r

in the equation, deriving a recurrence relation for the complex-valued co-
e¢ cients when r = � � i�, and then taking real and imaginary parts of
the resulting series.

We will not prove this theorem, but instead give a couple of examples to illus-
trate the application of parts (1) and (2). Further applications of parts (2) and (3)
of the theorem are given in the next section on Bessel�s equation.

Example 31. The equation

2x2y00 � xy0 + (1 + x) y = 0; x > 0;

has a regular singular point at x = 0, and the associated indicial polynomial is

P (�) = 2� (�� 1)� �+ 1 = 2�2 � 3�+ 1
= (2�� 1) (�� 1) ;

and has real roots r1 = 1 and r2 = 1
2 . So part (1) of Theorem 12 above guarantees

a fundamental solution set fy1; y2g of the form

y1 = x

1X
n=0

cnx
n; y2 = x

1
2

1X
n=0

dnx
n; x > 0:
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If we substitute y =
P1

n=0 cnx
n+r into the equation, shift indices in the �nal sum,

and collect terms, we get

0 = 2x2
1X
n=0

(n+ r) (n+ r � 1) cnxn+r�2

�x
1X
n=0

(n+ r) cnx
n+r�1 +

1X
n=0

cnx
n+r +

1X
n=0

cnx
n+r+1

=
1X
n=0

2 (n+ r) (n+ r � 1) cnxn+r

�
1X
n=0

(n+ r) cnx
n+r +

1X
n=0

cnx
n+r +

1X
n=1

cn=1x
n+r

= P (r) c0 +
1X
n=1

fP (r + n) cn + cn�1gxn+r;

and hence, equating coe¢ cients, we obtain the recurrence relation

cn = �
1

P (r + n)
cn�1; n � 1:

Solving the recurrence we get

cn =
(�1)n

P (r + n)P (r + n� 1) :::P (r + 1)c0

=
(�1)n

(2 (r + n)� 1) (r + n� 1) ::: (2 (r + 1)� 1) (r + 1� 1)c0

=
(�1)n

(2r + 2n� 1) ::: (2r + 1) � (r + n� 1) ::: (r)c0; n � 1:

Now when r = 1 we get

cn =
(�1)n

(2n+ 1) (2n� 1) ::: (3) � (n) ::: (1)c0

=
(�1)n

(2n+ 1)!! n!
c0; n � 1;

and when r = 1
2 a similar calculation gives

cn =
(�1)n

(2n� 1)!! n!c0; n � 1:

Thus we have

y1 = x
1X
n=0

(�1)n

(2n+ 1)!! n!
xn;

y2 = x
1
2

1X
n=0

(�1)n

(2n� 1)!! n!x
n; x > 0:

Example 32. The equation

x2y00 � xy0 + (1� x) y = 0; x > 0;
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has a regular singular point at x = 0, and the associated indicial polynomial is

P (�) = � (�� 1)� �+ 1 = �2 � 2�+ 1 = (�� 1)2 ;

and has repeated real roots r1 = r2 = 1. So part (2) of Theorem 12 above guarantees
a fundamental solution set fy1; y2g of the form

y1 = x
1X
n=0

cnx
n; y2 = (lnx) y1 (x) + x

1X
n=0

dnx
n; x > 0:

Proceeding as in the example above we obtain that for a series
P1

n=0 cnx
n+r to be

a solution, we must have the recurrence relation

cn =
1

(n+ r � 1)2
cn�1; n � 1;

and so

cn =
1

(n!)
2 c0; n � 1:

Thus a �rst solution is

(2.11) y1 (x) =
1X
n=0

1

(n!)
2x

n+1;

and a second independent solution has the form

y2 (x) = (lnx) y1 (x) +
1X
n=1

dnx
n+1:

Substituting y2 into the equation gives

0 = x2

(
y001 (x) lnx� x�2y1 (x) + 2x�1y01 (x) +

1X
n=1

(n+ 1)ndnx
n�1

)

�x
(
y01 (x) lnx+ x

�1y1 (x) +
1X
n=1

(n+ 1) dnx
n

)

+(1� x)
(
y1 (x) lnx+

1X
n=1

dnx
n+1

)
;

equivalently

0 =
�
x2y001 (x)�xy01 (x)+ (1� x)y1 (x)

	
lnx� 2y1 (x) + 2xy01 (x)

+

1X
n=1

n (n+ 1) dnx
n+1 �

1X
n=1

(n+ 1) dnx
n+1 +

1X
n=1

dnx
n+1 �

1X
n=1

dnx
n+2:
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Now the term in boldface type in the braces vanishes because y1 is a solution, and
hence shifting indices, and then substituting the series (2.11) for y1, we get

0 = 2xy01 (x)� 2y1 (x) + d1x2 +
1X
n=2

�
n2dn � dn�1

�
xn+1

= 2
1X
n=0

(n+ 1)

(n!)
2 xn+1 � 2

1X
n=0

1

(n!)
2x

n+1 + d1x
2 +

1X
n=2

�
n2dn � dn�1

�
xn+1

= (2 + d1)x
2 +

1X
n=2

 
2n

(n!)
2 + n

2dn � dn�1

!
xn+1;

which gives the recurrence relation

d1 = �2;

dn =
1

n2

 
dn�1 �

2n

(n!)
2

!
; n � 2:

Thus we have

d2 =
1

4
(d1 � 1) = �

3

4
; d3 =

1

9

�
�3
4
� 6

36

�
= � 11

108
;

and so a second linearly independent solution is given by

y2 (x) = y1 (x) lnx� 2x2 �
3

4
x3 � 11

108
x4 + :::;

where we will not solve for the remaining coe¢ cients dn explicitly.

3. Bessel�s equation

Bessel�s equation of order �, where � is a real constant, is

(3.1) L [y] � x2y00 + xy0 +
�
x2 � �2

�
y = 0; x > 0;

and has a regular singular point at x = 0, and indicial polynomial

P (�) = � (�� 1) + �� �2 = �2 � �2 = (�� �) (�+ �) ;

with roots ��. For convenience, we are here considering series expansions only for
x > 0. We will show that the cases � = 0, � = 1

2 , and � = 1 of Bessel�s equation
(3.1) illustrate respectively application of parts (2), (3) with a = 0, and (3) with
a 6= 0 of Theorem 12.

Before proceeding with these calculations, we informally discuss the qualitita-
tive behavior of solutions to (3.1) for x large. First we rewrite the equation (3.1)
in normal form,

y00 +

�
1

x

�
y0 +

�
1� �2

x2

�
y = 0;

and note that for x large, both 1
x � 0 and

�2

x2 � 0. Thus we might expect that for
x large, solutions to Bessel�s equation (3.1) behave qualititatively like solutions to
the equation

y00 + (0) y0 + (1� 0) y = 0;

y00 + y = 0:
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The general solution to the latter equation is

y = c1 cosx+ c2 sinx = A cos (x� �) ;

A =
q
c21 + c

2
2; � = tan�1

c2
c1
;

which oscillates back and forth between A and �A with period 2�. We will see
below that this is approximately true of solutions to Bessel�s equation (3.1) when
x is large.

3.1. The order � = 0 case. In the case � = 0 the indicial polynomial has
repeated root 0. Thus part (2) of Theorem 12 gives a fundamental solution set of
the form

(3.2)

(
y1 =

1X
n=0

cnx
n; y2 = (lnx) y1 (x) +

1X
n=1

dnx
n

)
; x > 0:

Since

0 = L

" 1X
n=0

cnx
n+r

#
=

1X
n=0

(n+ r) (n+ r � 1) cnxn+r(3.3)

+
1X
n=0

(n+ r) cnx
n+r +

1X
n=0

cnx
n+2+r � �2

1X
n=0

cnx
n+r

=
�
r2 � �2

�
c0x

r +
�
(r + 1)

2 � �2
�
c1x

1+r

+
1X
n=2

nh
(n+ r)

2 � �2
i
cn + cn�2

o
xn+r;

we obtain the following recursion relation when r = � = 0:

c1 = 0;

cn = � 1

n2
cn�2; n � 2:

Thus we have both

c2k = � 1

(2k)
2 c2k�2 =

 
� 1

(2k)
2

! 
� 1

(2k � 2)2

!
c2k�4

= ::: = (�1)k 1

(2k)
2
(2k � 2)2 :::22

c0

=
(�1)k

22k (k!)
2 c0; k � 0;

and
c2k+1 = 0; k � 0:

It is customary to denote the power series solution y1 (x) constructed above by

J0 (x) �
1X
k=0

(�1)k

22k (k!)
2x

2k = 1� x2

4
+
x4

64
� x6

64 � 36 + :::; x > 0;

and to refer to J0 (x) as the Bessel function of the �rst kind of order 0.
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The second solution in the fundamental solution set (3.2) has the form

y2 = (lnx) J0 (x) +
1X
n=1

dnx
n:

We compute that

[(lnx) J0 (x)]
0
= (lnx) J 00 (x) +

1

x
J0 (x) ;

[(lnx) J0 (x)]
00

= (lnx) J 000 (x) +
2

x
J 00 (x)�

1

x2
J0 (x) ;

and so

L [(lnx) J0 (x)] = x2
�
(lnx) J 000 (x) +

2

x
J 00 (x)�

1

x2
J0 (x)

�
+x

�
(lnx) J 00 (x) +

1

x
J0 (x)

�
+
�
x2 � �2

�
(lnx) J0 (x)

= (lnx)
�
x2J000 (x)+xJ

0
0 (x)+

�
x2 � �2

�
J0 (x)

	
+ 2xJ 00 (x)

= (lnx)L [J0 (x)] + 2xJ
0
0 (x) = 2xJ

0
0 (x) ; � = 0:

Plugging y2 into Bessel�s equation (3.1), and using the calculation in (3.3) with
� = r = 0, we thus obtain

0 = L

"
(lnx) J0 (x) +

1X
n=1

dnx
n

#
= L [(lnx) J0 (x)] + L

" 1X
n=1

dnx
n

#

= 2xJ 00 (x) + d1x+

1X
n=2

�
n2dn + dn�2

	
xn:

Now we substitute the series for

J 00 (x) =
1X
k=1

(�1)k (2k)
22k (k!)

2 x2k�1

into this equation to get

�2
1X
k=1

(�1)k (2k)
22k (k!)

2 x2k = �2xJ 00 (x) = d1x+
1X
n=2

�
n2dn + dn�2

	
xn:

Since only even powers of x appear on the left side of this equation, it follows that
all of the coe¢ cients of odd powers of x on the right side must vanish, i.e.

0 = d1;

0 = (2k + 1)
2
d2k+1 + d2k�1; k � 2:

By induction, we obtain from this that all the odd -indexed coe¢ cients d2k+1 vanish:

d2k+1 = 0; k � 0:
As for the even-indexed coe¢ cients d2k, we have d0 = 0 and

(2k)
2
d2k + d2k�2 = �2(�1)

k
(2k)

22k (k!)
2 ; k � 1;

d2k = � (�1)k

k22k (k!)
2 �

1

(2k)
2 d2k�2; k � 1:
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The �rst few even-indexed coe¢ cients are thus given by

d2 = � (�1)
22 (1!)

