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Because of the enormous earthquake in Sumatra on December 26, 2004, and the
devastating tsunami which followed, I have chosen the focus of my mini-course
lectures at this year’s PASI to be on two topics which involve the dynamics of
surface water waves. These topics are of interest to mathematicians interested in
wave propagation, and particularly to Chilean scientists, I believe, because of Chile’s
presence on the tectonically active Pacific Rim.

My first lecture will describe the equations of fluid dynamics for the free surface
above a body of fluid (the ocean surface), and the linearized equations of motion.
From this we can predict the travel time of the recent tsunami from its epicenter
off of the north Sumatra coast to the coast of nearby Thailand, the easy coasts
of Sri Lanka and south India, and to Africa. In fact the signal given by ocean
waves generated by the Sumatra earthquake was felt globally; within 48 hours
distinguishable tsunami waves were measured by wave gages in Antarctica, Chile,
Rio di Janeiro, the west coast of Mexico, the east coast of the United States, and
at Halifax, Nova Scotia.

To describe ocean waves we will formulate the full nonlinear fluid dynamical
equations as a Hamiltonian system (Zakharov 1968 [19]), and we will introduce the
Greens function and the Dirichlet-Neumann operator for the fluid domain along
with the harmonic analysis of the theory of their regularity. From an asymptotic
theory of scaling transformations we will derive the known Boussinesq-like systems
and the KdV and KP equations which govern the asymptotic behavior of tsunami
waves over an idealized flat bottom. When the bottom is no longer assumed to be
perfectly flat, a related theory (Rosales & Papanicolaou 1983 [13]) (Craig, Guyenne,
Nicholls & Sulem 2005 [6]) gives a family of model equations taking this into ac-
count.

My second lecture will describe a series of recent results in PDE, numerical
results, and experimental results on the nonlinear interactions of solitary surface
water waves. In contrast with the case of the KdV equations (and certain other
integrable PDE), the Euler equations for a free surface do not admit clean (‘elastic’)
interactions between solitary wave solutions. This has been a classical concern of
oceanographers for several decades, but only recently have there been sufficiently
accurate and thorough numerical simulations which quantify the degree to which
solitary waves lose energy during interactions (Cooker, Wiedman & Bale 1997 [3])
(Craig, Guyenne, Hammack, Henderson & Sulem 2006 [4]). It is striking that this
degree of ‘inelasticity’ is remarkably small. I’ll describe this work, as well as recent
results on the initial value problem which are very relevant to this phenomenon
(Schneider & Wayne 2000 [14]) (Wright 2005 [18]).
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1. Tsunamis and ocean waves

The name ‘tsunami’ in Japanese originally means ‘harbor wave’, but the word has
come to mean a large and potentially very powerful series of ocean waves which are
occasionally generated by movements of the ocean floor. Very infrequently these
can be extremely large and very dangerous, and can have a destructive impact on
coastal areas of the world’s oceans. Small tsunamis are generated relatively often,
most commonly by tectonic activity, but sometimes by other means as well, such
as underwater landslides. Serious tsunamis, to the point of loss of life and major
coastal destruction, take place on the order of once every several decades. I think
we were all personally touched by the deadly Boxing Day Tsunami in 2004 which
was generated by the major earthquake in the Sunda Trench subduction zone off
the west coast of the island of Sumatra. It is a challenge for mathematicians with
interests in the hydrodynamics of ocean waves to seek a credible rôle to play in
predicting and/or articulating the danger of a tsunami or in alleviating the force of
their impact.

Taking a näıve point of view, the most effective means to predict major tsunamis
is to predict major earthquakes. However this an ambitious objective to say the
least, and despite the research of many decades of earth scientists this remains
a grand challenge problem, on which major progress will take much time. The
question remains, however, as to find credible aspects of tsunami prediction on
which mathematicians can contribute. It seems to me that there are many important
open questions in the modeling of (1) tsunami wave generation in the event of
a major earthquake, (2) wave propagation across the opean ocean, and (3) wave

impact upon the coastlines affected by the event. Indeed the design of tsunami

early warning systems or some of its components involves mathematical modeling
of solutions of the partial differential equations describing ocean wave dynamics,
and computer simulation of solutions which, if they are to be an effective warning,
must be performed in faster than real time. It is also an important problem to be
able to clarify the character of tsunami waves, in particular those features of the
waves as they impact on coastal areas which can effect tsunami safety codes in
engineering and architecture.

