
Math 742. Semester 2, 2015-2016
Problem Set #3

Instructor: Walter Craig
Problem set due date: Thursday March 3, 2016

Problem 1. (Maxwell’s equations)
Maxwell’s equations for electromagnetic fields in three space dimensions x ∈ R3 can be stated
in terms of the electric field E(t, x) and the magnetic field B(t, x) as follows:

∂tE = ∇×B − J , ∂tB = −∇× E (1)

∇ · E = ρ , ∇ ·B = 0 . (2)

The quantities ρ(t, x) and J(t, x) are respectively the charge density and the current density
vector, and are given as input to the problem. As is implied by the notation, ρ is a scalar
function while E, B and J are three dimensional vectors whose entries depend on (t, x).

(a) Prove the vector calculus identity that for any three dimensional vector F (x) ∈ C2 then

∇ · (∇× F ) = 0 .

(b) Show that Maxwell’s equations (1) can be written in symmetric hyperbolic form. Note
that the pair of equations (2) are constraints.

(c) Show that under the conditions that ∂tρ = 0 and ∇ · J = 0, the constraint equations are
conserved by solutions. That is, if initially ∇ · E(0, x) = ρ(x) and ∇ · B(0, x) = 0 then this
condition continues to hold for t ∈ R.

Problem 2. (G̊arding’s condition of hyperbolicity for systems)
The condition of G̊arding for well posedness of a constant coefficient system of equations is
similar to that of a scalar equation. Namely, consider the canonical problem

P (D, τ)u = 0 , t > 0

τ ku(0, x) = 0 , k = 0, . . .m− 2 , τm−1u(0, x) = g(x) ∈ S .

The matrix P (ξ, λ), which depends upon ξ ∈ Rn and λ ∈ C is the symbol of the system of
equations. We assume that the matrix P (0, 1) is invertible, so that without loss of generality
P (0, 1) = I. This implies that the initial hypersurface {(t, x) : t = 0} is noncharacteristic.

(a) Show that the general solution to the initial value problem can be given in terms of the
solution map u(t, x) = S(t)g(x) for the canonical problem.

(b) G̊arding’s condition of hyperbolicity for systems is that the roots λ of the polynomial
q(ξ, λ) = detP (ξ, λ) = 0 satisfy the condition

imλ(ξ) ≥ −C .
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Construct the solution map S(t) using complex variables techniques, and prove the property
that S(t) : S → S, namely Schwartz class initial data leads to Schwartz class solutions.

(c) Show that a linear symmetric hyperbolic system with constant coefficient matricies A0,
Aj, j = 1, . . . n and B satisfies the G̊arding condition of hyperbolicity.

Problem 3. (Sobolev embedding theorem)
This problem has to do with inequalities between norms in spaces of functions.

(a) Prove the Sobolev embedding theorem, that for s a real parameter such that s > n/2
then

|u(x)|L∞ ≤ Cns‖u‖Hs ,

where the Sobolev norm ‖u‖Hs is defined by

‖u‖2Hs :=

∫
Rn

|û(ξ)|2(1 + |ξ|2)s dξ .

(b) Show the further refinement that if n/2 < s ≤ n/2 + 1 then every function u ∈ Hs is
also Hölder continuous, u ∈ Cα(Rn), for any Hölder exponent 0 ≤ α < s− n/2. Therefore if
u ∈ Hr for some r > n/2 then in fact u ∈ Ck,α for k = [r − n/2] and 0 ≤ α < r − n/2− k.

Problem 4. (quantum harmonic oscillator)
Solving the Schrödinger equation for the quantum harmonic oscillator

1

i
∂tψ = −1

2
∂2xψ +

1

2
x2ψ ,

by separation of variables, one is led to the expression

ψ(t, x) =
∑
k

ake
iλkxϕk(x) .

The eigenfunctions and eigenvalue pairs (ϕk(x), λk) are given by the problem in spectral
theory;

−1

2
∂2xϕk(x) +

1

2
x2ϕk(x) = λkϕk(x) . (3)

(a) Show that under Fourier transform the eigenvalue problem (3) is transformed to itself.
Conclude that the eigenfunctions of the quantum harmonic oscillator are also eigenfunctions
of the Fourier transform, and vice versa.

(b) Derive the eigenfunctions for (3), and show that the corresponding eigenvalues λk are all
real. What are they.

(c) What are the corresponding eigenvalues of the Fourier transform?
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