2 �
1

(2)
2 d0 =

1

22
;

d4 = � (�1)2

2 � 24 (2!)2
� 1

42
d2

= �1
2

1

42 (2!)
2 �

1

42
1

22 (1!)
2 = �

1

2242

�
1 +

1

2

�
;

d6 = � (�1)k

k22k (k!)
2 �

1

(2k)
2 d2k�2 = �

(�1)3

3 � 26 � 62 �
1

62
d4

=
1

3 � 26 � 62 +
1

62
1

2242

�
1 +

1

2

�
=

1

224262

�
1 +

1

2
+
1

3

�
;

and we are led to guess the following formula, which is easily proved by induction
on k:

d2k =
(�1)k+1

22k (k!)
2Hk; k � 1;

where

Hk � 1 +
1

2
+
1

3
+ :::+

1

k
=

kX
m=1

1

m
:

Thus a second independent solution is given by

y2 (x) = (lnx) J0 (x) +
1X
k=1

(�1)k+1Hk

22k (k!)
2 x2k; x > 0:

It is customary to de�ne the Bessel function Y0 (x) of the second kind of order zero
by

Y0 (x) �
2

�
fy2 (x) + (
 � ln 2) J0 (x)g ;

where the Euler-Máscheroni constant 
 is given by


 � lim
k!1

(Hk � ln k) � 0:5772:

Altogether we have

Y0 (x) =
2

�

(�

 + ln

x

2

�
J0 (x) +

1X
k=1

(�1)k+1Hk

22k (k!)
2 x2k

)
; x > 0:

The general solution of Bessel�s equation when � = 0 is thus

y (x) = c1J0 (x) + c2Y0 (x) ; x > 0:
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3.1.1. Qualitative behaviour of J0 and Y0. For x > 0 and close to 0, J0 (x)
behaves like 1 and Y0 (x) behaves like 2

� lnx, in the sense that

lim
x!0+

J0 (x) = 1 and lim
x!0+

Y0 (x)
2
� lnx

= 1:

For x large, the discussion at the beginning of the section indicated that both J0 (x)
and Y0 (x) should oscillate regularly as x ! 1. This is in fact true, but there is
also an inverse square root decay as x!1, and a more delicate analysis gives the
following asymptotics at in�nity:

lim
x!1

J0 (x)q
2
�x cos

�
x� �

4

� = 1 and lim
x!1

Y0 (x)q
2
�x sin

�
x� �

4

� = 1:
3.2. The order � = 1

2 case. When � =
1
2 the Bessel equation is

(3.4) L [y] = x2y00 + xy0 +

�
x2 � 1

4

�
y = 0;

and the roots of the indicial polynomial are � 1
2 . Thus the roots di¤er by exactly

1, and part (3) of Theorem 12 applies to show there is a fundamental solution set
of the form(

y1 = x
1
2

1X
n=0

cnx
n; y2 = a (lnx) y1 (x) + x

� 1
2

1X
n=0

dnx
n

)
; x > 0:

It turns out that in the situation at hand, the constant a above vanishes, and the
second solution has the simpler form y2 = x�

1
2

P1
n=0 dnx

n. Here is a brief sketch
of the details.

From (3.3) with � = 1
2 we obtain

L

" 1X
n=0

cnx
n+r

#
=

�
r2 � 1

4

�
c0x

r +

�
(r + 1)

2 � 1
4

�
c1x

1+r(3.5)

+

1X
n=2

��
(n+ r)

2 � 1
4

�
cn + cn�2

�
xn+r:

With r = 1
2 we then obtain the recurrence relation

c1 = 0;

cn = � 1

n (n+ 1)
cn�2; n � 2;

and with a little calculation we get

c2k =
(�1)k

(2k + 1)!
c0; k � 0;

c2k+1 = 0; k � 0:

Taking c0 = 1 we thus get the solution

y1 (x) = x
1
2

1X
k=0

(�1)k

(2k + 1)!
x2k:



98 5. POWER SERIES SOLUTIONS

But if we factor out an additional power of x from the in�nite sum, we recognize
the resulting series as the Taylor series for sinx at the origin:

y1 (x) = x�
1
2

1X
k=0

(�1)k

(2k + 1)!
x2k+1 = x�

1
2 sinx:

It is customary to de�ne the Bessel function J 1
2
(x) of the �rst kind of order 1

2 by

J 1
2
(x) �

r
2

�x
sinx; x > 0:

Now we turn to the case when r = � 1
2 is the smaller of the two roots. The

�rst thing we observe regarding the calculation (3.5), is that both
�
r2 � 1

4

�
and�

(r + 1)
2 � 1

4

�
vanish when r = � 1

2 , so that both of the coe¢ cients c0 and c1 are

left unrestricted, and with a little bit of work, the recursion relation leads to the
solution

y2 (x) = x�
1
2

(
c0

1X
k=0

(�1)k

(2k)!
x2k + c1

1X
k=0

(�1)k

(2k + 1)!
x2k+1

)
= c0x

� 1
2 cosx+ c1x

� 1
2 sinx:

Note that the expression in (2.10) is

E1

�
�1
2

�
=

X
k+`=1
`<1

pk

�
`� 1

2

�
c` +

X
k+`=1
`<1

qkc`

=

�
p1

�
�1
2

�
+ q1

�
c0 =

�
0

�
�1
2

�
+ 0

�
c0 = 0;

which is consistent with the absence of a log factor in the second independent

solution. If we take c1 = 0 and c0 =
q

2
� , we obtain the following function for the

second solution to (3.4),

J� 1
2
(x) �

r
2

�x
cosx; x > 0;

referred to as the Bessel function of the �rst kind of order � 1
2 . The general solution

of Bessel�s equation when � = 1
2 is thus

y (x) = c1J 1
2
(x) + c2J� 1

2
(x) ; x > 0:
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3.3. The order � = 1 case. When � = 1 the Bessel equation is

L [y] = x2y00 + xy0 +
�
x2 � 1

�
y = 0;

and the roots of the indicial polynomial are �1. Thus the roots di¤er by exactly 2,
and part (3) of Theorem 12 applies to show there is a fundamental solution set of
the form

(3.6)

(
y1 = x

1X
n=0

cnx
n; y2 = a (lnx) y1 (x) + x

�1
1X
n=0

dnx
n

)
; x > 0:

It turns out that this time, the constant a above doesn not vanish, and the second
solution has a log term. Here is a very brief sketch of the details.

From (3.3) with � = 1 we obtain

L

" 1X
n=0

cnx
n+r

#
=
�
r2 � 1

�
c0x

r +
�
(r + 1)

2 � 1
�
c1x

1+r

+
1X
n=2

nh
(n+ r)

2 � 1
i
cn + cn�2

o
xn+r:

With r = 1 we then obtain the recurrence relation

c1 = 0;

cn = � 1

n (n+ 2)
cn�2; n � 2;

and with a little calculation we get

c2k =
(�1)k

22k (k + 1)!k!
c0; k � 0;

c2k+1 = 0; k � 0:



100 5. POWER SERIES SOLUTIONS

Taking c0 = 1
2 we get the solution

J1 (x) =
x

2

1X
k=0

(�1)k

22k (k + 1)!k!
x2k;

referred to as the Bessel function of the �rst kind of order 1.
In order to compute the coe¢ cients dn in the second independent solution y2

in (3.6), we can proceed as in the calculation of Y0 above. The result is that after
much computation, and with the choice d1 = 1

4 , we get

y2 (x) = �J1 (x) lnx+
1

x

(
1 +

1

4
x2 �

1X
k=2

(�1)k (Hk +Hk�1)

22kk! (k � 1)! x2k

)
; x > 0:

It is customary to de�ne

Y1 (x) =
2

�
f�y2 (x) + (
 � ln 2) J1 (x)g ; x > 0;

referred to as the Bessel function of the second kind of order 1. The general solution
of Bessel�s equation when � = 1 is thus

y (x) = c1J1 (x) + c2Y1 (x) ; x > 0:

3.4. The case 2� not an integer. It is convenient to recall the Gamma
function � (s) at this point. It is de�ned initially for s > 0 by the convergent
improper integral

� (s) =

Z 1

0

ts�1e�tdt; s > 0:

The main interest in the Gamma function is that it satis�es the identity

� (n+ 1) = n!; n = 0; 1; 2; 3; :::

and arises in many series expansions, such as in the binomial theorem

(1� x)s =
1X
n=0

�
s
n

�
xn =

1X
n=0

� (s+ 1)

� (s� n+ 1)n!x
n; jxj < 1;

and in the expansions for Bessel functions below.
In fact, � (s) satis�es the important functional equation

� (s+ 1) =

Z 1

0

tse�tdt = �
Z 1

0

tsd
�
e�t
�
= �tse�t j10 +

Z 1

0

d (ts) e�t(3.7)

= s

Z 1

0

ts�1e�tdt = s� (s) ; s > 0:

From repeated application of this functional equation we obtain for n 2 N,

� (n+ 1) = n� (n) = n (n� 1) � (n� 1)
...

= n (n� 1) :::2 � 1 � (1) = n!

since � (1) =
R1
0
e�tdt = �e�t j10 = 1.

Now we turn to �nding series solutions for Bessel�s equation (3.1) when 2�
is not an integer. Since the indicial roots are ��, we see that their di¤erence
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� � (��) = 2� is not an integer, and so there is a fundamental solution set of the
form (

y1 = x�
1X
n=0

cnx
n; y2 = x��

1X
n=0

dnx
n

)
; x > 0:

From (3.3) we have

0 = L

" 1X
n=0

cnx
n+r

#
=
�
r2 � �2

�
c0x

r +
�
(r + 1)

2 � �2
�
c1x

1+r

+
1X
n=2

nh
(n+ r)

2 � �2
i
cn + cn�2

o
xn+r;

and hence with r = ��,
(n+ r)

2 � �2 = (n� �)2 � �2 = (n� � � �) (n� � + �) = n (n� 2�)
gives the recurrence relation

c1 = 0;

cn = � 1

n (n� 2�)cn�2; n � 2:

Solving the recurrence gives

c2k+1 = 0; k � 0;

c2k =

�
� 1

2k (2k � 2�)

��
� 1

(2k � 2) (2k � 2� 2�)

�
:::

�
� 1

2 (2� 2�)

�
c0

=
�
�1k

� 1

22kk! (k � �) ::: (1� �)c0

=
�
�1k

� � (1� �)
22kk!� (k � � + 1)c0;

since by the functional equation (3.7),

� (k � � + 1) = (k � �) � (k � �) = (k � �) (k � � � 1) � (k � � � 1)
...

= (k � �) (k � � � 1) ::: (1� �) � (1� �) :
Thus we have

y1 (x) = c0

1X
n=0

�
�1k

� � (1 + �)

22kk!� (k + � + 1)
x2k+� ;

y2 (x) = d0

1X
n=0

�
�1k

� � (1� �)
22kk!� (k � � + 1)x

2k�� ;

for x > 0. It is customary to choose c0 = 1
2��(1+�) and d0 =

1
2���(1��) so that y1

and y2 become the Bessel functions of the �rst kind of orders � and ��:

J� (x) =
1X
k=0

�
�1k

�
k!� (k + � + 1)

�x
2

�2k+�
;

J�� (x) =
1X
k=0

�
�1k

�
k!� (k � � + 1)

�x
2

�2k��
:
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Remark 7. In the special case when 2� is an integer, but � is not an integer,
i.e. � = � 1

2 ;�
3
2 ; :::, it turns out that the series J� and J�� are linearly independent

on (0;1). Thus fJ� ; J��g is a fundamental solution set on (0;1) for Bessel�s
equation (3.1) for all � not an integer. When � is a positive integer, it can be shown
that J�� is a constant multiple of J� , and thus a second independent solution must
involve a log term in this case.