In my first talk on tsunamis, I plan to discuss some of the elementary features
of the phenomenon, most of which are essentially well know facts in the theory of
surface water waves. Some however are new, or at least reflect a modern viewpoint.
For the most part I will place these in the context of the Boxing Day Tsunami
2004, which is clearest in our memory, in order to bring perspective to this event.
The basic details are that this tsunami was generated by a major earthquake that
took place along the Sunda Trench, which is the subduction zone along of the west
coast of the island of Sumatra. The earthquake took place on 26 December 2004
at 7h58 local time, and its epicenter was located approximately 250km off shore.
It was initially classified as a magnitude Mw = 8.5 ∼ 9, but after subsequent
analysis (which took several weeks) the estimates of its strength were upgraded to
Mw = 9.3. The earthquake caused a rupture of the ocean floor moving essentially to
the north-northwest along the subduction zone, of length approximately 1200km.
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Figure 1. Northeastern Indian Ocean tectonic setting. USGS website:
http://soundwaves.usgs.gov/2005/01/tectonicLG.jpg

The magnitude of the horizontal slip along this rupture is estimated as being 21m
in the southern parts, to 15m in more northern locations. Vertical displacement,
which is perhaps more relevant to tsunami generation, is estimated to be between
2m to 10m. It was an unusual earthquake in the eyes of seismologists, as the rupture
moved relatively slowly, acting somewhat like a zipper from the southeastern to the
northwestern part of the rupture, and lasting between 15 to 20 minutes in all.
A diagram of the northeastern Indian Ocean tectonic region gives a picture of the
setting of this earthquake and allows us to put the event into perspective (Figure 1).

The slip along such an extended region acted as a line source generating tsunami
waves, which propagated both through the Indian Ocean to the west, and the An-
daman Basin to the east. Soon after being generated, devastating tsunami waves
hit the coast of Sumatra itself and cause extensive damage and loss of life. The
tsunami waves traveled at approximately 360km/hr eastwards through the An-
daman Basin, to impact upon the west coast of the Malay Peninsula, including
portions of Thailand and Myanmar, about one hour after the earthquake. Waves
traveling at approximately 720km/hr propagated west through the lower Bay of
Bengal / Indian Ocean, impacting on Sri Lanka and the east coast of southern India
approximately 2 hours after the earthquake. The tsunami was in fact felt globally;
within 7 hours on the east African coast, within 20 hours on the South Atlantic
Ocean in Rio de Janeiro, within 23 hours on the South Pacific Ocean in Chile, and
in 29 hours in Halifax, Nova Scotia. A numerical model of the global propagation
of the Boxing Day Tsunami was published in Science Express on August 25 2005,
and in [17], (Figure 2) which shows this effect.
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Figure 2. The global reach of the 26 December 2004 Sumatra tsunami: Science Express
on 25 August 2005, Science 23 September 2005, Vol. 309. no. 5743, pp. 2045 - 2048
Vasily Titov, Alexander B. Rabinovich, Harold O. Mofjeld, Richard E. Thomson, Frank
I. Gonzàlez

2. Equations of motion for potential flow

Oceanographers generally treat ocean waves as free surface waves in an ideal fluid.
This is to say that one works with potential flow, for which the velocity of the fluid
in Eulerian coördinates is given in terms of a velocity potential ϕ, such that

∆ϕ = 0 (2.1)

in the domain occupied by the fluid. This fluid domain is bounded below by {y =
−h(x), x ∈ R

n−1}, while the free surface is given in the form of a graph {y =
η(x, t)}. For tsunami propagation we should really be treating ocean waves on a
sphere or on certain subsets of the sphere corresponding to ocean regions. However
for reasons of simplicity we will simply consider the fluid domain to be x ∈ R

2,
−h(x) < y < η(x, t). On the bottom boundary of the fluid domain we impose

N · ∇ϕ = 0 on y = −h(x) , (2.2)

and on the free surface we impose the two classical boundary conditions

∂tϕ+ 1
2 |∇ϕ|2 + gη = 0

∂tη + ∂xη · ∂xϕ− ∂yϕ = 0

}

on y = η(x, t) , (2.3)

This will describe the motion of ocean waves in the setting in which the bottom
is fixed, which is in our case to be during the second phase of wave propagation
of the tsunami after the time at which they have been generated. The boundary
conditions describing the generation of tsunami waves are different, as the bottom
boundary can no longer assumed to be stationary. In particular the sea bottom
should be given as {y = −h(x, t)} and one must replace the boundary conditions
(2.2) by the following expression

N · ∇ϕ = ∂th(x, t) on y = −h(x, t) , (2.4)

where the outward normal to the bottom boundary is given by N = (−∂xh,−1).
In studies of the generation of a tsunami from a given source, these are appropriate
boundery conditions to work with.
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These equations can be posed in the form of a Hamilton system, a fact which
is due to V.E. Zakharov [19]. Zakharov’s Hamiltonian can be rewritten [7] as

H(η, ξ) = 1

2

∫

Rn−1

ξG(η, h)ξ + gη2 dx . (2.5)

In this expression we write ξ(x) := ϕ(x, η(x)), and the Dirichlet integral, which
represents the kinetic energy, is expressed in terms of the Dirichlet – Neumann
operator

