
Math 742. Semester 2, 2015-2016
Problem Set #5

Instructor: Walter Craig
Problem set due date: Thursday April 14, 2016

Problem 1. (Pohozaev identity) This problem concerns the virial identity on star-shaped
domains, and a constraint on existence of solutions to certain nonlinear problems.

A domain D ⊆ Rn is star-shaped with respect to a point x0 (which by translation may as
well be taken to be x0 = 0) if for each x ∈ D the ray {λx : 0 ≤ λ ≤ 1} also lies in D.
For such domains it is a geometric fact that for all x ∈ ∂D then x ·N ≥ 0, where N is the
outward normal to the boundary.

(a): Consider solutions of the Poisson problem

∆u = h , x ∈ D , u(x) = 0 , x ∈ ∂D ,

supposing that u ∈ C2(D). The vector field of infinitesimal dilations is x · ∂x =
∑n

j=1 xj∂xj .
Integrating this equation against x · ∂xu, prove the virial identity

n− 2

2

∫
D

|∇u|2 dx+
1

2

∫
∂D

|∇u|2(x ·N) dS

= −
∫
D

(nh+ x · ∇h)u dx .

Note that on star-shaped domains the quantity x ·N is nonnegative.

(b): Now replace the term h(x) by a nonlinear function of u, namely consider C2 solutions
of

∆u = −|u|p−1u , u(x) = 0 x ∈ ∂D . (1)

Show that in this situation the RHS of the virial identity can be written as

RHS =
n

p+ 1

∫
D

|u|p+1 dx .

(c): Together the two identities above state that

n− 2

2

∫
D

|∇u|2 dx+
1

2

∫
∂D

|∇u|2(x ·N) dS =
n

p+ 1

∫
D

|u|p+1 dx .

Show by other means that a C2 solution of (1) satisfies∫
D

|∇u|2 dx =

∫
D

|u|p+1 dx .
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Since both identites must hold, then

n− 2

2

∫
D

|u|p+1 dx ≤ n

p+ 1

∫
D

|u|p+1 dx ,

with the implication that when p > n+2
n−2

then the only solution is u = 0.

Problem 2. (path integration) We want to consider solutions of an evolution equation for
v ∈ H, where H is a Hilbert space;

∂tv = Av , v(0) = v0 ∈ H , (2)

and a representation of solutions of a ‘perturbation’ of this equation given by

∂tv = (A + B)v , v(0) = v0 ∈ H . (3)

Consider the situation where A is self-adjoint operator on the Hilbert space H such that the
operator semigroup {etA : t ∈ R+} is bounded uniformly, namely ‖Av‖H ≤ CA‖v‖H (the
operator A itself may be unbounded). Suppose that B is a bounded operator on H.

This exercise is to show that one can construct the operator e(A+B)t as a perturbation
expansion, the Dyson series, which expresses the principles of Feynman path expansions.

(a): Use Duhamel’s principle to rewrite the solution of equation (3) as an integral equation

v(t) = etAv0 +

∫ t

0

e(t−s)A(Bv(s)) ds . (4)

Denote

LBv :=

∫ t

0

e(t−s)A(Bv) ds ,

and use the equation (4) to write v(t) as a formal series

v(t) =
∑
m∈N

LmB (etAv0) . (5)

(c): Prove that

‖
∫ t

0

e(t−s)ABv ds‖H ≤ CA

∫ t

0

‖Bv‖H ≤ CACB

∫ t

0

‖v‖H ds .

Now suppose for purposes of induction that

‖v(t)‖H ≤
(CACBt)

r

r!

prove that

‖
∫ t

0

e(t−s)ABv(s) ds‖H ≤
(CACBt)

r+1

(r + 1)!
,
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hence demonstrating the convergence of the series that you constructed formally in (5).

Problem 3. (initial - boundary value problems for the heat equation) The heat kernel in
one space dimension is of course

H(t, x− y) =
1√
2πt

e−(x−y)2/2t .

(a): For periodic data u0(x+ 2πk) = u0(x) for all k ∈ N, show that∫ +∞

−∞
H(t, x− y)u0(y) dy =

∫ 2π

0

Hp(t, x− y)u0(y) dy ,

where

Hp(t, x− y) =
+∞∑

k=−∞

H(t, x− y + 2πk) ;

show that this sum converges and that it satisfies the appropriate partial differential equa-
tions and boundary conditions.

(b): For the heat equation on the interval [0, 2π] with Dirichlet boundary conditions, the
heat kernel can be described as follows:

HD(t, x, y) = Hp(t, x− y)−Hp(t, x+ y) .

Show that this expression satisfies the appropriate partial differential equations and boundary
conditions.

(c): An integral operator K on functions of x ∈ [0, 2π] with kernel function k(x, y) has a
trace given by

tr (K) =

∫ 2π

0

k(x, x) dx .

Define the Laplacian operator with periodic boundary conditions to be ∆p, and that with
Dirichlet boundary conditions to be ∆D. Calculate tr (e−t∆p) and show that it is finite for
each t > 0 but diverges as t→ 0+.

Calculate tr (e−t∆D) and show that it is also finite for each t > 0 but that it also diverges
as t→ 0+.

Finally, compute the trace of the difference,

M(t) := tr (e−t∆p − e−t∆D)

and show that the limit limt→0+M(t) is finite. What is the limit?

Problem 4. (maximum principle for vorticity) The incompressible Navier – Stokes equations
in two dimensions for the velocity field u = (u1, u2)(t, x) are

∂tu+ (u · ∇)u = −∇p+ ν∆u

∇ · u = 0 .

3



We will consider the case of u(t, x + 2πk) = u(t, x) for all integer pairs (k1, k2) ∈ N2, which
is to say a doubly periodic domain D with no boundary.

(a): Derive an expression for the velocity field u(·, x) in terms of the vorticity ω(·, x) (the
Biot – Savart law), and show that if ω ∈ C(D) then u ∈ Cα(D) for all 0 < α < 1.

(b): Derive an evolution equation for the vorticity ω(t, x) = ∂x1u2 − ∂x2u1 in terms of the
incompressible velocity field u(t, x), for given initial vorticity ω0(x) ∈ C(D).

(c): Show that the vorticity satisfies the maximum principle; namely show that for all
(t, x) ∈ R+ ×D

min
x∈D

(ω0(x)) ≤ ω(t, x) ≤ max
x∈D

(ω0(x))

and if ever either of the extrema is achieved at some x0 for some time t > 0 then the solution
is constant.
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