4. A caveat

The point x = 0 is a regular singular point of the equation

x (x� 1) y00 + 3y0 � 2y = 0:
We multiply the equation through by x

x�1 to obtain the Cauchy-Euler form

x2y00 +

�
3

x� 1

�
xy0 +

�
�2x
x� 1

�
y = 0;

where p (x) = 3
x�1 and q (x) =

�2x
x�1 satisfy p (0) = �3 and q (0) = 0, to discover

that the indicial polynomial is

P (�) = � (�� 1)� 3� = �2 � 4� = � (�� 4) ;
and has roots 0 and 4. We can then �nd the series solution corresponding to the
larger root by substituting the series y (x) =

P1
n=0 cnx

n+r into the equation and
deriving the recurrence relation.

Here is the caveat! Since both p (x) and q (x) in the Cauchy-Euler form are
in�nite series, it will be easier to substitute y (x) into the original equation, whose
coe¢ cients are simple polynomials. Thus we plug y (x) =

P1
n=0 cnx

n+r into the
original equation

0 = x2y00 � xy00 + 3y0 � 2y;
and after some calculation get the recursion,

0 = �r (r � 4) c0;

cn+1 = � (n+ r) (n+ r � 1)� 2
3 (n+ 1 + r)� (n+ 1 + r) (n+ r)cn

=
(n+ r) (n+ r � 1)� 2
(n+ 1 + r) (n+ r � 3)cn; n � 0:

After some more computation, we �nd that a nontrivial series solution correspond-
ing to the larger root r = 4 is given by

y1 (x) =

1X
n=0

(n+ 1)xn+4 = x4
d

dx

 1X
n=0

xn+1

!
= x4

d

dx

�
x

1� x

�
=

x4

(1� x)2
;

and if we take the smaller root r = 0 in the recurrence relation we get

cn+1 =
n (n� 1)� 2
(n+ 1) (n� 3)cn; n � 0;

which runs aground when n = 3 since the fraction becomes in�nite, 4
4(0) , and forces

c3 = c2 = c1 = c0 = 0. This then leaves c4 unrestricted, but the recursion then
simply recovers the known solution y1 (x). Thus there is no second independent
series solution, and by part (3) of Theorem 12, the second solution must have the
form y2 (x) = y1 (x) lnx+

P1
n=0 dnx

n.



CHAPTER 6

The Laplace transform

The Laplace transform L is mapping, or transform (we will de�ne it in a mo-
ment), that takes certain functions f (x) de�ned for x in [0;1), into functions F (s)
de�ned for s in some semi-in�nite interval (a;1). We denote the transformed func-
tion F (s) by L [f ] (s). The two main properties of this map are:

(1) L is linear, i.e. it transform sums to sums and scalar multiples to scalar
multiples,

L [c1f1 + c2f2] (s) = c1L [f1] (s) + c2L [f2] (s) ;

(2) L transforms di¤erentiation in x into multiplication by s, i.e.

L [f 0] (s) = sL [f ] (s)� f (0) :

The second property is clearly what makes the Laplace transform a valuable
tool for solving linear di¤erential equations, especially those with constant coe¢ -
cients, as such equations are converted under the transform into algebraic equations.
Unfortunately, the Laplace transform also converts multiplication by x into di¤er-
entialtion by s, i.e.

L [xf (x)] (s) = � d

ds
L [f ] (s) ;

which limits its usefulness when applied to linear equations with variable coe¢ -
cients. Moreover, we must also compute both the Laplace transform and its inverse,
on familiar functions.

In order to state the de�nition of the Laplace transform L, we require the
notions of piecewise continuity and growth of exponential order for complex-valued
functions f : [0;1)! C.

Definition 6. We say f is piecewise continuous on [0;1) if on each closed
subinterval [a; b] of [0;1), there is a �nite partition fa = t0; t1; :::; tN = bg such that

� f is continuous on each open subinterval (tn�1; tn), 1 � n � N ,
� f has one-sided limits at each point in the partition, i.e.

lim
x!(tn)

�
f (x) exists and lim

x!(tn)
+
f (x) exists,

for 1 � n � N � 1 and the right hand limit exists at a and the left hand
limit exists at b.

Definition 7. We say f (x) has exponential order c if there are constants
M <1 and T <1 such that

jf (x)j �Mecx; x > T:

103



104 6. THE LAPLACE TRANSFORM

Definition 8. If f : [0;1) ! C is piecewise continuous and of exponential
order c, then we de�ne the Laplace transform L [f ] (s) for s > c by the improper
integral

L [f ] (s) =
Z 1

0

f (x) e�sxdx; s > c:

Note that for f : [0;1) ! C as in De�nition 8, the integral
R T
0
f (x) e�sxdx

exists since f is piecewise continuous, while the improper integral
R1
T
f (x) e�sxdx

exists and converges absolutely for s > c by the comparison test for integrals:��f (x) e�sx�� � Mecxe�sx =Me(c�s)x;Z 1

T

Me(c�s)xdx =
M

c� se
(c�s)x j1T

=
M

c� s limx!1
e(c�s)x � M

c� se
(c�s)T

=
M

s� ce
(c�s)T <1; s > c:

Thus the Laplace transform L [f ] (s) is well-de�ned by the integral in De�nition 8.

1. Properties of the Laplace transform

We begin by computing the Laplace transforms of some simple elementary
functions:

(1.1) L [1] (s) =
Z 1

0

1e�sxdx =
e�sx

�s j10 =
1

s
; s > 0;

L [x] (s) =

Z 1

0

xe�sxdx = x
e�sx

�s j10 �
Z 1

0

e�sx

�s dx

=

Z 1

0

e�sx

�s2 dx =
e�sx

�s2 j
1
0 =

1

s2
; s > 0;

and for a complex,

(1.2) L [eax] (s) =
Z 1

0

eaxe�sxdx =
e(a�s)x

a� s j10 =
1

s� a; s > Re a;

and for ! real,

L [cos!x] (s) =

Z 1

0

cos (!x) e�sxdx =

Z 1

0

ei!x + e�i!x

2
e�sxdx

=
1

2

�
L
�
ei!x

�
(s) + L

�
e�i!x

�
(s)
	
=
1

2

�
1

s� i! +
1

s+ i!

�
=

1

2

�
2s

(s� i!) (s+ i!)

�
=

s

s2 + !2
; s > 0;

L [sin!x] (s) =
!

s2 + !2
; s > 0:

Now we turn to a description and proof of the three main features of the Laplace
transform L, namely that

(1) L is linear,
(2) L interchanges di¤erentiation and multiplication by the independent vari-

able,
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(3) L interchanges translation and multiplication by an exponential.
Here is a precise statement of these properties. When f : [0;1) ! C is

piecewise continuous on [0;1), the left hand limit at 0 exists, and we always assume
f (0) takes this value, so that f is continuous at 0. We de�ne the unit step function
U by

U (x) =
�
1 if x � 0
0 if x < 0

:

Theorem 13. The following �ve properties hold for the Laplace transform
L [f ] (s) �

R1
0
f (x) e�sxdx:

(1) If f; g : [0;1) ! C are piecewise continuous and of exponential order c,
and if �; � 2 C, then

L [�f + �g] (s) = �L [f ] (s) + �L [g] (s) ; s > c:

(2) If f; f 0; :::; f (n) : [0;1) ! C are piecewise continuous and of exponential
order c, then

L
h
f (n)

i
(s) = snL [f ] (s)�

n
f (0) sn�1 + f 0 (0) sn�2 + :::+ f (n�1) (0)

o
; s > c:

(3) If f : [0;1)! C is piecewise continuous and of exponential order c, then
xnf (x) is of exponential order c+ " for all " > 0, and

L [xnf (x)] (s) = (�1)n dn

dsn
L [f ] (s) ; s > c:

(4) Suppose a > 0. If f : [0;1)! C is piecewise continuous and of exponen-
tial order c, then so is U (x� a) f (x� a) and
L [U (x� a) f (x� a)] (s) = e�asL [f ] (s) ; s > c;

L [U (x� a) f (x)] (s) = e�asL [f (x+ a)] (s) ; s > c:

(5) If f : [0;1)! C is piecewise continuous and of exponential order c, and
if a 2 R is any real number, then eaxf (x) is of exponential order c + a
and

L [eaxf (x)] (s) = L [f ] (s� a) ; s > c+ a:

Before proving the theorem, we give two simple illustrations of its application
to solving an initial value problem for a constant coe¢ cient nonhomogeneous linear
equation. Consider the �rst order problem:

(1.3)
�
y0 � y = 1
y (0) = 0

:

We know from earlier chapters that there is a unique solution to the initial value
problem (1.3), and moreover that the solution is y (x) = ex � 1. But if we merely
assume that the solution and its derivative are piecewise continuous and of ex-
ponential order c, then we can apply the following �ve steps using the Laplace
transform:

(1) Take the Laplace transform of both sides of y0 � y = 1 to get
L [y0]� L [y] = L [1] :

(2) Denote the Laplace transform of y at s by Y (s) = L [y] (s), and apply
Theorem 13 to obtain

fsY (s)� y (0)g � Y (s) = 1

s
; s > c:
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(3) Solve this algebraic equation for the transform Y (s), and use the initial
condition y (0) = 0, to obtain

Y (s) =
1

s (s� 1) :

(4) Use partial fractions to write

1

s (s� 1) =
A

s
+

B

s� 1 =
�1
s
+

1

s� 1 :

(5) Finally, recognize from (1.1) and (1.2) used in reverse, that

�1
s
= �L [1] and 1

s� 1 = L [e
x] (s) :

(6) Combining the previous �ve steps we have

L [y] (s) = Y (s) =
1

s (s� 1) =
�1
s
+

1

s� 1 = L [�1 + e
x] (s) ;

and now assuming uniqueness of Laplace transforms, i.e. that the Laplace
transform is a one-to-one map, we conclude that y = �1 + ex.