G(η, h)ξ :=
√

1 + |∂xη|2 N · ∇ϕ
∣

∣

∣

y=η
, (2.6)

where the harmonic extension ϕ of the top boundary conditions ξ(x) to the fluid
domain is required to satisfy the bottom boundary conditions (2.4). The equations
(2.1) through (2.3) are written in the canonical form

∂t

(

η

ξ

)

=

(

0 1

−1 0

) (

δηH

δξH

)

. (2.7)

Explicitely, Hamilton’s canonical equations (2.7) have the form

∂tη = G(η, h)ξ , (2.8)

∂tξ = −gη +
−1

2(1 + |∂xη|2)
[

(∂xξ)
2 − (G(η, h)ξ)2 − 2∂xη∂xξ G(η, h)ξ (2.9)

+(|∇xξ|2|∇xη|2 − (∇xη · ∇xξ)
2
)

] (2.10)

One of the terms of the second component (2.10) of this Hamiltonian vector field
has two fewer terms in the case of the water wave equations in two dimensions.

The time evolution of (2.7) conserves a number of physical quantities in addition
to the Hamiltonian, including the added mass

M(η) =

∫

Rn−1

η(x, t) dx . (2.11)

Conservation of this quantity is verified by the following identity

{M,H} = 0 , (2.12)

where the Poisson bracket between two functionals F and H is given by

{F,H} =

∫

Rn−1

δηFδξH − δξFδηH dx . (2.13)

The momentum, or impulse of a solution is another conserved quantity in the case
that the bottom boundary of the fluid region is flat, ∂xh = 0;

I(η, ξ) =

∫

Rn−1

η(x, t)∂xξ(x, t) dx , (2.14)

and we can verify by the calculation that

{I,H} = 0 . (2.15)
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In this case the center of mass of a solution is given by the expression

C(η) =

∫

∞

−∞

xη(x, t) dx , (2.16)

and it evolves linearly in time; indeed its time derivative is a constant of motion

d

dt
C =

∫

Rn−1

x∂tη(x, t) dx =

∫

Rn−1

xG(η)ξ dx (2.17)

=

∫

Rn−1

ξG(η)x dx =

∫

Rn−1

ξ(−∂xη) dx = I(η, ξ) .

3. Linear wave speed

The equations (2.8) do not have the property of finite propagation speed, as does
the classical wave equation, since the requirement of incompressibility for potential
flow involves global information about the fluid. But solutions do have an effective

propagation speed, which is finite for fluid regions which are not infinitely deep.
Although we would like to invoke this principle in an ocean basin as complicated as
the Indian Ocean, it is easier to derive it in the case that the bottom is flat, and the
deformations of the free surface are sufficiently small to be treated by linear theory.
The fluid region is therefore {(x, y) : −h < y < 0}, and the linearized equations of
motion are given by the quadratic part of the Hamiltonian

H(2) = 1

2

∫

Rn−1

ξG(0, h)ξ + gη2 dx . (3.1)

The Dirichlet – Neumann operator G(0, h) for a strip is given in terms of a Fourier
multiplier operator, which can be derived by solving the boundary value problem
for the velocity potential

∆ϕ = 0 (3.2)

ϕ(x, 0) = ξ(x) (3.3)

−∂yϕ(x,−h) = 0 (3.4)

Then the operator G is defined by the expression G(0, h)ξ(x) := ∂yϕ(x, 0). When
the particular boundary data ξ(x) = eik·x is given, the solution of the potential
problem is

ϕ(x, y) =
cosh(k(y + h))

cosh(kh)
eik·x ,

from which we deduce that

G(0, h)eik·x = ∂yϕ(x, 0) =
k sinh(k(y + h))

cosh(kh)
|y=0e

ik·x = k tanh(kh)eik·x .

The general solution is therefore given in terms of the Fourier transform of the
Dirichlet data on the linearized free surface,

G(0, h)ξ(x) =
1

(
√

2π)n−1

∫

Rn−1

eik·xk tanh(hk)ξ̂(k) dk

= D tanh(hD)ξ(x) , (3.5)
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where we use the notation D = −i∂x. Using this information we derive the disper-
sion relation for the linearized equations of motion, which is the frequency of the
normal modes for the quadratic Hamiltonian H (2). Namely, the linear equations of
evolution are

∂t

(

η

ξ

)

=

(

0 1

−1 0

) (

δηH
(2)

δξH
(2)

)

=

(

0 D tanh(hD)

−g 0

) (

η

ξ

)

. (3.6)

The Fourier integral expression for the solution of this system of equations is
(

η(x, t)

ξ(x, t)

)

=
1

(2π)(n−1)/2

∫

Rn−1

eik·x × (3.7)

×





cos(ω(k)t)
√

k tanh(hk)
g sin(ω(k)t)

−
√

g
k tanh(hk) sin(ω(k)t) cos(ω(k)t)





(

η̂0(k)

ξ̂0(k)

)

dk

where the frequency at wave number k is given by the dispersion relation

ω(k) =
√

gk tanh(hk) . (3.8)

With this dispersion relation, the phase velocity of solutions of (3.6) is

cp(k) =
ω(k)

|k|2 k ,

and the group velocity is
cg(k) = ∂kω(k) .