Now we use the same method to solve the more complicated initial value prob-
lem,

(1.4)

8<: y00 � 2y0 + 5y = �8e�x
y (0) = 2
y0 (0) = 12

:

We have�
s2Y (s)� y (0) s� y0 (0)

	
� 2 fsY (s)� y (0)g+ 5Y (s) = �8 1

s+ 1
;

from which we obtain�
s2Y (s)� 2s� 12

	
� 2 fsY (s)� 2g+ 5Y (s) = � 8

s+ 1
;�

s2 � 2s+ 5
	
Y (s) = 2s+ 12� 4� 8

s+ 1
;

and so

Y (s) =
1

s2 � 2s+ 5

�
2s+ 8� 8

s+ 1

�
=

(2s+ 8) (s+ 1)� 8
(s2 � 2s+ 5) (s+ 1) =

2s2 + 10s

(s2 � 2s+ 5) (s+ 1) :

Now the quadratic polynomial s2� 2s+5 is irreducible, so we complete its square,
s2 � 2s+ 5 = (s� 1)2 + 22;

and write out the partial fraction decomposition of Y (s) in terms of s� 1 and 2:

Y (s) =
2s2 + 10s�

(s� 1)2 + 22
�
(s+ 1)

=
A (s� 1) + 2B
(s� 1)2 + 22

+
C

s+ 1
:

Now

C =
2s2 + 10s

(s� 1)2 + 22
js=�1=

2� 10�
(�1� 1)2 + 22

� = �1;
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and so

A (s� 1) + 2B = 2s2 + 10s

s+ 1
+
(s� 1)2 + 22

s+ 1
=
3s2 + 8s+ 5

s+ 1
= 3s+ 5;

which gives A = 3 and B = 4. Thus we have

Y (s) = 3
(s� 1)

(s� 1)2 + 22
+ 4

2

(s� 1)2 + 22
� 1

s+ 1
:

But from Theorem 13 we know

L [ex cos 2x] (s) =
(s� 1)

(s� 1)2 + 22
;

L [ex sin 2x] (s) =
2

(s� 1)2 + 22
;

L
�
e�x

�
(s) =

1

s+ 1
;

and so from the uniqueness of Laplace transforms, the solution to the initial value
problem (1.4) is

y = 3ex cos 2x+ 4ex sin 2x� e�x:

1.1. Proof of Theorem 13. Property (1) is an easy consequence of the lin-
earity of convergent integrals. To prove property (2), we �x s > c and integrate by
parts to get

L
h
f (n)

i
(s) =

Z 1

0

e�sxf (n) (x) dx =

Z 1

0

e�sxd
h
f (n�1) (x)

i
= e�sxf (n�1) (x) j10 = 0� f (n�1) (0)�

Z 1

0

d
�
e�sx

�
f (n�1) (x)

= �f (n�1) (0) +
Z 1

0

se�sxf (n�1) (x)

= �f (n�1) (0) + sL
h
f (n�1)

i
(s) :

Now apply this identity repeatedly, or simply use induction on n, to obtain

L
h
f (n)

i
(s) = �f (n�1) (0) + sL

h
f (n�1)

i
(s)

= �f (n�1) (0) + s
n
�f (n�2) (0) + sL

h
f (n�2)

i
(s)
o

= �f (n�1) (0)� sf (n�2) (0) + s2L
h
f (n�2)

i
(s)

...

= �f (n�1) (0)� sf (n�2) (0)� :::� sn�1f (0) + snL [f ] (s) :

To prove (3), we �rst note that by L�Hôspital�s rule, limx!1
xn

e"x = 0, which
shows that xnf (x) is of exponential order c+ " for all " > 0. Then di¤erentiating
under the integral sign is justi�ed, and yields

d

ds
L [f ] (s) = d

ds

Z 1

0

e�sxf (x) dx =

Z 1

0

(�x) e�sxf (x) dx = �L [xf (x)] (s) :
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Repeated application, or induction on n, then gives the formula

dn

dsn
L [f ] (s) = � dn�1

dsn�1
L [xf (x)] (s) = dn�2

dsn�2
L
�
x2f (x)

�
(s) = ::: = (�1)n L [xnf (x)] (s) :

Property (4) is a simple change of variable,

L [U (x� a) f (x� a)] (s) =

Z 1

0

e�sxU (x� a) f (x� a) dx

=

Z 1

�a
e�s(x+a)U ((x+ a)� a) f ((x+ a)� a) d (x+ a)

=

Z 1

0

e�sxe�asf (x) dx = e�asL [f ] (s) ;

L [U (x� a) f (x)] (s) =

Z 1

a

e�sxf (x) dx

=

Z 1

0

e�(s+a)xf (x+ a) dx = e�asL [f (x+ a)] (s) ;

and property (5) is just

L [eaxf (x)] (s) =
Z 1

0

e�sxeaxf (x) dx =

Z 1

0

e�(s�a)xf (x) dx = L [f ] (s� a) :

The Laplace transform is sometimes a convenient tool for solving nonhomoge-
neous intial value problems with piecewise continuous forcing functions.

Definition 9. We write L�1 fF (s)g (x), or simply L�1 fF (s)g, when F (s) =
L [f (x)] (s) is the Laplace transform of f (x), and we refer to L�1 as the inverse
Laplace transform.

Example 33. Solve the initial value problem�
y0 + y = f (x) for x 6= �
y (0) = 5

;

where f (x) �
�

20x for 0 � x < �
3 cosx for x � �

:

The forcing function f (x) has a jump discontinuity at x = �, so we cannot require
the di¤erential equation to hold at x = �, but we do require y (x) to be continuous
at �, and this uniquely determines the solution y (x) to the initial value problem,
as the solution on [0;1] uniquely speci�es the new initial condition y (�) at x = �.
To solve the initial value problem using the Laplace transform, we write the forcing
function in terms of unit step functions for x � 0 as follows:

f (x) = 20x� U (x� �) 20x+ U (x� �) 3 cosx
= 20x+ U (x� �) (3 cosx� 20x) :
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Then we compute

L [f ] (s) = L [20x] (s) + L [U (x� �) (3 cosx� 20x)] (s)

= 20
1

s2
+ e��sL [(3 cos (x+ �)� 20 (x+ �))] (s)

= 20
1

s2
+ e��s f�3L [cosx] (s)� 20L [x] (s)� 20�L [1] (s)g

= 20
1

s2
+ e��s

�
�3 s

s2 + 1
� 20 1

s2
� 20� 1

s

�
:

Taking the Laplace transform of the equation now gives

sY (s)� y (0) + Y (s) = L [y0 + y] (s) = L [f ] (s)

= 20
1

s2
+ e��s

�
�3 s

s2 + 1
� 20 1

s2
� 20� 1

s

�
;

(s+ 1)Y (s) = 5 + 20
1

s2
+ e��s

�
�3 s

s2 + 1
� 20 1

s2
� 20� 1

s

�
and hence

Y (s) =
5

s+ 1
+ 20

1

(s+ 1) s2

+e��s
�
�3 s

(s+ 1) (s2 + 1)
� 20 1

(s+ 1) s2
� 20� 1

(s+ 1) s

�
:

Using partial fractions we get

s

(s+ 1) s2 + 1
=

� 1
2

s+ 1
+

1
2

s2 + 1
+

1
2s

s2 + 1
;

which gives the inverse transform

L�1
�
�3e��s s

(s+ 1) (s2 + 1)

�
= �3

2

�
�L�1

�
e��s

1

s+ 1

�
+ L�1

�
e��s

1

s2 + 1

�
+ L�1

�
e��s

s

s2 + 1

��
= �3

2

n
�U (x� �) e�(x��) + U (x� �) sin (x� �) + U (x� �) cos (x� �)

o
:

Similarly we obtain the inverse transforms

L�1
�
5

s+ 1

�
= 5e�x;

L�1
�
20

1

(s+ 1) s2

�
= 20L�1

�
1

s+ 1
+
1� s
s2

�
= 20e�x + 20 (x� 1) ;

L�1
�
�20e��s 1

(s+ 1) s2

�
= �20L�1

�
e��s

1

s+ 1
+ e��s

1� s
s2

�
= �20U (x� �) e�(x��) � 20U (x� �) (x� � � 1) ;

L�1
�
�20�e��s 1

(s+ 1) s

�
= �20�L�1

�
e��s

�
�1
s+ 1

+
1

s

��
= 20�U (x� �) e�(x��) � 20�U (x� �) :
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Adding these all up we obtain

y (x) = 5e�x + 20e�x + 20 (x� 1)

�3
2

n
�U (x� �) e�(x��) + U (x� �) sin (x� �) + U (x� �) cos (x� �)

o
�20U (x� �) e�(x��) � 20U (x� �) (x� � � 1)
+20�U (x� �) e�(x��) � 20�U (x� �) :

We can of course collect all the terms multiplying the unit step function U (x� �)
to obtain the formulas

y (x) = 25e�x + 20x� 20;
for 0 � x � �;

and

y (x) = 25e�x � 3
2
sin (x� �)� 3

2
cos (x� �) +

�
20� � 37

2

�
e�(x��);

for x � �:

Note that y (x) is continuous at x = � since both formulas give y (�) = 25e�� +
20 (� � 1).

2. Convolutions and Laplace transforms

Consider the constant coe¢ cient linear nonhomogeneous initial value problem
with vanishing initial data:

any
(n) + an�1y

(n�1) + :::+ a1y
0 + a0y = f;

y(n�1) (0) = ::: = y0 (0) = y (0) = 0:

The Laplace transform of this equation is

ans
nY (s) + an�1s

n�1Y (s) + :::+ a1sY (s) + a0Y (s) = F (s) ;

where Y (s) = L [y] (s) and F (s) = L [f ] (s). We can factor the left hand side as
Y (s) times the characteristic polynomial

ans
n + an�1s

n�1 + :::+ a1s+ a0 = P (s) :

Solving for Y (s) we obtain

Y (s) =
1

P (s)
F (s) ;

which exhibits the Laplace transform Y (s) of the solution y (x) as a product of
functions 1

P (s) and F (s). Now it is often possible to �nd the inverse transforms of
each of these functions separately, and the question that then arises is this:

� Given two functions f (x) and g (x) with Laplace transforms F (s) and
G (s) respectively, what is the function h (x) whose Laplace transform
H (s) is the product F (s)G (s) of the transforms of f (x) and g (x)? In
other words, what is

L�1 fF (s)G (s)g ?
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To answer this question we calculate formally, without regard for rigor,

F (s)G (s) =

�Z 1

0

e�sxf (x) dx

��Z 1

0

e�syg (y) dy

�
=

Z 1

0

Z 1

0

e�sxe�syf (x) g (y) dxdy:

In the double integral, we make the change of variable

(x; y)! (u; v) ; u = x+ y; v = y;

and using ����det � xu xv
yu yv

����� = ����det � 1 �1
0 1

����� = 1;
we get

F (s)G (s) =

Z v=1

v=0

�Z u=1

u=v

e�suf (u� v) g (v)
����det � xu xv

yu yv

����� du� dv
=

Z u=1

u=0

e�su
�Z v=u

v=0

f (u� v) g (v) dv
�
du

=

Z 1

0

e�su (f � g) (u) du;

where we have de�ned the convolution of f and g to be the function on [0;1) given
by the integral formula

(f � g) (u) =
Z u

0

f (u� v) g (v) dv:

More formally, and using the usual dummy variables, we have this de�nition.

Definition 10. Given f; g piecewise continuous on [0;1), de�ne their convo-
lution f � g on [0;1) by

(f � g) (x) =
Z x

0

f (x� t) g (t) dt; x � 0:

Our formal calculation has thus shown that

F (s)G (s) =

Z 1

0

e�sx (f � g) (x) dx = L [f � g] (s) ;

has inverse Laplace transform,

L�1 fF (s)G (s)g = (f � g) (x) :
Note that the expression f � g is linear in both f and g, and so may be thought of
as a strange sort of multiplication of functions.

� The Laplace transform takes convolution multiplication of functions into
ordinary pointwise multiplication of the transformed functions.

At this point it is useful to note that if both f and g are of exponential order,
then so is f � g.

Lemma 6. Suppose f and g are piecewise continuous and of exponential order
c on [0;1), i.e.

jf (x)j �Mecx and jg (x)j �Mecx; x > T:
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Then f � g is continuous and of exponential order c+ " on [0;1) for every " > 0,
i.e. there is a constant M" such that

jf � g (x)j �M"e
(c+")x; x � 0:

Proof. We can take T = 0 at the expense of making M larger, i.e. there is a
constant M 0 such that

jf (x)j �M 0ecx and jg (x)j �M 0ecx; x � 0:

Then we have

jf � g (x)j �
Z x

0

jf (x� t)j jg (t)j dt �
Z x

0

M 0ec(x�t)M 0ectdt

= (M 0)
2
xecx �M"e

(c+")x;

for x � 0, since limx!1
x
e"x = limx!1

1
"e"x = 0 by l�Hôspital�s rule.

Finally, the continuity of f � g at a point x follows by writing

f � g (x+ h)� f � g (x)

=

Z x+h

0

f (x+ h� t) g (t) dt�
Z x

0

f (x� t) g (t) dt

=

Z x+h

0

ff (x+ h� t)� f (x� t)g g (t) dt+
Z x+h

x

f (x� t) g (t) dt

= I (h) + II (h) :

Assume 0 < h � 1 for convenience. Then

jII (h)j �
Z x+h

x

jf (x� t) g (t)j dt �
Z x+h

x

M 0ec(x�t)M 0ectdt = (M 0)
2
ecxh;

which goes to 0 as h! 0. As for term I (h), we have

jI (h)j �
Z x+h

0

jf (x+ h� t)� f (x� t)jM 0ectdt

� M 0ec(x+1)
Z x+1

0

jf (x+ h� t)� f (x� t)j dt;

and using the fact that f has only a �nite number of jump discontinuities on the
interval [0; x+ 1], one can show (with some fuss) that

lim
h!0

Z x+1

0

jf (x+ h� t)� f (x� t)j dt = 0:

Draw a picture to see that this conclusion is reasonable! �

Theorem 14 (The Convolution Theorem). Suppose that f and g are piecewise
continuous and of exponential order c on [0;1). Then

L [f � g] (s) = L [f ] (s) L [g] (s) ; s > c:

Proof. For s > c we write the iterated integral for L [f � g] (s) as a double
integral, and make the substitution u = x� t, v = t with Jacobian determinant 1,
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to get

L [f � g] (s) =

Z 1

0

e�sx
�Z x

0

f (x� t) g (t) dt
�
dx

=

Z 1

0

Z x

0

e�s(x�t)f (x� t) e�stg (t) dtdx

=

Z 1

0

Z 1

0

e�suf (u) e�svg (v) dvdu

=

�Z 1

0

e�suf (u) du

��Z 1

0

e�svg (v) dv

�
= L [f ] (s) L [g] (s) :

�

Example 34. Here we use the Convolution Theorem to help compute the in-
verse Laplace transform

L�1
(�

1

s2 + k2

�2)
; k 6= 0:

Indeed, we have

L�1
�

1

s2 + k2

�
(x) =

1

k
L�1

�
k

s2 + k2

�
(x) =

1

k
sin kx � f (x) ;

and so by the Convolution Theorem,

L�1
(�

1

s2 + k2

�2)
(x) = f � f (x) =

Z x

0

f (x� t) f (t) dt

=

Z x

0

�
1

k
sin k (x� t)

��
1

k
sin kt

�
dt

=
1

k2

Z x

0

cos k (x� 2t)� cos kx
2

dt;

where in the last line we have used the trig identity

sinA sinB =
cos (A�B)� cos (A+B)

2
:

Continuing, we obtain

L�1
(�

1

s2 + k2

�2)
=

1

2k2

�Z x

0

cos k (x� 2t) dt�
Z x

0

(cos kx) dt

�
=

1

2k2
sin k (x� 2t)

�2k jx0 �
1

2k2
x cos kx

=
1

2k3
fsin kx� kx cos kxg :

2.1. Volterra integral equations. Now suppose that we are given continu-
ous functions g (x) and h (x) on [0;1), and consider the following Volterra integral
equation for an unknown function f (x):

(2.1) f (x) = g (x) +

Z x

0

h (x� t) f (t) dt = g (x) + h � f (x) ; x � 0:
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This equation can be solved with the aid of the Laplace transform and the Convo-
lution Theorem. Indeed, taking the Laplace transform we obtain

F (s) = G (s) +H (s)F (s) ;

where F;G;H are the Laplace transforms of f; g; h respectively. Thus we have

F (s) =
G (s)

1�H (s) ;

f (x) = L�1
�

G (s)

1�H (s)

�
(x) ; x � 0:

Example 35. To solve the integral equation

f (x) = 3x2 � e�x �
Z x

0

ex�tf (t) dt;

we must compute

f (x) = L�1
�

G (s)

1�H (s)

�
(x) ;

where
g (x) = 3x2 � e�x and h (x� t) = �ex�t:

Thus we have

G (s) = 3
2

s3
� 1

s+ 1
and H (s) = � 1

s� 1 ;

and so
G (s)

1�H (s) =
1

1 + 1
s�1

�
6

s3
� 1

s+ 1

�
=

s� 1
s

6s+ 6� s3
s3 (s+ 1)

=
(s� 1)

�
6s+ 6� s3

�
s4 (s+ 1)

:

The partial fraction decomposition is

G (s)

1�H (s) =
A

s4
+
B

s3
+
C

s2
+
D

s
+

E

s+ 1

=
�6
s4
+
6

s3
+
0

s2
+
1

s
+

�2
s+ 1

;

and �nally, taking inverse Laplace transforms yields

f (x) = �x3 + 3x2 + 1� 2e�x; x � 0:

2.2. A more general Volterra equation. The pair of functions fcosx; sinxg
is a fundamental solution set on the real line R for the homogeneous second order
equation

y00 (x) + y (x) = 0; x 2 R;
and the general solution is given by

(2.2) yhom (x) = yhom (0) cosx+ y
0
hom (0) sinx; x 2 R:

We now wish to solve the more general equation

y00 (x) + y (x) = � (x) y (x) ;

where � is a continuous function on R: First we solve the inhomogenoeous equation

y00 (x) + y (x) = f (x)
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by writing it as a system in y =
�
y
y0

�
:

y0 =

�
y0

y00

�
=

�
0 1
�1 0

� �
y
y0

�
+

�
0
f

�
� Ay + f :

Then the Wronskian matrix

W (x) =

�
cosx sinx
cos0 x sin0 x

�
=

�
cosx sinx
� sinx cosx

�
satis�es

W 0 = AW and
�
W�1�0 = �W�1A:

Thus �
W�1y

�0
= W�1y0 +

�
W�1�0 y

= W�1y0 �W�1Ay =W�1f

implies

y =W

Z
W�1f

and so a particular solution ypart (x) is derived from�
ypart (x)
y0part (x)

�
=

Z x

0

W (x)W�1 (t) f (t) dt(2.3)

=

Z x

0

�
cosx sinx
� sinx cosx

� �
cos t � sin t
sin t cos t

� �
0

f (t)

�
dt

=

Z x

0

�
� sinx cos t� cosx sin t
� �

� �
0

f (t)

�
dt

=

� R x
0
sin (x� t) f (t) dt

�

�
:

Now we see from (2.2) and (2.3) that the solution to the initial value problem8<: y00 + y = �y
y (0) = 1
y0 (0) = 0

satis�es the integral equation

y (x) = cosx+

Z x

0

sin (x� t)� (t) y (t) dt; x 2 R;

and vice versa. If we write u (x) = cosx and

Lh (x) =

Z x

0

sin (x� t)� (t)h (t) dt = (sin ��h) (x) ;

we can rewrite this equation as

(2.4) y = u+ Ly;

an example of a more general type of Volterra integral equation than that considered
in (2.1).
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2.2.1. Picard iterations. To solve the Volterra equation (2.4) for x 2 [�N;N ],
we start with a guess y0 = y0 (x) where y0 is any continuous function on [�N;N ],
and plug it into the right side of (2.4), de�ning

y1 = y1 (x) = u (x) + Ly0 (x)

= cosx+

Z x

0

sin (x� t)� (t) y0 (t) dt; x 2 [�N;N ] :

If it happens that y1 = y0 (highly unlikely!) we are done. Otherwise set y2 = u+Ly1
and inductively

(2.5) yn = u+ Lyn�1 on [�N;N ] ; n = 1; 2; 3; :::

We hope that this sequence of functions fyng1n=1 converges in some sense. Since
uniform convergence yields a continuous limit, we de�ne

khk = max
jxj�N

jh (x)j

and hope that kym � ynk ! 0 as m;n ! 1 (the Cauchy criterion for uniform
convergence).

Now we compute inductively that

yn = u+ Lyn�1(2.6)

= u+ L (u+ Lyn�2)

...

= u+ Lu+ :::+ Ln�1u+ Lny0:

Thus we have for n > m,

kym � ynk =


Lmu+ :::+ Ln�1u+ Lny0 � Lmy0

(2.7)

� kLmuk+ :::+


Ln�1u

+ kLny0k+ kLmy0k ;

and in particular this will tend to zero as m;n!1 provided we have the �absolute
convergence of orbit series�:

(2.8)
1X
n=0

kLnvk <1 for every continuous v on [�N;N ] :

Indeed, if (2.8) holds, then fyng1n=1 satis�es the Cauchy criterion for uniform
convergence and hence there is a continuous function y = y (x) on [�N;N ] such
that yn ! y uniformly on [�N;N ]. We now claim that y satis�es (2.4) on [�N;N ].
For this we use the inequality

(2.9) jLv (x)j =
����Z x

0

sin (x� t)� (t) v (t) dt
���� � k�k kvk jxj ;

from which follows

(2.10) kLvk � (N k�k) kvk = C kvk
for all continuous v on [�N;N ]. If we now let n ! 1 in the equation (2.5) we
obtain

y = lim
n!1

yn = lim
n!1

(u+ Lyn�1) = u+ Ly

since by (2.10),

kLy � Lyn�1k = kL (y � yn�1)k � C ky � yn�1k ! 0; as n!1:
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Finally we establish the �absolute convergence of orbit series�in (2.8). By (2.9)
we have����Z x

0

sin (x� t)� (t)Lv (t) dt
���� � Z x

0

jsin (x� t)� (t)j fk�k kvk jtjg dt � k�k2 kvk jxj
2

2
;

and continuing by induction we obtain

jLnv (x)j =

����Z x

0

sin (x� t)� (t)Ln�1v (t) dt
���� � k�kn kvk jxjnn! ;

kLnvk � k�kn kvk N
n

n!
;

from which (2.8) follows immediately:
1X
n=0

kLnvk �
1X
n=0

k�kn kvk N
n

n!
= eNk�k kvk <1:

3. Transforms of integrals, periodic functions and the delta function

If we set f � 1 in the Convolution Theorem, we get

L [1 � g] (s) = L [1] (s) L [g] (s) = 1

s
L [g] (s) ;

where

1 � g (x) =
Z x

0

g (t) dt

is the antiderivative of g that vanishes at the origin. Thus with F (s) = L [f ] (s) we
have the formulas

(3.1) L
�Z x

0

f (t) dt

�
(s) =

F (s)

s
and L�1

�
F (s)

s

�
(x) =

Z x

0

f (t) dt:

Now suppose that f (x) is periodic with period T on [0;1), i.e.
f (x+ T ) = f (x) ; x � 0;

as well as being piecewise continuous and of exponential order c. Then the Laplace
transform is given by the following integral over the initial period:

(3.2) L [f (x)] (s) = 1

1� e�sT
Z T

0

e�sxf (x) dx; s > c:

Indeed, using the substitution x! x+ T in the second integral below, followed by
the periodicity of f , we have

L [f (x)] (s) =

Z T

0

e�sxf (x) dx+

Z 1

T

e�sxf (x) dx

=

Z T

0

e�sxf (x) dx+

Z 1

0

e�s(x+T )f (x+ T ) dx

=

Z T

0

e�sxf (x) dx+

Z 1

0

e�s(x+T )f (x) dx

=

Z T

0

e�sxf (x) dx+ e�sTL [f (x)] (s) :

Solving for L [f (x)] (s) gives (3.2).
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Finally we consider the simplest of the "generalized functions" or "distribu-
tions", namely the �Dirac delta function with pole at x0�� (x� x0), where x0 is any
�xed real number, and x is the independent variable. This generalized function is
assumed to have the following two properties:

(1) � (x� x0) = 0 for all x 6= x0;
(2)

R1
�1 � (x� x0) dx = 1 for all �xed x0.