The significance of these two quantities is a basic fact of the theory of linear wave
propagation. Each Fourier mode eik·x component of the initial data (η0(x), ξ0(x))

T

propagates as governed by the expression (3.7), with phase

k · x− ω(k)t = k ·
(

x− t
ω(k)

|k|2 k
)

.

Thus for each mode, points of constant phase propagate with the phase velocity
cp. The significance of the group velocity is a bit more subtle, and involves the
evolution of a wave packet. For simplicity, assume that the initial data has a smooth
and compactly supported Fourier transform (η̂0(k), ξ̂0(k))

T ∈ C∞

0 . If this is not the
case, one could decompose more general initial data using a partition of unity on
first the spatial and then the Fourier transform side, after which each component
would satisfy these conditions. Individual terms in the Fourier integral expression
(3.7) take the form

ψ(x, t) =

∫

Rn−1

eik·x−iω(k)tψ̂0(k) dk . (3.9)

Consider points (x, t) in space-time such that for all k ∈ supp ψ̂0, we have
∣

∣

∣

x

t
− ∂kω(k)

∣

∣

∣ > R . (3.10)
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Figure 3. Novosibirsk Tsunami Laboratory website:
http://tsun.sscc.ru/tsulab/20041226.htm

Then we can use the identity

ei(k·x−ω(k)t) =
x− ∂kω(k)t

|x− ∂kω(k)t|2 (−i∂k)ei(k·x−ω(k)t)

in the integral (3.9), and because of (3.10) we can integrate by parts, to write

ψ(x, t) =

∫

Rn−1

ei(k·x−ω(k)t)

(

i∂k ·
(

x− ∂kω(k)t

|x− ∂kω(k)t|2
))N

ψ̂0(k) dk

≤ O((Rt)−N ) (3.11)

for all N . Thus initial data organized in a wave packet with wave numbers close to
k do not travel very much into regions of space-time which satisfy (3.10). That is,
they essentially propagate with the group velocity ∂kω(k).

In the case of the dispersion relation for water waves (3.8), the phase and group
velocities tend as |k| → ∞ to

cp(k) ∼
√

g/|k| , cg(k) ∼ 1

2

√

g/|k|

from which we learn that short waves travel slowly in the ocean surface. We may
also extrapolate that the individual wave crests within an evolving wavepacket will
not be stationary, and will in fact travel somewhat faster than the wave packet itself
(up to two times as fast for large wavenumber). On the other hand, as |k| → 0,
both the phase and group velocities tend to a constant magnitude

cp(k) ∼
√

gh , cg(k) ∼
√

gh . (3.12)

We will assume that large scale tsunami waves are a very low wave number phe-
nomenon, for which the asymptotic formulae (3.12) are valid.

The primary conclusion to discuss is the speed of propagation of tsunami waves
in ocean basins such as the ones in which the Boxing Day tsunami occurred. Our
analysis will be based on a knowledge of the bathymetry of these oceans, which is
reviewed in Figure 3 posted by the Novosibirsk Tsunami Laboratory. The distance
from the epicenter of the Sumatra earthquake to the affected coast of Sri Lanka is
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about 1, 550km, and the Bay of Bengal/Indian Ocean through which the tsunami
waves traveled is a deep ocean, with depth of roughly 4km. Making the very rough
approximation that h = 4km and taking g = 9.8m/sec2, we can approximate the
speed of the tsunami over this distance to be

c =
√

gh ∼
√

(9.8m/sec2) × (4 × 103m) ∼ 2 × 102m/sec = 720km/hr .

Thus the approximation to the travel time for this process is 2.2hours, which is
actually about right. Similarly, the distance from the epicenter to the western coast
of the Malay Peninsula, which is where the principal Thai resorts were hit, and
which has coastal areas of Indonesia and Myanmar, is about 700km. However the
tsunami waves generated in this direction propagated through the Andaman Basin,
which is a shallower sea of quite variable depth. For purposes of our illustrative
calculations let us take the approximate depth to be 1km which is not too far off.
Then we find

c =
√

gh ∼
√

(9.8m/sec2) × 103m ∼ 102m/sec = 360km/hour ,

resulting in a travel time of approximately 1.9hours from the initiation at the
epicenter to the impact on the coast. In any case, we see that tsunami waves can
carry energy very rapidly from one coastal region to another, spanning the largest
distance scales of our planet in times from hours to a little more than one day.

4. Coherent wavetrains

When a sufficiently strong earthquake occurs, it may be felt without instruments
almost instantly in a neighboring region, and when a large one occurs, it can be
destructive over a large area. However even very big earthquakes do not directly
cause significant damage at great distances from their source. That is, disturbances
in the earth’s crust travel very rapidly, but as well the largest component of their
energy is dissipated after having propagated a relatively short distance from their
epicenter. The fact is that tsunami waves in the ocean behave differently than this.
The nonlinear character of the Euler equations for the propagation of ocean waves
gives rise to the possibility that tsunami waves can propagate in coherent wave
packets, with little loss of amplitude over very long distances.

We can deduce some aspects of the character of these nonlinear waves just from
the starting point of several of the reports of witnesses of the impact of the Boxing
Day Tsunami. Soon after the event there were a number of descriptions of peoples’
experiences posted on the web. Certain of the basic facts seemed to be common
to many of these; that there were several wave crests observed, 6 or 7 in the case
of the Thai coast for example, and that the period between the arrival of these
crests was between 15 and 45 minutes. Furthermore, measured wave amplitudes at
sea did not exceed 1 to 2 meters, although on the coastline the tsunami in many
places underwent an amplification to 3 up to maybe 7 meters. This latter data is
not quantified with precise observational data in most cases, apparently because
not many wave gages were in place or operational in the region at the time of the
event. In any case, from the basic information above we can deduce some nontrivial
facts about this tsunami’s waveform.

For the purpose of a sample calculation, let us take a temporal period for arrival
of wave crests to be T0 = 15min. The spatial period of the individual crests we can
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denote by X0, so that the basic wavenumber of the tsunami wave is K0 = 2π/X0.
The phase velocity, which we argued above is the velocity of propagation of the
individual crests, is

cp(K0) =

√

g tanh(hK0)

K0

and the relation between the spatial and temporal periods is of course

cp(K0)T0 = X0 =
2π

K0
.

That is,
gK0 tanh(hK0)T

2
0 = (2π)2 . (4.1)

Because we seek a small wavenumber K0 (and because 15min is 900 sec),

(2π)2 ∼ ghK2
0T

2
0 ∼ 10m/sec2 × (4 × 103m) × (900 sec)2 ×K2

0 .

Hence we find that

K0 ∼ 2π

18× 104m
∼ 4 × 105m−1 , (4.2)

which corresponds to a spatial wavelength of X0 ∼ 180 km. The slope in mid-ocean
of waves of this form is approximately

‖∂xη‖∞ ∼ 2

X0
‖η‖∞ ∼ 2m

18× 104m
∼ 10−5 := ε ,

where applied mathematicians often think of ε as a small dimensionless parameter
which would be useful in a perturbation analysis of the problem. Actually in these
notes I’d like to a bit more careful, and introduce two small parameters:

α :=
a

h
, β :=

h

`
, (4.3)

where a is the amplitude of the solutions we are studying, h is the fluid basin depth
as before, and ` is some measure of the characteristic wavelength of our solutions.
The appropriate model equations for the regime of wave propagation that we are
to study are traditionally determined by the relationship between α and β; in case
α ∼ β2 << 1 this is the dispersive nonlinear regime, while α ∼ β << 1 indicates the
weakly nonlinear shallow water regime.

It is instructive to compare the parameters we have just deduced for the 2004
Boxing Day Tsunami with thees criteria. In the basin of the Indian Ocean/Bay
of Bengal, we use the values of amplitude a = 1m and depth h = 4Km hence
α = a/h ∼ 2.5 × 10−4. On the other hand the wavelength is ` = X0 = 180Km,
hence β = h/` ∼ 4Km/180Km ∼ 2 × 10−2. Therefore in this basin of the ocean,
the tsunami fits quite well into the regime α ∼ β2 of dispersive nonlinear waves.
This is of particular interest because it is this regime of the water waves problem
which most clearly supports solutions of the form of coherent dispersive packets.

In contrast, the same considerations in the Andaman Basin give mixed conclu-
sions; we calculate α = a/h ∼ 10−3 while β = h/` ∼ 10−2. This indicates that
β2 << α << β, and it is somewhat ambiguous which scaling regime is valid in order
to model wave propagation.
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(a) (b)

Figure 4. (a) from E. Kulikov, Shirshov Institute of Oceanography, Moscow and Institute
of Ocean Sciences, Sydney, BC: ‘Dispersion of the Sumatra tsunami waves in the Indian
Ocean detected by satellite altimetry’, Fisheries and Oceans Canada, Science - Pacific Re-
gion website (2005) (b) From the Tsunamis and tsunami research website of the Institute
of Ocean Sciences, Sidney BC. This time/frequency plot of the Sumatra tsunami supports
the wavepacket hypothesis.

Turning to the data from the tsunami waves in the Indian Ocean taken during
the event, we see that indicates that the tsunami wave is experiencing dispersive ef-
fects during its propagation. Figure 4(a) represents a trace of the satellite telemetry
of wave height during one pass of the Jason 1 Altimetry Satellite (a joint NASA -
European Space Agency mission, which detected the Indian Ocean tsunami during
track 129 of its 10 day/254 track cycle), where it is quite clearly indicated the degree
to which low wave number components of the wave form are traveling faster than
components with higher wave number. Figure 4(b) gives a Fourier analysis of the
data from a wave gage at Syowa Station, Antarctica during the period of several
days December 25th - 29th, 2004. The data are presented in a ‘wavelet’ decomposi-
tion, which indicates two strong peak responses during the tsunami period. These
are interpreted as the Fourier transform of the main wave packet, centered about
the the carrier wavenumber K0 = 3π/hour of the tsunami event, and its second
harmonic K1 = 6π/hour.

5. Near shore dynamics

At the point that tsunami waves arrive at a coastline, the can exhibit very complex
near-shore wave dynamics, and there is much that is not well understood. A large
wavelength ocean wave incident on a coastline can be dispersed, or its amplitude
can be dramatically amplified, depending to a large part on the the width of the
continental shelf, the local geometry of the coast, and the angle of incidence of the
approaching tsunami. From the accounts of witnesses of the impact of a tsunami,
many different things do occur. In some areas affected by the Boxing Day tsunami,
the phenomenon was similar to a rising tide, with no breaking ‘white water’, but
being just several times the magnitude of a normal tide, and coming in over a period
of twenty minutes instead of six hours. This sort of incidence was also observed
during the impact of the 1964 Pacific Ocean tsunami on Vancouver Island, which
was generated by the major earthquake in Alaska. More visible, and also more
dangerous and dramatic, were the phenomenon of hydraulic jumps, or ‘tidal bores’
where the mass of water in motion towards the land is rising too fast to do so
smoothly, and a jump of water level, of perhaps one or several meters in height is
formed. While the wave crests of the tsunami wave packet are traveling at several
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Figure 5. E. Pelinovsky: Dynamics of tsunami waves (1996)[Russian] Nihonkai - Chubu
earthquake tsunami on the north Akita coast. N. Shuto, Coastal Eng. Japan (1985), vol.
28 pp. 255 - 264

hundred kilometers per hour, the hydraulic jump is much slower, maybe moving at
no more that several tens of kilometers per hour. This phenomemon is commonly
modeled by a shock wave in the shallow water equations that characterize this near
shore regime. This mass of water could possibly recede smoothly, but this is equally
or more dangerous, drawing objects and people out to sea.

To illustrate the wide variety of phenomena tha can occur as a tsunami wave is
incident on a coastal area, I refer to a diagram compiled by N. Shunto which appears
in the book of E. Pelinovsky [12] on the hydrodynamics of tsunami waves. The
Nihonkai - Chubu earthquake tsunami occured on May 26, 1983 from a Mw ∼ 7.9
earthquake with epicenter in the Sea of Japan off of the Akita Coast. The event
occured at approximately noon, so it happened that there were numerous witnesses
on the beaches and shorelines, and a survey of the tsunami waves impact on the
North Akita Coast, as reported by many observors, was compiled into the diagram
given in Figure 5. It is evident that the phenomena are highly varied, and include
hydraulic jumps, series of breaking waves, single large breakers, and others. Another
widely circulated image was taken from the air over Kalutara, Sri Lanka during
the Boxing Day Tsunami events (Figure 5). One sees large waves moving in a
variety of directions through the palms on plots of land ajacent to the beach. We
feel that it is a challenging problem to be able to start to quantify the dynamics
of large tsunami waves as they impact on coastal areas, for both the purpose of
understanding the physics of the phenomenon, as well as to quatify the potential
damage of their impact and the possible engineering norms that should be applied
to create a tsunami-safe architecture.

6. Solitary wave interactions

The second lecture is related to the first in that it is on the topic of nonlinear
water waves in the free surface of an ideal fluid. It is in fact a discussion of the
classical problem of interactions between solitary water waves. We will restrict our
considerations to solitary waves in two dimensions, and to the case in which the
bottom boundary of the fluid region is flat. There are a number of reasons why
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Figure 6. Shoreline of Kalutara, Sri Lanka on 26 December 2004. Photo: DigitalGlobe

this represents an interesting problem. One is that the dynamics of nonlinear waves
is an important topic to understand, to further our basic understanding of the
oceans next to which we live, and to prepare us for its dangers. A second reason is
more mathematical; from the study of the KdV equation we know that from the
apropriate point of view it is a completely integrable Hamiltonian system, whose
soliton solutions interact with elastic collisions. Since the KdV equation is one of
the principal model equations for free surface water waves, it is therefore of interest
to understand to what extent its solitary wave solutions deviate from having elastic
interactions. There are two basic cases; the interaction between counter-propagating
waves (either symmetric collisions or collisions between waves of different ampli-
tudes), and co-propagating or overtaking interactions. This work updates the well-
known numerical simulations of Chen and Street [2], Fenton and Reinecker [8], and
Cooker, Weidman and Bale [3]. It has also been compared with the experimental
results of Maxworthy [11] and our own experiments [4]. We work with potential
flow, for which the velocity potential satisfies (2.1), and the boundary conditions
(2.3)(2.2).

7. Numerical method

Our numerical method consists essentially in making good approximations for the
Dirichlet – Neumann operator (2.6), and using them in a time discretized version
of the evolution equations (2.8). This approach was introduced in [7] and used in a
variety of settings, including [5][1].

It was already described by J. Hadamard [9] in his Collège de France lectures
that Green’s function for Laplace’s equation is differentiable with respect to the
domain on which it is given. Indeed he gave a formula for its variations, and in
[10] he proposed hydrodynamical applications. In fact in the appropriate setting it
has been shown that the closely related Dirichlet – Neumann operator is analytic
with respect to its dependence upon the domain. Putting this into practice in the
neighborhood of a fluid domain at rest, we base our simulations on the Taylor
expansion of the Dirichlet – Neumann operator to arbitrarily high order in the
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equations of motion (2.8). The first several Taylor approximations to G(η) are

G(0) = D tanh(hD) ,

G(1) = DηD −G(0)ηG(0) ,

G(2) = 1

2

(

G(0)Dη2D −D2η2G(0) − 2G(0)ηG(1)
)

. (7.1)

In our notation, D = −i∂x, and G(0) is a Fourier multiplier operator which is given
by the expression

G(0)ξ(x) :=
1√
2π

∫

eikxk tanh(hk)ξ̂(k) dk (7.2)

Such expressions can be implemented efficiently using the Fast Fourier Transform.
As well, there is a recursion formula for the Taylor series for G(η) which can be
incorporated into very efficient numerical schemes of arbitrarily high order in the
(slope of the) surface elevation η(x). This is essentially what we have done in [4]
for our study of solitary water wave interactions.

Initial data for our simulations consists of two well separated solitary water
waves, of nondimensional amplitudes S1/h and S2/h, which are set to collide within
the computational domain. The solitary wave profiles for this are generated using
the numerical method proposed by M. Tanaka [16], giving us highly accurate results.

8. Head-on collisions

This section is concerned with collisions between two counter-propagating solitary
waves, of nondimensional elevation S1/h and S2/h respectively. The first simula-
tions presented here are symmetric head-on collisions between two solitary waves of
equal amplitudes S/h. Features of note are the degree of run-up of the wave crest
during the interaction, given by supx,t |η(x, t)|/h− 2S/h; the phase lag due to the
moment’s hesitation of the crests during their interaction; the change in amplitude
of the solitary waves after the interaction, S/h 7→ S+/h; their phase lag a 7→ a+;
and the residual waves ηR(x, t) trailing the solitary waves as they exit the collision.
We observe that the solitary waves in head-on collisions always lose a small amount
of amplitude due to the collision; S+

j < Sj , although this is very small even for
interactions between large solitary waves.

The residual is clearly visible in the figure 8, but it is essentially too small to be
detected in figure 7 without magnification. A snapshot plot of the computation in
figure 7 at time t/

√

h/g = 90, with magnified vertical scale, is given in the figure 9.
Viewing the interaction of two solitary waves of amplitude S/h = 0.4 after long

time illustrates the asymptotic tear-shaped form of the residual, as well as the fact
that the solitary waves separate from each other and from the the residual after the
collision. This is shown in figure 10; it is an indication of the stability of solitary
waves to such head-on collisions, at least within this range of amplitudes.

9. Overtaking collisions

We have also run simulations of overtaking collisions with this numerical scheme,
where we find yet smaller changes of amplitude ∆Sj := Sj − S+

j , j = 1, 2 and
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Figure 7. Head-on collision of two solitary waves of equal height S/h = 0.1: The amplitude
after collision is S+/h = 0.0997 at t/

p

h/g = 90. The phase lag is (aj − a+

j )/h = 0.1370.
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Figure 8. Head-on collision of two solitary waves of equal height S/h = 0.4: The amplitude
after collision is S+/h = 0.3976 at t/

p

h/g = 90. The phase lag is (aj − a+

j )/h = 0.3257.

residual ηR after a collision. Normalize the notation so that the larger incoming
solitary wave has amplitude S1 and the second S2. In these simulations, we observe
that the amplitude of the first solitary wave is slightly increased, S+

1 > S1, while
the second decreases as is necessary. We also observe that the amplitude of the
solution never exceeds the maximum of the amplitudes of the entering and exiting
solitary waves, nor at any time does the maximum crest dip below the minimum.
Just as in the situation of the two-soliton solution of the KdV equation, the solitary
waves experience a positive phase shift due to the collision, as though the two waves
were repelling particles. Figure 11 shows the interaction of two solitary waves of
amplitudes S1/h = 0.4 and S2/h = 0.1333, this being chosen so that the interaction
is of the Lax category (b) in its form. The simulation is displayed in a frame of
reference in motion at approximately the mean velocity of the two solitary waves.

In figure 12 a view of this simulation with exagerated scale at a time after the
interaction shown clearly the very small but nonzero residual.
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Figure 9. Results of the collision of two solitary waves of equal height S/h = 0.1 after the
collision, at time t/

p

h/g = 90. The dispersive residual wave trailing the solitary waves
after the collision are visible under magnification.
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Figure 10. Results of the collision of two solitary waves of equal height S/h = 0.4 after the
collision at time t/

p

h/g = 780. The residual has a characteristic tear-shaped envelope

10. Energy transfer

Using the conservation laws (2.11)(2.14) and the Hamiltonian (2.5), one can derive
a relation between the change in amplitude through a solitary wave interaction
and the energy that has been transferred to the residual. Using this, it is also
possible to derive a rigorous upper bound on the energy transfer in terms of the
parameters S1/h, S2/h of the initial data. The latter analysis appears in [4]. To
explain the first relation, an individual solitary wave has mass M(ηS) := m(S),
momentum I(ηS , ξS) := µ(S) and energy H(ηS , ξS) := e(S). Our initial data is
given by two asymptotically separated solitary waves as t 7→ −∞, therefore the
total mass, momentum and energy of our solution are given by

MT = m(S1) +m(S2)

IT = µ(S1) + µ(S2)

ET = e(S1) + e(S2) . (10.1)

After an interaction has occurred, we will assume that the solution is composed of
three distinct components; two solitary waves with possibly different amplitudes S+

1

and S+
2 , and a residual (ηR(x, t), ξR(x, t)). By conservation, their mass, momenta
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Figure 11. Overtaking collision of two solitary waves of height S1/h = 0.4, S2/h = 0.1:
The amplitudes after collision are S+

1 /h = 0.4003, S+
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Figure 12. Overtaking collision of two solitary waves of height S1/h = 0.4, S2/h = 0.1
at t/

p

h/g = 745, which is after the collision. The vertical scale is magnified in order to
observe the dispersive trailing wave generated by the interaction.

and energies satisfy

MT = m(S+
1 ) +m(S+

2 ) +mR

IT = µ(S+
1 ) + µ(S+

2 ) + µR

ET = e(S+
1 ) + e(S+

2 ) + eR . (10.2)
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Taking the difference, we find that

(m(S1) −m(S+
1 )) + (m(S2) −m(S+

2 )) = mR

(µ(S1) − µ(S+
1 )) + (µ(S2) − µ(S+

2 )) = µR

(e(S1) − e(S+
1 )) + (e(S2) − e(S+

2 )) = eR . (10.3)

Since the change in amplitude is very small, the difference m(Sj) −m(S+
j ) is very

small, j = 1, 2, and the same for µ(Sj) and e(Sj). Approximating by the derivative,
we conclude that

m′

1∆S1 +m′

2∆S2 = mR

µ′

1∆S1 + µ′

2∆S2 = µR

e′1∆S1 + e′2∆S2 = eR ; (10.4)

this is now three equations for the two unknowns ∆j , j = 1, 2, whose solution leads
us to an absolute bound on the energy loss due to a collision [4]. Separately from
this bound, equations (10.4) specify relationships between the mass, momentum and
energy loss to the residual and the change in amplitude ∆Sj from the interaction.

Let us consider the case of symmetric interactions as an example. In this case,
µ(S1) = −µ(S2) and therefore IT = 0 and µR = 0. The relation (10.4) then reports
that

2m′(S) = mR , 2e′(S) = eR . (10.5)

Since in particular e(S) ∼ S3/2 for small S, this predicts that

eR ∼ S1/2∆S . (10.6)

Figure 13 plots the quantity e(S) for a range of simulations ranging from S = 0.025
to S = 0.5, verifying its power law behavior. Figure 14 gives our measured values
of ∆S for these simulations, while figure 15 gives the energy eR of the residual.
The adherence of thie data to the asymptotic relation (10.6) is quite convincing.
The deviation of the lowest two data points from the power law behavior is due
to the long relaxation time of small solutions to their asymptotic values after an
interaction, we believe.

Our data, particularly in figure 14, are at odds with the asymptotic predictions of
C.-H. Su and R. M. Mirie [15], who put forward that ηR = O(S3) while ∆S = o(S3).

The relations (10.4) give a nontrivial result on the mass and energy of the
residual and the quantities ∆S+

j in the case of overtaking collisions. From our sim-
ulations and from those in [8], it is observed that ∆S1 < 0. That is, the larger
overtaking solitary wave gains a (small amount of) amplitude due to the collision,
at the expense of the smaller one. We note that e(S) is a convex function of S, at
least over the range of values of S being considered. The implication of (10.4) is
that, since eR ≥ 0, it must be that |∆S1| < ∆S2; the larger solitary wave cannot
gain more amplitude than the smaller one loses. Using this, a related argument
applied to the relation for mass implies that mR < 0, because in this case m′(S) is
decreasing in S. This fact is seen in the slight depression left behind two separating
solitary waves after their interaction.
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