Of course there is no actual function with these apparently contradictory prop-
erties, but the following sequence ffng1n=1 of step functions has these properties �in
the limit�:

fn (x) � n1[x0;x0+ 1
n ]
(x) ; x 2 R; n 2 N;

where 1[x0;x0+ 1
n ]
= U (x� x0) � U

�
x� x0 � 1

n

�
is the indicator function of the

interval
�
x0; x0 +

1
n

�
. So also does the sequence of continuous functions

fn (x) �
�n

2
sin (�nx)1[0; 1n ]

(x) ; x 2 R; n 2 N;

as well as many other sequences of functions whose supports shrink to x0 and whose
integrals tend to 1 as n ! 1. It is for this reason that the Dirac delta function
� (x� x0) is referred to as a �generalized�function.

The Laplace transform of � (x� x0) can be taken to be the limit of the Laplace
transform of any such sequence, and choosing the sequence of step functions ffng1n=1
above, we get

L [� (x� x0)] (s) = lim
n!1

L [fn (x)] (s) = lim
n!1

n

�
L [U (x� x0)] (s)� L

�
U
�
x� x0 �

1

n

���
= lim

n!1
n

(
e�sx0

s
� e�s(x0+

1
n )

s

)
= �1

s
lim
n!1

e�s(x0+
1
n ) � e�sx0
1
n

= �1
s

�
d

dx
e�sx

�
jx=x0= e�sx0 ;

and hence the formulas

(3.3) L [� (x� a)] (s) = e�sa and L�1
�
e�as

	
(x) = � (x� a) :

Example 36. The initial value problem8<: 2y00 + y0 + 2y = � (x� 5)
y (0) = 0
y0 (0) = 0

;

has a forcing function that is a unit impulse at x = 5. To solve this problem, we
take the Laplace transform to obtain�

2s2 + s+ 2
�
Y (s) = e�5s;

Y (s) =
e�5s

2s2 + s+ 2
=
e�5s

2

1�
s+ 1

4

�2
+
�p

15
4

�2 ;
y (x) =

2p
15
U (x� 5) e�

x�5
4 sin

p
15

4
(x� 5) ;

since L�1
(

1

(s+ 1
4 )

2
+
�p

15
4

�2
)
= 4p

15
e�

x
4 sin

p
15
4 x.



CHAPTER 7

First order systems

Recall that in Chapter 4, in connection with higher order equations, we intro-
duced the general �rst order system (1.1) of n equations in n unknown functions,
fy1; y2; :::; yng, 8>>>>><>>>>>:

y01 = f1 (x; y1; y2; :::; yn�1)
y02 = f2 (x; y1; y2; :::; yn�1)
...

...
...

y0n�1 = fn�1 (x; y1; y2; :::; yn�1)
y0n = fn (x; y1; y2; :::; yn�1)

;

where the functions fk (x; y1; y2; :::; yn�1) are typically arbitrary for k = 1; 2; :::; n�
1; n. The system (1.2) can be written more pro�tably in vector form

y0 = f (x;y) ;

where we use boldface type to denote n-dimensional vectors,

y = (y1; y2; :::; yn) =

0BBB@
y1
y2
...
yn

1CCCA ;

f (x;y) = (f1 (x;y) ; f2 (x;y) ; :::; fn (x;y)) =

0BBB@
f1 (x;y)
f2 (x;y)

...
fn (x;y)

1CCCA ;

which we write as either row vectors or column vectors depending on context. In
our Existence and Uniqueness Theorem, we showed that if

� R is an open region of the Euclidean space Rn+1,
� if f : R ! Rn is continuous,
� if P0 = (x0;y0) 2 R,
� and if f (x;y) satis�es a Lipschitz condition in R in the y variables,

then the n� n initial value problem�
y0 = f (x;y)

y (x0) = y0
;

has a unique solution de�ned in some open interval containing x0.
This �system�point of view proved useful not only in establishing existence and

uniqueness for higher order equations, but also in

(1) characterizing fundamental solution sets to homogeneous linear equations
in terms of the Wronskian via Abel�s formula,

119
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(2) deriving the method of variation of parameters for solving higher order
nonhomogeneous linear variable coe¢ cient equations,

(3) and proving the existence of power series solutions for linear equations
when the coe¢ cients are analytic.

It turns out that we can easily establish analogues of Abel�s formula and vari-
ation of parameters for n� n systems, to which we now turn.

1. Abel�s formula and variation of parameters

Recall that in Chapter 5, we introduced the �rst order linear system of n
equations in n unknown functions fy1; y2; :::; yng,8>>>>><>>>>>:

y01 = a1;1 (x) y1 + :::a1;n (x) yn
y02 = a2;1 (x) y1 + :::a2;n (x) yn
...

...
...

y0n�1 = an�1;1 (x) y1 + :::an�1;n (x) yn
y0n = an;1 (x) y1 + :::an;n (x) yn

:

which with

A (x) �

26664
a1;1 (x) a1;2 (x) � � � a1;n (x)
a2;1 (x) a2;2 (x) � � � a2;n (x)
...

...
. . .

...
an;1 (x) an;2 (x) � � � an;n (x)

37775 ;y (x) �
0BBB@

y1
y2
...
yn

1CCCA ;

we rewrote succinctly as

(1.1) y0 (x) = A (x)y (x) :

A fundamental solution set (of column vector solutions)

� � fy1;y2; :::;yng =

8>>><>>>:
0BBB@

y1;1
y2;1
...

yn;1

1CCCA ;

0BBB@
y1;2
y2;2
...

yn;2

1CCCA ; :::;

0BBB@
y1;n
y2;n
...

yn;n

1CCCA
9>>>=>>>; ;

can be written in the form of a matrix with columns yk,

� (x) �

26664
y1;1 (x) y1;2 (x) � � � y1;n (x)
y2;1 (x) y2;2 (x) � � � y2;n (x)
...

...
. . .

...
yn;1 (x) yn;2 (x) � � � yn;n (x)

37775
and satis�es the matrix equation,

�0 (x) = A (x) � (x) ;

det� (x) 6= 0:

The fundamental solution set � is normalized at x0 if the matrix � (x0) is the
identity matrix.

Recall that the trace of a matrix A = [aij ]
n
i;j=1 is de�ned to be the sum of the

diagonal elements,

trace A �
nX
i=1

aii = a11 + a22 + :::+ ann:
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Theorem 15 (Abel�s formula). If � is a fundamental solution set for the linear
n� n system (1.1), then

det� (x) = det� (x0) e
R x
x0
[trace A(t)]dt

:

Proof. We compute using the product rule and the equation (1.1),

d

dx
det� (x) =

d

dx

26664
y1;1 (x) y1;2 (x) � � � y1;n (x)
y2;1 (x) y2;2 (x) � � � y2;n (x)
...

...
. . .

...
yn;1 (x) yn;2 (x) � � � yn;n (x)

37775

=
nX
i=1

det

26666664

y1;1 (x) y1;2 (x) � � � y1;n (x)
...

... � � �
...

y0i;1 (x) y0i;2 (x) � � � y0i;n (x)
...

...
. . .

...
yn;1 (x) yn;2 (x) � � � yn;n (x)

37777775

=
nX
i=1

det

26666664

y1;1 (x) y1;2 (x) � � � y1;n (x)
...

... � � �
...Pn

k=1 ai;k (x) yk;1 (x)
Pn

k=1 ai;k (x) yk;2 (x) � � �
Pn

k=1 ai;k (x) yk;n (x)
...

...
. . .

...
yn;1 (x) yn;2 (x) � � � yn;n (x)

37777775 :

Now using the multilinear and alternating properties of determinants, we get that
only the case k = i in the sum survives to give

d

dx
det� (x) =

nX
i=1

det

26666664

y1;1 (x) y1;2 (x) � � � y1;n (x)
...

... � � �
...

ai;iyi;1 (x) ai;iyi;2 (x) � � � ai;i (x) yi;n (x)
...

...
. . .

...
yn;1 (x) yn;2 (x) � � � yn;n (x)

37777775
=

nX
i=1

ai;i (x) det� (x) = [trace A (x)] det� (x) :

Solving this scalar equation for det� (x), we obtain

ln jdet� (x)j � ln jdet� (x0)j =
Z x

x0

d

dt
ln jdet� (t)j dt =

Z x

x0

[trace A (t)] dt;

which gives Abel�s formula. �

Now we derive the method of variation of parameters for solving the nonho-
mogeneous equation

(1.2) y0 (x) = A (x)y (x) + f (x) :

Given a fundamental solution set � = fy1;y2; :::;yng to the homogeneous equation
(1.1), we substitute the vector

yp (x) � v1 (x)y1 (x) + :::+ vn (x)yn (x)

= fy1;y2; :::;yngv (x) = � (x)v (x) ;
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into the nonhomogeneous equation (1.2) to get

A (x) � (x)v (x) + f (x) = A (x)yp (x) + f (x)

= y0p (x) = �
0 (x)v (x) + � (x)v0 (x) :

Now �0 = A� since � is a fundamental solution set, and so we have the following
�rst order equation for the vector v (x):

� (x)v0 (x) = f (x) :

But det� 6= 0 as well since � is a fundamental solution set, and so � (x) is invertible
and we have

v0 (x) = � (x)
�1
f (x) ;

v (x) =

Z
� (t)

�1
f (t) dt:

This gives a particular solution

yp (x) = � (x)v (x) = � (x)

Z
� (t)

�1
f (t) dt;

and because of the constant vector of integration, we actually get the general solu-
tion from this formula. More precisely we have

y (x) = � (x)

�Z x

x0

� (t)
�1
f (t) dt+ c

�
=

�
� (x)

Z x

x0

� (t)
�1
f (t) dt

�
+ fc1y1 (x) + :::+ cnyn (x)g

� yp (x) + yc (x) ;

where

yp (x) = � (x)

Z x

x0

� (t)
�1
f (t) dt

is a particular solution to the nonhomogeneous equation (1.2), and

yc (x) = c1y1 (x) + :::+ cnyn (x)

is the complementary solution, i.e. the general solution to the homogeneous equa-
tion (1.1).

2. Constant coe¢ cient linear systems

The method of variation of parameters reduces the solution of the nonhomoge-
neous linear variable coe¢ cient equation (1.2) to the problem of �nding a fundamen-
tal solution set for the corresponding homogeneous equation (1.1). In general we
cannot �nd explicit elementary solutions to the homogeneous system (1.1). Recall
however, that in Theorem 8, we found explicit elementary solutions for the scalar
equation L [y] = 0 when L is constant coe¢ cient nth order linear di¤erential oper-
ator as in (3.1). It turns out that we are also able to �nd an explicit fundamental

solution set for the system (1.1) when the matrix A (x) = A �

264 a1;1 � � � a1;n
...

. . .
...

an;1 � � � an;n

375
is constant. We now describe the details.
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Suppose that A is a constant n�n matrix and consider the homogeneous linear
system

(2.1) y0 (x) = Ay (x) :

Our strategy here is similar to that used several times previously, namely we devise
a proof in the scalar case n = 1, and generalize it to work for n� n matrices. The
scalar case is the simple equation

(2.2) y0 (x) = ay (x) ;

where a is a 1� 1 matrix, i.e. a number, and this equation has general solution
y (x) = ceax; x 2 R; c 2 R:

Now we note that the solution y = eax has a power series expansion,

y =
1X
n=0

an

n!
xn; x 2 R;

and most importantly, that from this power series expansion alone, we can deduce
that it is a solution to the equation (2.2):

y (x)
0
=

d

dx

1X
n=0

1

n!
anxn =

1X
n=0

1

n!
an

d

dx
xn =

1X
n=1

1

n!
annxn�1

=
1X
n=0

1

(n+ 1)!
an+1 (n+ 1)xn = a

1X
n=0

1

n!
anxn = ay (x) ;

since 1
(n+1)!a

n+1 (n+ 1) = a 1
(n+1)n!a

n (n+ 1) = a 1n!a
n.

This observation suggests that the same procedure may work for higher order
matrices. So given an n � n matrix A we consider the matrix-valued power series
� (x) with matrix coe¢ cients given by,

� (x) �
1X
n=0

1

n!
Anxn;

and where by convention, we de�ne A0 to be the n� n identity matrix

I =

26664
1 0 � � � 0
0 1 � � � 0
...
...

. . .
...

0 0 � � � 1

37775
with 1�s down the main diagonal, and 0�s elsewhere. The series above has in�nite
radius of convergence, and so converges absolutely for all x 2 R. Moreover the
following calculations are valid within the open interval of convergence R:

�0 (x) =
d

dx

1X
n=0

1

n!
Anxn =

1X
n=0

1

n!
An

d

dx
xn =

1X
n=1

1

n!
Annxn�1

=
1X
n=0

1

(n+ 1)!
An+1 (n+ 1)xn = A

1X
n=0

1

n!
Anxn = A� (x) :

Note how these matrix calulations exactly mirror those with numbers done above!
We have thus obtained a matrix solution � (x) to the equation �0 (x) = A� (x),
and if we list the columns of the matrix solution � (x) as y1 (x) ; :::yn (x), then each
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vector function yj (x) is a solution to the system (2.1), i.e. y0j (x) = Ayj (x) for
j = 1; 2; :::; n. We conclude that

� = fy1; :::yng
will be a fundamental solution set for (2.1) provided det� (x) 6= 0. But det� (0) =
det I = 1, and Abel�s formula now shows that

det� (x) = det� (0) e
R x
0
[trace A(t)]dt = e

R x
0
[trace A(t)]dt 6= 0; x 2 R:

Thus we have shown that
fy1; :::yng

is a fundamental solution set for the system (2.1), where the vectors yj are the
columns of the matrix solution

� (x) =
1X
n=0

1

n!
Anxn:

At this point we de�ne the exponential of an n � n matrix B, and which we
denote by eB , by the series

eB �
1X
n=0

1

n!
Bn:

With this notation our matrix solution becomes � (x) = eAx simply because (Ax)n =
Anxn for all n � 0. In fact the general solution to the system (2.1) is now seen to
be given by

y (x) = eAxc; x 2 R;
where c is an arbitrary n-vector. The interpretation of c is that it is the initial
condition satis�ed by the solution y (x),

y (0) = eA0c = Ic = c:

2.1. Calculation of the exponential of a matrix. The only problem re-
maining with our general solution y (x) = eAxc to the system (2.1) is the problem
of computing the matrix series eAx so as to identify the components as elementary
functions. For this we turn �rst to the relatively uncomplicated case n = 2. Given
the 2� 2 matrix

A =

�
a b
c d

�
;

we wish to compute

eAx =
1X
n=0

1

n!

�
a b
c d

�n
xn:

This is relatively easy in the special case when A is a diagonal matrix A =
�
a 0
0 d

�
,

since then we have

An =

�
an 0
0 dn

�
; n � 0;

which is easily proved by induction on n. Plugging this into the series gives us

eAx =
1X
n=0

1

n!

�
an 0
0 dn

�
xn =

1X
n=0

�
1
n!a

nxn 0
0 1

n!d
nxn

�
=

� P1
n=0

1
n!a

nxn 0
0

P1
n=0

1
n!d

nxn

�
=

�
eax 0
0 edx

�
:
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It is now easy to see that for square diagonal matrices of any size, we compute
the exponential matrix just by replacing each entry on the diagonal by its ordinary
exponential!

Now we invoke some trickery from linear algebra. For this we return for the
moment to n � n matrices and recall the notions of eigenvalues and eigenvectors
of an n � n matrix A. An eigenvalue/eigenvector pair (�;v) for A consists of a
nonzero vector v that is mapped into a multiple of itself with magni�cation factor
�, i.e.

(2.3) Av = �v:

Note that such a vector is determined by its direction, since any multiple of it will
also satisfy (2.3). For example, a diagonal matrix

A =

26664
a11 0 � � � 0
0 a22 � � � 0
...

...
. . .

...
0 0 � � � ann

37775
has eigenvectors ej with corresponding eigenvalues ajj . Thus (�j ;vj) = (ajj ; ej) is
an eigenpair for A for each 1 � j � n.

Recall also that the eigenvalues can be found by calculating the roots of the
characteristic polynomial of A:

P (�) = det (�I �A) :

The reason for this is that the following statements are equivalent:

(1) � is an eigenvalue for A,
(2) there is a nonzero vector v such that Av = �v,
(3) (�I �A)v = �v �Av = 0 for some v 6= 0,
(4) �I �A is not an invertible matrix,
(5) det (�I �A) = 0.
Thus we see in particular that there are at most n eigenvalues. If a root � of

P (�) is repeated m times, we say that � is an eigenvalue of mulitplicity m of A.
Corresponding eigenvectors v for � can be found by solving the matrix equation

(�I �A)v = 0:

If � is an eigenvalue of mulitiplicity m, it can be shown that the vector space
of solutions to this equation, i.e. the space of corresponding eigenfunctions, has
dimension at least 1, and at most m, but not necessarily equal to m. In particular,
if � has mulitiplicity 1, there is a unique eigenvector.

Example 37. The matrix A =
�
1 1
0 1

�
has characteristic polynomial P (�) =

(�� 1)2, so has the single eigenvalue 1 of multiplicity 2. However, it is easy to see

that
�
1
0

�
(or any multiple) is the only eigenvector.

We will see below that the exponential eA of a matrix A has an especially simple
form when A has n linearly independent eigenvectors v1; :::;vn. This condition on a
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matrix A is easily seen to be equivalent to the requirement that A is diagonalizable,
i.e. there is an invertible matrix B such that

B�1AB = � =

26664
�1 0 � � � 0
0 �2 � � � 0
...

...
. . .

...
0 0 � � � �n

37775
is a diagonal matrix. Indeed, we can take B to be the matrix with columns v1; :::;vn
so that B takes ej to vj for 1 � j � n. Then B�1AB takes ej to

B�1ABej = B�1Avj = B�1�jvj = �jB
�1vj = �jej ;

and hence is the diagonal matrix � with diagonal entries f�1; :::; �ng.
We also observe that the eigenvalues of A are precisely the diagonal entries

of �, counted according to multiplicity. Indeed both A and � have the same
characteristic polynomial:

P (�) = det (�I �A) = det
�
�I �B�B�1

�
= det

�
B (�I � �)B�1

�
= detB det (�I � �) detB�1 = detB det (�I � �) 1

detB

= det (�I � �) = det

264 �� �1 � � � 0
...

. . .
...

0 � � � �� �n

375
=

nY
j=1

(�� �j) :

It is in general di¢ cult to determine when an n�n matrix A is diagonalizable,
but there are two standard and important su¢ cient conditions, namely

(1) if A has n distinct eigenvalues, or
(2) if A is symmetric.

Indeed, if the characteristic polynomial of A has n distinct roots, then corre-
sponding eigenvectors are linearly independent! In fact, in the simple case n = 2,
suppose that v1 and v2 are eigenvectors corresponding to distinct eigenvalues �1
and �2, and in order to derive a contradiction, that v2 = cv1. Then we have

�2 (cv1) = �2v2 = Av2 = A (cv1) = cAv1 = c�1v1;

which implies c (�2 � �1)v1 = 0. This contradicts v1 6= 0 since both c and �1 �
�2 are nonvanishing. The case when n > 2 can be proved in similar fashion by
induction on the number ` of eigenvectors considered. Indeed, �x n and 1 < ` � n,
and with the obvious notation, suppose that the eigenvectors fv1; :::;v`�1g are
linearly independent, and in order to derive a contradiction, that v` =

P`�1
k=1 ckvk.

ThenBx

`�1X
k=1

ck�`vk = �`

`�1X
k=1

ckvk = �`v` = Av` = A

 
`�1X
k=1

ckvk

!

=
`�1X
k=1

ckAvk =
`�1X
k=1

ck�kvk;
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which implies
P`�1

k=1 ck (�` � �k)vk = 0. This contradicts our induction assumption
that the vectors fv1; :::;v`�1g are linearly independent, since �` � �k 6= 0 for all k,
and at least one of the ck is nonzero. Altogether we have proved the following.

Lemma 7. If A is an n�n matrix with n distinct eigenvalues f�jgnj=1, then A
has n linearly independent eigenvectors fvjgnj=1 with Avj = �jvj for 1 � j � n.

The standard proof that a symmetric matrix A is diagonalizable involves ele-
mentary row and column operations, and we will not reproduce the proof here.

2.1.1. Diagonalizable matrices. We now return to our task of calculating the
exponential of a 2 � 2 matrix. In the more general case of a diagonalizable 2 � 2
matrix

A =

�
a b
b d

�
;

there is an invertible matrix B, i.e. detB 6= 0, with the property that

B�1AB = � =

�
�1 0
0 �2

�
is a diagonal matrix. The diagonal entries �j are the eigenvalues of the matrix �,
and hence also the eigenvalues of the matrix A. From above we know that

e�x =

�
e�1x 0
0 e�2x

�
:

Now comes the trickery. We have A = B�B�1 and so

eAx =
1X
n=0

1

n!
Anxn =

1X
n=0

1

n!

�
B�B�1

�n
xn(2.4)

=

1X
n=0

1

n!

n timesz }| {�
B�B�1

� �
B�B�1

� �
B�B�1

�
:::
�
B�B�1

�
xn

=

1X
n=0

1

n!
B�

�
B�1B

�
�
�
B�1B

�
�B:::

�
B�1B

�
�B�1xn

=
1X
n=0

1

n!
B

n timesz }| {
���:::�B�1xn

=
1X
n=0

1

n!
B�nB�1xn = B

 1X
n=0

1

n!
�nxn

!
B�1 = Be�xB�1:

Now consider the vectors v1 = Be1 and v2 = Be2. We have for each j = 1; 2:

eAxvj = Be�xB�1Bej = Be�xej = Be�jxej = e�jxBej = e�jxvj :

Thus e�jx is an eigenvalue of the matrix eAx with eigenvector vj , and moreover,
yj = e�jxvj = eAxvj is a solution to the system (2.1). Finally, from linear algebra
we know that the eigenvectors fv1;v2g span R2, and so the matrix with columns
v1;v2 is invertible. It follows that

fy1;y2g =
�
e�1xv1; e

�2xv2
	

is a fundamental solution set for the system (2.1). Note that the entries here are
elementary functions, namely exponentials.
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Finally, the above method works just the same when the matrix A is an n� n
matrix with n linearly independent eigenvectors fv1; :::;vng. But �rst we illustrate
the method in the case n = 2 before giving the general theorem.

Problem 7. Find the general solution of the system�
y01 (x) = 2y1 (x)� 3y2 (x)
y02 (x) = y1 (x)� 2y2 (x)

:

Solution 7. We write the system in matrix form as

y0 (x) =

�
y01 (x)
y02 (x)

�
=

�
2y1 (x)� 3y2 (x)
y1 (x)� 2y2 (x)

�
=

�
2 �3
1 �2

�
y (x) = Ay (x) ;

and compute the eigenvalues and eigenvectors of the matrix A =
�
2 �3
1 �2

�
:

P (�) = det (�I �A) = det
�
�� 2 3
�1 �+ 2

�
= (�� 2) (�+ 2)� (�1) (3) = �2 � 1 = (�� 1) (�+ 1) :

So A has distinct eigenvalues �1. Now we compute the corresponding eigenvectors.
When � = 1 we solve�

0
0

�
=

�
1� 2 3
�1 1 + 2

� �
v1
v2

�
=

�
�1 3
�1 3

� �
v1
v2

�
=

�
�v1 + 3v2
�v1 + 3v2

�
;

which gives v1 =
�
3
1

�
is an eigenvector for 1. When � = �1 we solve�

0
0

�
=

�
�1� 2 3
�1 �1 + 2

� �
v1
v2

�
=

�
�3 3
�1 1

� �
v1
v2

�
=

�
�3v1 + 3v2
�v1 + v2

�
;

which gives v2 =
�
1
1

�
is an eigenvector for �1. Thus a fundamental solution set

is

fy1;y2g =
�
e�1xv1; e

�2xv2
	
=

�
ex
�
3
1

�
; e�x

�
1
1

��
and the general solution is�

y1 (x)
y2 (x)

�
= y (x) = c1y1 (x) + c2y2 (x) =

�
3c1e

x + c2e
�x

c1e
x + c2e

�x

�
:

Here is the general theorem for diagonalizable matrices.

Theorem 16. Suppose the n � n matrix A has n linearly independent eigen-
vectors fv1; :::;vng, with corresponding eigenvalues f�1; :::; �ng, where the �j may
be real or complex, and need not be distinct. Then the system (2.1),

y0 (x) = Ay (x) ; �1 < x <1;
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has fundamental solution set �
e�1xv1; :::; e

�nxvn
	

on (�1;1), and the general solution is given by

y (x) = c1e
�1xv1 + c2e

�2xv1:::+ cne
�nxvn; �1 < x <1:

Now we give an example to illustrate the use of variation of parameters to solve
a nonhomogeneous system with a constant coe¢ cient matrix A,

y0 (x) = Ay (x) + f (x) :

First we note that in this case, � (x) = eAx and � (t)�1 = e�At, and so the variation
of parameters formula can be written as

yp = �(x)

Z x

x0

� (t)
�1
f (t) dt

= eAx
Z x

x0

e�Atf (t) dt =

Z x

x0

eA(x�t)f (t) dt;

which when x0 = 0 is the convolution of the exponential matrix-valued function
expA (s) = eAs with the vector-valued function f (t). We have used here the fact
that for any matrix B, a simple computation with the power series de�nitions of
eB and e�B shows that eBe�B = I, hence

�
eB
��1

= e�B .

Example 38. In order to solve the nonhomogeneous system

y0 (x) = Ay (x) + f (x) =

�
0 1
1 0

�
y (x) +

�
1
1

�
;

we �rst compute the characteristic polynomial

P (�) = det (�I �A) = det
�

� �1
�1 �

�
= �2 � 1 = (�� 1) (�+ 1) :

The eigenvector corresponding to the eigenvalue � = 1 is
�
1
1

�
, and the eigen-

vector corresponding to the eigenvalue � = �1 is
�

1
�1

�
. Thus a fundamental

solution set for the homogenous system is�
y1 (x) = ex

�
1
1

�
; y2 (x) = e�x

�
1
�1

��
;

and the complementary solution is

yc (x) = c1y1 (x) + c2y2 (x) = c1e
x

�
1
1

�
+ c2e

�x
�

1
�1

�
:

Finally, the variation of parameters formula for a particular solution to the nonho-
mogeneous system with x0 = 0 is

yp (x) =

Z x

0

eA(x�t)
�
1
1

�
dt = �A�1eA(x�t)

�
1
1

�
jx0

= �A�1
�
1
1

�
+A�1eAx

�
1
1

�
:
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Now the second term A�1eAx
�
1
1

�
solves the homogeneous system, so we can

discard this term and use

yp (x) = �A�1
�
1
1

�
= �A

�
1
1

�
= �

�
0 1
1 0

��
1
1

�
= �

�
1
1

�
;

since A�1 = A for the matrix A =

�
0 1
1 0

�
. Thus the general solution to the

nonhomogeneous system is

y (x) = yc (x) + yp (x)

= c1e
x

�
1
1

�
+ c2e

�x
�

1
�1

�
�
�
1
1

�
:

2.1.2. The Jordan Canonical Form. It turns out that when some of the eigen-
values have multiplicity greater than one, there may not be n linearly independent
eigenvectors - this corresponds to the case of repeated roots for the nth order con-
stant coe¢ cient linear equation L = 0. This case can be analyzed using the Jordan
Canonical Form of the matrix A (see below), and calculating the exponential of the
`� ` Jordan blocks

J�;` =

266666664

� 1 0 � � � 0

0 �
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . � 1
0 � � � 0 0 �

377777775
= �I +N;

where the nilpotent matrix N satis�es N ` = 0, and

Nk =

266666664

0 � � � 1 � � � 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1

...
. . .

. . .
. . .

...
0 � � � � � � � � � 0

377777775
; 1 � k � `� 1:

In the matrix above, the 10s appear on the kth superdiagonal. Since �I and N
commute, we then have

eJ�;`x = e�Ix+Nx = e�IxeNx = e�xI

 
`�1X
k=0

1

k!
Nkxk

!
(2.5)

=

2666666664

e�x xe�x x2

2! e
�x � � � x`�1

(`�1)!e
�x

0 e�x
. . .

. . .
...

0
. . .

. . .
. . . x2

2! e
�x

...
. . .

. . . e�x xe�x

0 � � � 0 0 e�x

3777777775
:
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In the calculation above we used the fact that if two matrices A and B commute,
then the binomial theorem holds for them, i.e.

(A+B)
n
=
X

k+`=n

n!

k!`!
AkB`;

and hence the exponent formula eA+B = eAeB :

eA+B =
1X
n=0

1

n!
(A+B)

n
=

1X
n=0

1

n!

X
k+`=n

n!

k!`!
AkB`

=
1X

k;`=0

1

k!`!
AkB`

=

 1X
k=0

1

k!
Ak

! 1X
`=0

1

`!
B`

!
= eAeB :

Recall that every n�n matrix A has a Jordan Canonical Form J that consists
of Jordan blocks J�;` along the main diagonal, where � is an eigenvalue of A and `
is the size of the block. More precisely, there is an invertible n� n matrix B such
that

B�1AB = J =

266666666666664

�
J�1;`1;1

�
� � � 0 � � � 0 � � � 0

0
. . .

...
...

...

0
. . .

�
J�1;`1;q1

�
� � � 0 � � � 0

...
. . .

. . .
...

...
0 � � � 0 0

�
J�k;`k;1

�
� � � 0

...
...

...
. . .

...

0 � � � 0 � � � 0 � � �
h
J�k;`k;qk

i

377777777777775
;

where �1; :::; �k are the eigenvalues of A, and `j;1+ :::+`j;qj = mj is the multiplicity
of the eigenvalue �j for 1 � j � k. Thus by the calculation in (2.4) we have the
formula

eAx = eBJB
�1x = BeJxB�1(2.6)

= B

266666666666666664

h
eJ�1;`1;1x

i
� � � 0 � � � 0 � � � 0

0
. . .

...
...

...

0
. . .

h
e
J�1;`1;q1

x
i
� � � 0 � � � 0

...
. . .

. . .
...

...

0 � � � 0 0
h
eJ�k;`k;1x

i
� � � 0

...
...

...
. . .

...

0 � � � 0 � � � 0 � � �
h
e
J�k;`k;qk

x
i

377777777777777775
B�1;

where the exponentials of the Jordan blocks are given by (2.5).

Conclusion 4. Thus a fundamental solution set for the system y0 = Ay is
given by the columns of the matrix BeJxB�1, and we see that the entries in the
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columns are linear combinations of polynomials in x times exponentials e�x where
� runs through eigenvalues of A.

Remark 8. In the case n = 2, an arbitrary matrix A has either exactly one
eigenvector, or exactly two eigenvectors. In the case A has exactly one eigenvector,
with eigenvalue �, the Jordan Canonical Form consists of a single 2� 2 block J =�
� 1
0 �

�
. If B�1AB = J , then

(2.7) eAx = eBJB
�1x = BeJxB�1 = B

�
e�x xe�x

0 e�x

�
B�1:

Here is a simple example that illustrates the use this result.

Example 39. In order to solve the system

y0 = Ay =

�
1 �1
1 3

�
y;

we compute the characteristic polynomial

P (�) = det (�I �A) = det
�
�� 1 1
�1 �� 3

�
= (�� 2)2 ;

and see that � = 2 is the only eigenvalue of A, and has multiplicity 2. Now for
� = 2 we have

2I �A =
�
1 1
�1 �1

�
;

and the only eigenvector (up to multiples) is
�

1
�1

�
. Thus one solution of the

system is

y1 (x) = e2x
�

1
�1

�
:

The Jordan Canonical Form for A consists of a single Jordan block J2;2,

B�1AB = J = J2;2 =

�
2 1
0 2

�
;

and from formula (2.6) or (2.7) for the exponential eAx, we see that

eAx = B

�
e2x xe2x

0 e2x

�
B�1:

Thus there is a second solution of the form

y2 (x) = xe2xv + e2xw;

for certain vectors v and w that can be evalutated by plugging into the system:�
e2x + 2xe2x

�
v + 2e2xw = y02 (x) = Ay2 = xe2xAv + e2xAw:

Equating coe¢ cients of the independent functions e2x and xe2x we get

(2I �A)v = 0;

(2I �A)w = �v:
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Now v =

�
1
�1

�
and w =

�
0
�1

�
satisfy these equations, and so a second

independent solution is given by

y2 (x) = xe2x
�

1
�1

�
+ e2x

�
0
�1

�
:

The general solution is then given by

y (x) = c1y1 (x) + c2y2 (x)

=
�
c1e

2x + c2xe
2x
�� 1

�1

�
+ c2e

2x

�
0
�1

�
:


