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This article concerns the pairwise nonlinear interaction of solitary waves in the free surface of a
body of water lying over a horizontal bottom. Unlike solitary waves in many completely integrable
model systems, solitary waves for the full Euler equations do not collide elastically; after interac-
tions there is a nonzero residual wave which trails the post-collision solitary waves. In this report
on new numerical and experimental studies of such solitary wave interactions, we verify that this
is the case, both in head-on collisions (the counter-propagating case) and overtaking collisions (the
co-propagating case), quantifying the degree to which interactions are inelastic. In the situation in
which two identical solitary waves undergo a head-on collision, we compare the asymptotic predic-
tions of Su and Mirie [6] and Byatt-Smith [23], the wavetank experiments of Maxworthy [5], and the
numerical results of Cooker, Weidman and Bale [4] with independent numerical simulations, in which
we quantify the phase change, the run-up, and the form of the residual wave and its Fourier signa-
ture in both small and large amplitude interactions. This updates the prior numerical observations
of inelastic interactions in Fenton and Rienecker [3]. In the case of two non-identical solitary waves,
our precision wavetank experiments are compared with numerical simulations, again observing the
run up, phase lag, and the generation of a residual from the interaction. Considering overtaking
solitary wave interactions, we compare our experimental observations, numerical simulations, and
the asymptotic predictions of Zou and Su [14], and again we quantify the inelastic residual after
collisions in the simulations. Geometrically, our numerical simulations of overtaking interactions fit
into the three categories of KdV two-soliton solutions defined in Lax [16], with however a modifi-
cation in the parameter regime. In all cases we have considered, collisions are seen to be inelastic,
although the degree to which interactions depart from elastic is very small. Finally, we give several
theoretical results: (1) a relationship between the change in amplitude of solitary waves due to a
pairwise collision and the energy carried away from the interaction by the residual component, and
(2) a rigorous estimate of the size of the residual component of pairwise solitary wave collisions.
This estimate is consistent with the analytic results of Schneider and Wayne [20], Wright [22] and
Bona, Colin and Lannes [21]. However in the light of our numerical data, both (1) and (2) indicate
a need to re-evaluate the asymptotic results in [6, 14].

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Solitary waves for the Euler equations have been a
topic of interest since the time of Stokes [1]. In a small
amplitude long wave perturbation regime they are well
described by single soliton solutions of the Korteweg –
deVries equation (KdV), and it is a famous result that
the multiple soliton solution of the KdV equation exhibits
elastic collisions. The question is as to what extent in-
teractions between solitary waves for Euler’s equations
fail to do so. We report on new numerical, experimen-
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tal and analytical results on this point, concerning both
co-propagating and counter-propagating cases in a range
of small through large amplitude solitary waves. In all
cases we quantify the degree to which interactions are
inelastic, and one of our principal results is the study of
the existence and the characteristics of the residual wave
resulting from these interactions. However it is remark-
able to us how small the residual is from a collision of
even very large solitary waves.

In the case of a collision of two counter-propagating
solitary waves, prior numerical studies of solutions of the
full Euler equations have been published by Chan and
Street [2], Fenton and Rienecker [3] and Cooker, Weid-
man and Bale [4]. For the case of equal amplitudes, we
provide independent verification of the numerical results
of the latter reference, and we recover their accurate ob-
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servations of wave interactions with regard to the run-up
(or superlinear amplitude increase) on the axis of sym-
metry of the interaction, the phase lag due to collisions,
and the wall residence time (or period of concurrence of
the wave crests). This information is compared with the
experimental observations of Maxworthy [5], and with
the asymptotic predictions for the run-up and the phase
lag in Su and Mirie [6] (related to the prior discussions of
these quantities in Byatt-Smith [7] and Oikawa and Ya-
jima [8]). In addition we report on the change in ampli-
tude (and subsequent change in velocity) of the solitary
wave components due to the collision, and we provide
a description of the residual component, the residual of
the solution after the interaction in terms of its Fourier
spectrum. We find that after a sufficient time interval,
the post-collision solitary waves separate from each other
and from the support of the trailing residual wave; this
suggests that within the amplitude ranges we considered,
solitary waves are stable to disturbances in the form of
pairwise collisions.

The numerical method to reproduce precise solitary
wave profiles of specified amplitude is based on a mod-
ification of the method of Tanaka [9]. For well resolved
simulations of time evolution we use a surface spectral
method of Craig and Sulem [10], which is sufficiently ac-
curate to resolve detailed features in solutions which are
up to four orders of magnitude smaller than the ampli-
tudes of the incident solitary waves. We wish to dis-
tinguish our work on Euler’s equations from numerical
studies of counter-propagating solitary waves for model
problems, which have appeared in Mirie and Su [11] and
Bona and Chen [12], among others; these give qualitative
agreement with the above results without quantifying the
precise details of the residual.

In the case of two counter-propagating solitary waves
of different amplitude, we report on a direct comparison
between our experimental observations of solitary wave
interactions in the wave channel at Penn State University
and numerical simulations of asymmetric solitary wave
interactions using the above methods. We find that our
simulations of the full Euler equations do well at predict-
ing the measurements of the free surface from the wave
channel experiments. Further numerical observations are
given, focusing on the run-up and phase-lag (noting that
a period of crest concurrence is not well defined in this
context), and the generation of a residual resulting from
the collision.

In the case of co-propagating (or overtaking) solitary
wave interactions, we compare the results of our wave
channel experiments with numerical simulations, finding
that the numerical solutions are substantially more accu-
rate in predicting the details of the interaction than the
KdV equation (see however Hammack and Segur [13]).
Our further numerical studies again show that there is al-
ways a residual after the interaction, a conclusion which
is qualitatively consistent with the asymptotic predic-
tions of Zou and Su [14]. This updates the findings
of Fenton and Rienecker [3], who found no residual to

within the order of accuracy of their numerical scheme.
The residual, as well as the changes in amplitudes and
velocities of the solitary waves involved, are in fact very
small in magnitude. Similar interactions of this general
form are described by Bona, Pritchard and Scott [15] and
Mirie and Su [11] in solutions of long-wave model equa-
tions. Quantitatively, the changes in amplitude and ve-
locity are very different than for counter-propagating col-
lisions; in the co-propagating case the larger overtaking
wave gains amplitude while the smaller loses amplitude
from the interaction, and the amplitude of the residual is
approximately an order of magnitude smaller than in the
counter-propagating case. In every case, the maximum
amplitude of the solution at any time during the inter-
action is strictly less than the maximum amplitude of
the largest individual solitary wave (the overtaking one).
Focusing on the details of the interaction, we compare
our experiments and the numerical solutions to the three
regimes of KdV two-soliton interactions described by Lax
[16], finding that, in a similar manner, solitary wave inter-
actions maintain two distinct crests in a regime (a), fuse
to form one central crest during the collision in a regime
(c), and exhibit a regime (b) of intermediate type. While
the character of the interaction is nearly identical, the
solitary wave amplitudes at which the transitions occur
between regimes are somewhat different than the KdV
setting, a fact which has been previously noted in Fen-
ton and Rienecker [3]. Our experimental results focus on
the category (b), presenting unambiguous observations
of this case (see Weidman and Maxworthy [17] for other
experimental observations of this case and cases (a) and
(c)). A discussion of the behavior of co-propagating in-
teractions of solitary waves to a model problem, and a
comparison with the Lax categories, are given in Wu [18].

Using the fact that the total mass, momentum and
energy of free surface water waves are conserved, and
the fact that solitary waves occur in a one parameter
family, we derive two results. The first is a relation-
ship between the change of amplitude of solitary waves
due to a collision and the energy carried by the resid-
ual. Secondly, we prove a rigorous estimate giving an
upper bound on the energy of the residual of a solitary
wave interaction. The latter is based on three hypothe-
ses, all of which are clearly consistent with our numeri-
cal and experimental observations, but none having yet
an unimpeachable verification. The proof of this result
is more straightforward than the results for general ini-
tial data given in Craig [19], and Schneider and Wayne
[20], although it is a less accurate result. For more pre-
cise estimates we cite Bona, Colin and Lannes [21] and
Wright [22], the latter giving the currently best rigorous
result on the higher order correction terms. The data
from our numerical simulations agree with these theo-
retical results, and indicate that the estimate of upper
bounds scales with the correct order as the amplitude
of the incoming solitary waves tends to zero. However
our numerical data also show a discrepancy with the or-
der predicted by the asymptotic calculations of Su and
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Mirie [6] and Byatt-Smith [23].
The paper is organized as follows. In Sec. II we re-

view the mathematical statement of the problem of water
waves, and we reformulate the resulting evolution equa-
tions as a Hamiltonian system in terms of surface vari-
ables, following Zakharov [24], expressing the Hamilto-
nian in terms of the Dirichlet – Neumann operator as in
Craig and Sulem [10]. We additionally describe our nu-
merical methods based on this formulation, and we give
a description of the experimental laboratory setup. In
Sec. III we describe our results for symmetric counter-
propagating solitary wave interactions, and in Sec. IV
we study asymmetric cases, including comparisons of nu-
merical computations with laboratory experiments. In
Sec. V we give our experimental and numerical results
for co-propagating solitary wave interactions. Section VI
gives our straightforward and rigorous analysis of the en-
ergy loss and amplitude variation of solitary waves under-
going such collisions. A description of our modifications
of Tanaka’s method (1986) of highly accurate approxima-
tions of solitary wave profiles is given in the appendix.

II. MATHEMATICAL FORMULATION

A. Governing equations

We consider the motion of a free surface of a two-
dimensional fluid in a horizontal channel under the in-
fluence of gravity. The mean water level is located at
y = 0 with y the vertical upward direction. The fluid is
assumed to be incompressible, inviscid and irrotational,
so that the velocity potential satisfies

∆ϕ = 0 , (1)

in the fluid region bounded by a uniform bottom {y =
−h} and the free surface {y = η(x, t)}, with the bound-
ary conditions

ϕy = 0 on y = −h , (2)

and

ϕt + 1
2 (∇ϕ)2 + gη = 0

ηt + ηx ϕx − ϕy = 0

}

on y = η(x, t) , (3)

where g is the acceleration due to gravity and subscripts
denote differentiation with respect to the corresponding
variables.

Following Zakharov [24] and Craig and Sulem [10],
let ξ(x, t) = ϕ(x, η(x, t), t) be the value of the velocity
potential on the free surface, and define the Dirichlet–
Neumann operator

G(η)ξ =
√

1 + η2
x ϕn

∣

∣

∣

y=η
, (4)

which maps Dirichlet data to Neumann data on the free
surface, with n the unit exterior normal to the boundary.

This operator is linear in ξ but it is nonlinear with ex-
plicit nonlocal behaviour in η which determines the fluid
domain. In terms of the surface quantities η and ξ, the
boundary conditions (3) can be rewritten as

ηt = G(η)ξ , (5)

ξt =
−1

2(1 + η2
x)

[

ξ2x − (G(η)ξ)2 − 2ηx ξxG(η)ξ
]

− gη .(6)

These equations are Hamilton’s canonical equations in
Zakharov’s formulation of the water wave problem as a
Hamiltonian system, with Hamiltonian

H(η, ξ) = 1
2

∫ ∞

−∞

ξG(η)ξ + gη2 dx , (7)

and the equations of evolution (5)(6) are in the form

∂t

(

η
ξ

)

=

(

0 1
−1 0

) (

δηH
δξH

)

. (8)

The time evolution of (8) conserves a number of physical
quantities, including the added mass

M(η) =

∫ ∞

−∞

η(x, t) dx (9)

and the momentum, or impulse

I(η, ξ) =

∫ ∞

−∞

η(x, t)∂xξ(x, t) dx . (10)

This is verified by the following identities

{M,H} = 0 , {I,H} = 0 , (11)

where the Poisson bracket between two functionals F and
H is given by

{F,H} =

∫

δηFδξH − δξFδηH dx . (12)

Furthermore, the center of mass of a solution, given by

C(η) =

∫ ∞

−∞

xη(x, t) dx (13)

is a linear function of time. This is because its time
derivative is a constant of motion;

d

dt
C =

∫ ∞

−∞

x∂tη(x, t) dx (14)

=

∫ ∞

−∞

xG(η)ξ dx =

∫ ∞

−∞

ξG(η)x dx

=

∫ ∞

−∞

ξ(−∂xη) dx = I(η, ξ) .

Equation (5) has been used in deducing the second line
above, and expressions (3) and (4) in the third line.
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Coifman and Meyer [25] showed that the Dirichlet–
Neumann operator depends analytically on η ∈ Lip(R),
and therefore G can be written in terms of a convergent
Taylor expansion

G(η) =

∞
∑

j=0

Gj(η) , (15)

where the Taylor polynomials Gj are homogeneous of
degree j in η. Craig and Sulem [10] then showed that
explicit expressions for Gj can be obtained using a re-
cursion formula. The first three terms are given by

G0 = D tanh(hD) ,

G1 = DηD −G0ηG0 ,

G2 = 1
2

(

G0Dη
2D −D2η2G0 − 2G0ηG1

)

, (16)

where D = −i∂x and G0 represent Fourier multiplier
operators.

This formulation of the problem of water waves is con-
venient for the solitary wave interaction problem studied
in this paper, as well as in a number of other settings.
These include studies of long-wave asymptotics for waves
over a rough bottom [26], waves in sharp interfaces be-
tween immiscible fluids [27], and numerical studies of the
propagation of nonlinear water waves in a fluid domain
with variable bathymetry [28].

B. Initial conditions

Initial conditions for the evolution equations (5)(6) are
given by two well separated solitary waves, which are cho-
sen to collide and then separate again in positive time,
remaining within the experimental or computational do-
main. For the numerical simulations, data are taken to
be solitary wave solutions (ηS(x, t), ξS(x, t)) on the classi-
cal bifurcation branch of solutions [29], [30], [9]. We have
taken the bifurcation parameter to be S ∈ [0, Smax] cor-
responding to amplitude S = ‖ηS(x)‖L∞ . There are two
basic cases; in the first, the velocities of the two waves
have opposite signs (counter-propagating case), and their
evolution will entail a collision in finite time and the sub-
sequent separation of two modified solitary waves, leav-
ing a small residual between them. The second case is of
two solitary waves with velocities of the same sign (co-
propagating case), the trailing wave being larger ampli-
tude, which in time will utimately overtake and interact
with the leading wave. After the interaction there are
again two separating, slightly modified solitary waves,
and again a small residual, which in this case trails be-
hind both. Initial data for the numerical simulations are
approximations of the idealized situation in which the ac-
tual solution (ηS(x, t), ξS(x, t)) is asymptotic as t→ −∞
to two infinitely separated solitary waves

lim
t→−∞

(

η(x, t) − (ηS1
(x− c1t− a1)

+ηS2
(x− c2t− a2))

)

= 0 . (17)

After the interaction, the solution (ηS(x, t), ξS(x, t)) will
resume the form of two separating solitary wave pro-
files, with modified amplitudes (S1, S2) → (S+

1 , S
+
2 ) and

phases (a1, a2) → (a+
1 , a

+
2 ), but with additionally a resid-

ual (ηR(x, t), ξR(x, t)) such that for large t,

η(x, t) = ηS+

1

(x− c+1 t− a+
1 ) + ηS+

2

(x − c+2 t− a+
2 )

+ηR(x, t) . (18)

A principal goal of this work is to study the details
of solitary wave interactions, which include the scatter-
ing map (S1, S2) → (S+

1 , S
+
2 ), (a1, a2) → (a+

1 , a
+
2 ), as

well as the amplitude and the character of the residual
(ηR(x, t), ξR(x, t)) resulting from the collision.

C. Numerical methods

Numerical simulations of highly accurate solitary
waves have a long history. We generate the solitary wave
profiles for our initial data using a collocation method
developed for the purpose; it is a version of the approach
developed in Tanaka [9]. Fig. 1 is a plot of several solitary
wave profiles ηS(x) for different amplitudes S. Fig. 2 is
a plot of the classical bifurcation branch of solitary wave
profiles computed by the method, and Fig. 3 is a plot
of the impulse as a function of mass for these solutions.
The (slight) convexity of this graph over the majority of
its range plays a rôle in the error analysis in Sec. VI. A
description of the method and our modifications appears
in the appendix.

The numerical methods used to solve the evolution
equations (5) and (6) are similar to those proposed by
Craig and Sulem [10]. We assume periodic boundary
conditions in the x-direction and use a pseudospectral
method for the space discretization of the problem. This
is a natural choice for the computation of G since each
term in (15) consists of concatenations of Fourier multi-
pliers with powers of η. The Dirichlet–Neumann operator
is approximated by a finite number of terms, i.e.

G(η) '
J

∑

j=0

Gj(η) . (19)

In practice, it is not necessary to use large values of J
due to the fast convergence of the series expansion for
G. Both the surface elevation η and velocity potential ξ
are expanded in truncated Fourier series with the same
number of modes. Applications of Fourier multipliers are
performed in spectral space, while nonlinear products are
calculated in physical space at a discrete set of N equally
spaced points. Our numerical code has been developed
from a set of routines for surface spectral methods by
Nicholls [31]. All operations are performed using the
FFTW routines by Frigo and Johnson [32]. For pertur-
bations up to order J , the number of operations required
is therefore O(J2N lnN) per time step.
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Time integration is performed in Fourier space. The
linear terms in (5) and (6) are solved exactly by an in-
tegrating factor technique. The nonlinear terms are in-
tegrated using a fourth-order Adams–Bashford/Moulton
predictor-corrector scheme with constant time step [33].
To initiate this scheme, the solution required at the first
three time steps is provided by a fourth-order Runge–
Kutta method. In the computations (especially of steep
waves), it was observed that spurious oscillations can
develop in the wave profile after some time of integra-
tion, due to onset of an instability related to the growth
of numerical errors at high wavenumbers. Similar high-
wavenumber instabilities were observed by other authors
[34], [35], who used smoothing techniques to circumvent
this difficulty. Here, at each time step ∆t, we applied an
ideal low-pass filter to η and ξ of the form

f(k) =

{

1 if |k|/kmax ≤ ν , 0 < ν ≤ 1 ,
0 if |k|/kmax > ν ,

(20)

where kmax is the highest wavenumber of the spectrum.
We found that ν = 0.8 suffices to stabilize the solution
in most cases. Applying an ideal filter with a high value
of ν ensures that only a very small amount of energy
located in the high-wavenumber region of the spectrum
is suppressed by filtering.

The performance of the code was assessed extensively
by checking the accuracy of results (on wave profiles and
conserved quantities) with respect to the different numer-
ical parameters. For instance, we checked that a solitary
wave of height S = 0.3h, generated by Tanaka’s method,
propagates with negligible change of shape and speed up
to t = 1000

√

h/g, with relative errors of only 10−7 and
5 × 10−7 in the conservation of the added mass M(ηS)
and the energy H(ηS , ξS) respectively (J = 8, N = 1024,

∆t = 0.01
√

h/g). For the head-on collision of two soli-
tary waves of equal height S = 0.3h, we found that the
added mass and the energy are conserved with a rela-
tive error of 6 × 10−8and 2 × 10−7 respectively, up to
t = 90

√

h/g after collision.

D. Experimental setting

The experiments reported here have been conducted at
the W.G. Prichard Fluid Mechanics Laboratory of Penn
State University, in a precisely aligned glass wave chan-
nel of length 13.165 m and width 25.4 cm. The quies-
cent water depth for the experiments was 5.0 cm, within
an accuracy of 0.25 mm (corresponding to a water vol-
ume in the channel accurate to one liter). Solitary waves
were generated by the horizontal, piston-like motion of a
paddle inserted in the channel cross-section, driven by a
precision software controlled linear motor which allowed
the generation of highly accurate and repeatable wave
profiles. The measurements of the water surface were
done by a bottom-mounted pressure transducer and by
four non-contacting wave gages supported above the wa-
ter surface on a traveling instrumentation carriage. Since

only four wave gages were available on the carriage, the
water surface at only four spatial locations could be mea-
sured during a single experiment. The precision of the
wavetank construction and the wavemaker driver made
our experiments repeatable to within a high degree of
accuracy. We used the sophistication of both the me-
chanical and the electronic systems under repetition of 40
experimental runs to produce a spatial profile that spans
1.6 m in the x-direction with a spatial resolution of 1 cm
and a temporal resolution of 3.07 ms. A detailed pre-
sentation of the experimental procedures including the
description of the wave channel and wave makers, the
measurements and their analysis are given in Hammack,
Henderson, Guyenne and Yi [36].

For head-on collisions of solitary waves, we generated
KdV soliton profiles by specifying the paddle’s position
and velocity, taking into account the finite motion of the
wavemaker. Since only one wavemaker was available, it
was necessary to produce a first solitary wave that prop-
agated down the channel and reflected from the end wall.
Subsequently, a second solitary wave was generated that
collided with the reflected one near the center of the chan-
nel test section. The instrument carriage was fixed during
each of these experiments.

In the case of co-propagating solitary waves, the wave-
maker was used to create two KdV soliton profiles in
rapid succession. Due to the relatively small differen-
tial velocity of the two solitary waves, the collision of a
larger wave overtaking a smaller one occurs over a large
distance down the wave channel. It is thus necessary
to have the instrument carriage move in a frame of ref-
erence adapted to the mean velocity of the two waves.
There was thus always a small uncertainty in the car-
riage position, especially during the acceleration and the
deceleration periods of the experiment. This is discussed
in Sec. V A when we compare experimental data and
numerical simulations.

III. COUNTER-PROPAGATING SOLITARY

WAVE COLLISIONS: SYMMETRIC CASE

The question at hand in this section and the follow-
ing one concerns the details of the collision between two
solitary waves traveling in opposite directions. In general
counter-propagating solitary wave collisions, the solution
is assumed to take the asymptotic form as t → −∞ of
two clean solitary wave profiles moving towards one an-
other, as in (17). During the collisions the solution rises
to an amplitude larger than the sum of the amplitudes of
the two incident solitary waves (the run-up). After the
collision two similar principal waves emerge, with ampli-
tudes which are initially significantly below their incident
amplitudes, but which relax and regain amplitude again,
returning to the form of two solitary waves, now sepa-
rating from each other. As a result of this collision, the
amplitudes of the two resulting solitary waves are slightly
smaller than the incident amplitudes, their centers are
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slightly retarded from the trajectories of the incoming
centers (the phase lag), and there is a small residual.
This asymptotic form as t→ +∞ is as described in (18).

Because of the change of velocity after collision, there
is a certain ambiguity surrounding the definition of the
phase shift; indeed the solitary wave components have
trajectories which are asymptotic to the lines x = cjt+aj ,
j = 1, 2 for t → −∞, and x = c+j t + a+

j , j = 1, 2 for
t → +∞. To resolve the problem, define the midpoint
of an interaction to be the time τ which minimizes the
variance

V (t) =

∫ ∞

−∞

(x− C

M
)2η dx ; (21)

then the phase shift is well defined as the change in the
t = τ intercept of these lines, namely (a+

j − aj) + τ(c+j −
cj), j = 1, 2.

The residual wave is supported between the two main
solitary waves, and it propagates essentially according to
linear theory, which among other things dictates that for
large times after the collision, the residual is separated
from the faster nonlinear solitary wave components of
the solution. Thus this interaction has the form of a
scattering event, with initial amplitudes (S1, S2) being
transformed by the interaction to scattered amplitudes
(S+

1 , S
+
2 ) and with a phase lag (aj −a+

j )+τ(c+j −cj), j =

1, 2 and radiative loss ηR(x, t). It is a finite dimensional
problem, with the scattering map (S1, S2, a1, a2) 7→
(S+

1 , S
+
2 , a

+
1 , a

+
2 ) and the residual (ηR(x, t), ξR(x, t)) be-

ing entirely determined by the two parameters (S1, S2).
For counter-propagating interactions, the major issues
are: (i) to quantify the run-up as a function of initial
amplitude and to compare it with previously derived re-
sults, (ii) to quantify the phase-lag (aj −a+

j )+τ(c+j −cj),
j = 1, 2, (iii) to exhibit a residual after each collision and
to examine its character, and (iv) to quantify the degree
of inelasticity of such collisions by observing the changes
in amplitude (analogously, the energy or the velocity) of
the scattered solitary waves.

A. Run-up and phase lag

Our results for symmetric counter-propagating colli-
sions between equal amplitude solitary waves consist in
accurate numerical simulations of the initial value prob-
lem. Such interactions are equivalent to a single wave in-
teracting with a vertical wall, although our calculations
do not a priori impose symmetry on the solution. Two
identical, well separated profiles ηSj

(x−aj), j = 1, 2 with
opposing velocities c1 = −c2, which have been generated
by Tanaka’s method, are placed as initial data in the com-
putational domain. In the nondimensional time interval
of approximately 30 to 40 units they interact strongly,
and then separate with a slight shift of phase and a slight
change in amplitude. We display results for two different
choices of amplitude: Sj = ‖ηSj

‖L∞ = 0.1h (Fig. 4) and

Sj = ‖ηSj
‖L∞ = 0.4h (Fig. 5). Fig. 4(a) [resp. Fig.

5 (a)] shows a collision between the solitary waves, with
Fig. 4(b) [resp. Fig. (5b)] giving a space-time trace of
the local maxima of this solution as the two individual
crests merge and then separate in the process. At the at-
tachment and detachment times of the individual crests,
they propagate with infinite velocity. The asymptotically
linear trajectories of the crests before and after collision
can be compared to quantify the phase lag. Equivalently,
Cooker, Weidman and Bale [4] use the wall residence time
to quantify this degree of hesitation at the encounter of
symmetric counter-propagating waves (a concept which
is not available for asymmetric collisions).

Fig. 6 documents the time evolution of the maximum
amplitude of the solution, which is shown to rise sharply
to substantially more than twice the elevation of the in-
cident solitary waves, after which it descends to below
this level after crest detachment, relaxing back to almost
its initial level. This is very comparable to Figs. 4(a)
and (b) of Cooker, Weidman and Bale [4]. In Fig. 5 we
observe that the phase lag grows when we increase the
amplitude. Furthermore there is a residual clearly visible
between the two crests after the collision.

For these and for a series of numerical simulations with
a range of incident amplitudes from 0.025h to 0.5h, val-
ues of run-up and wall residence time are recorded in
Figs. 7 and 8 respectively, with comparison to the nu-
merical data of Cooker, Weidman and Bale [4] and the
asymptotic expressions to second and to third order as
given in Byatt-Smith [7] and Su and Mirie [6], respec-
tively. We also compare our observations of the wall res-
idence time with the experiments of Maxworthy [5], as
reported in Cooker, Weidman and Bale [4]. The experi-
ments of Renouard, Seabra-Santos and Temperville [37]
are consistent with this data. The very close fit between
the results of Cooker, Weidman and Bale [4] and our own
simulations represent a verification of the accuracy of the
present numerical method, the only significant deviation
occurring for calculated run-up in our largest amplitude
case S/h = 0.5.

As noted in Cooker, Weidman and Bale [4], the asymp-
totic predictions of the phase lag in Oikawa and Yajima
[8] and Su and Mirie [6] differ from the experiments of
Maxworthy [5]; our numerical data are however almost
indistinguishible from the numerical results of Cooker,
Weidman and Bale [4], supporting again the latter case.

B. Residual

The residual is clearly visible trailing the main crests
after the collision in the case Sj = 0.4h. In the case of
smaller amplitude Sj = 0.1h, any deviation from a clean
interaction is smaller than what can be seen under nor-
mal scaling. However an image of the interaction which
appears in Fig. 9 with exaggerated vertical scale shows
the presence of a small but definitive residual. In this
and in our further simulations we have found that even
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in the case of small to moderate incident amplitudes,
there is always a non-zero energy transfer from the in-
cident solitary waves to a residual, representing a quali-
tative confirmation of the asymptotic calculations of Su
and Mirie [6] on this point. The transfer of energy from
the solitary wave components results in a change in am-
plitude after passing through the interaction. In counter-
propagating interactions, the amplitude of each solitary
waves decreases, but by a remarkably small amount given
the size of the incident solitary waves. We observe that
relative amplitude loss is (S − S+)/S = 0.0036 in the
case S = 0.1h, while when S = 0.4h the relative am-
plitude loss has only increased to 0.0065. Both of these
changes are very small, which is qualitatively consistent
with the findings of Su and Mirie [6] and Byatt-Smith
[23], which predict no amplitude changes to orders O(S3)
and O(S5) respectively. However our data show a quan-
titative discrepancy with both of these asymptotic pre-
dictions, which we will return to in section VI. We note
that in the early simulations of Chan and Street [2] no
residual was observed, up to the order of accuracy of the
numerical simulation, and in Fenton and Rienecker [3]
trailing residuals are only observed for large amplitude
and symmetric counter-propagating interactions.

Table I gives the data from a sequence of numerical
simulations of symmetric counter-propagating solitary
wave interactions, with incident amplitudes S = 0.025h
through 0.5h. We document two sets of quantities re-
lated to the inelastic character of interactions. The first
is the change in amplitude of the solitary wave compo-
nents passing through a collision S/h → S+/h, compar-
ing it to the relative change (S − S+)/S. The second
is the total energy ET = H(η, ξ) of the solution com-
pared with the energy of the residual eR = H(ηR, ξR).
The residual is calculated by observing the best fit of the
computed solution to two independent solitary waves (by
matching amplitudes with numerically computed solitary
wave profiles) at the given time t, and subtracting them
from the solution. We additionally tabulate the relative
energy loss of the two interacting solitary waves to the
residual eR/H(η, ξ) that results from the collision.

Two facts are evident. Firstly, that there is in every
case a non-zero energy transfer from the incident solitary
waves to the residual as a result of the collision. And
secondly that, although non-zero, the energy loss is very
small; the relative loss varying from approximately 2%
in the largest case S/h = 0.5, down to 0.5% when S/h =
0.075.

We now address the question of the fate of the soli-
tary wave components after experiencing a collision and
subsequent production of a residual. Our computations
show that solitary waves emerging from a collision sepa-
rate from each other and from the support of the residual
wave generated by the collision, to propagate as clean
solitary waves with slightly modified amplitude in an es-
sentially quiescent background. In particular the collision
lasts for a finite time, and only a finite portion of energy
is lost in the interaction. It is a fact related to the sta-

bility of a solitary wave that, once perturbed, it does not
continue to shed energy, even at a slow rate, as t→ +∞.
This is shown in the series of images in Fig. 10, in which
two incident solitary waves of amplitude S = 0.4h (a) ap-
proach each other, (b) collide and produce a residual, and
(c) separate from the collision and from the support of the
trailing wave packet which constitutes (ηR(x, t), ξR(x, t)).
Given its amplitude and the background quiescent state
in which it propagates, the residual wave evolves essen-
tially according to linear theory. This figure also exhibits
a characteristic teardrop shape of ηR(x, t), resulting from
the band-limited character of the residual and the disper-
sion relation ω2(k) = gk tanh(hk).

Fig. 11 presents a series of Fourier transforms of
the residual ηR(x, t) from the collision of two solitary
waves of amplitude S = 0.4h, for a sequence of times
t/

√

h/g = 0.02, 13.20, 24.60, 42.90, 66.00 and 89.10. For
reference, the Fourier transform of ηS(x) is of amplitude
19.9870. In this sequence of Fourier profiles, Figs. 11(a)
and 11(b) document the adjustment of the solution to its
superposed solitary wave initial data. Fig. 11(c) repre-
sents the initial residual, well after the start of the nu-
merical simulation, but well before the actual collision
time. We observe that the solution has evidently relaxed
to being very precisely a sum of two approaching soli-
tary waves, as the amplitude of the Fourier transform of
ηR is roughly three orders of magnitude smaller than the
solitary wave components. Figs. 11(d)(e) and (f) docu-
ment the Fourier signature of the residual at three stages
after collision, when a characteristic oscillating and band-
limited profile with two main lumps appears and stabi-
lizes. At all times, the Fourier transform is essentially
supported beween wave numbers k = ±2. Under lin-
ear evolution, such a Fourier profile is preserved. This
is consistent with the observation of the spatial profiles
of the residual, namely that they are not highly oscilla-
tory error terms, but rather they are of specific form with
identifiable characteristics.

Fourier profiles of the development of the residual in
other cases (S = 0.1h, 0.2h, 0.3h and 0.5h) show quite a
degree of similarity with the sequence for the case S =
0.4h in Fig. 11; we have not presented all of these data
here.

IV. ASYMMETRIC COUNTER-PROPAGATING

COLLISIONS

A. Experiments and numerical comparisons

Our results in the case of counter-propagating interac-
tions between two solitary waves of unequal amplitudes
include both experimental measurements and numerical
simulations. The experiments, carried out in the Penn
State wave channel, consist of a first localized waveform
being generated by the wavemaker, reflecting off of the
far end of the tank and then interacting with a second
wave generated by the wavemaker. The water surface
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level is measured in a spatial window around the region
of collision at regular intervals of time. These two wave-
forms are generated to be profiles of a soliton solution
of the KdV equation (and hence they are not strictly
traveling wave solutions to the Euler equations, but only
close). In addition, the reflected wave may well devi-
ate further from an exact solitary wave profile due to
the interaction with the wall, and experience a slight at-
tenuation of amplitude due to its longer travel distance
in the wavetank. Hence the interaction has a degree of
asymmetry, and it is not strictly between exact solitary
waves. Fig. 12 records the wavetank measurements of
the experiments of this collision at eight times during
the interaction, within a window located in the middle
of the wave channel. The wavemaker and the end wall
of the channel are not included in the image. In this fig-
ure, the wave moving from right to left is coming directly
from the wavemaker, while the one moving from left to
right has reflected from the end wall of the wave chan-
nel. The resulting measurements are compared with two
numerically-generated traces, which are superimposed on
the figure. The first is a numerical simulation of the wa-
ter wave evolution using the above numerical methods to
solve the time evolution problem (5) and (6). Initial data
for this simulation are given to be KdV soliton profiles,
matching those being generated in the tank by the wave-
maker. The second is a linear superposition of two ex-
act KdV solitons, centered on the two solitary-like waves
present in Fig. 12(a) and adjusted to their amplitudes.
Translating at constant (and opposing) velocity, they act
as a reference for the amplitude and the phase shift of
the actual solutions that are undergoing the interaction.

The details of the interaction in the experiment are
relatively well represented in the numerical simulation,
which in all frames predicts the measured wave profile
with small error, and which reproduces the peak loca-
tions and their amplitudes very well. The two exceptions
are that the numerical solution apparently slightly un-
dershoots the measured wave amplitude at the point of
largest run-up (Fig. 12(c)), and the centers of the peaks
in the numerical solution are slightly delayed behind the
experimental measurements after the interaction (Fig.
12(h)). Both clearly differ from the superposition of KdV
solitons. Some of the unsteadiness in the experimental
solution and the numerical simulation can be attributed
to the fact that neither is starting from an exact soli-
tary wave. Furthermore, neither a trailing residual nor
any changes in amplitude due to the inelastic nature of
the interaction can be picked out from the experimental
uncertainties of the wavetank measurements.

B. Run-up, phase lag and residual

Further numerical simulations of counter-propagating
interactions between two exact solitary waves of different
amplitudes exhibit a number of the same features that
have been observed in the symmetric case. Fig. 13 shows

the details of a collision between solitary waves of ampli-
tudes S1 = ‖ηS1

‖L∞ = 0.4h and S2 = ‖ηS2
‖L∞ = 0.1h.

The clean propagation before the collision, the degree of
run-up, the phase lag, and the small residual are clear
in the two diagrams. The plot of the trajectories of the
crests shows that the small solitary wave is absorbed by
the larger, which subsequently slows briefly before re-
emitting the smaller one on the other side and resuming
(close to) its incident velocity. The phase lag is clearly
asymmetric, with the smaller solitary wave being delayed
more significantly than the larger.

Fig. 14 shows the similar behavior in an interaction be-
tween solitary waves of amplitudes closer to each other,
respectively S1 = 0.4h and S2 = 0.3h. In this case the
run-up is more significant, as would be expected, the
phase lag of the two solitary waves are comparable to
each other, and the slowing of the central crest due to the
interaction is significant. Additionally a larger residual
is produced. Still however, judging from the trajectories
of the two crests, the interaction has the character of an
absorption of the smaller solitary wave, and its subse-
quent re-emission at a later time, along with a phase lag
in their paths.

V. CO-PROPAGATING SOLITARY WAVE

INTERACTIONS

A. Experiments and numerical comparison

Our results for the co-propagating case of interactions
between two solitary waves include numerical simula-
tions of these overtaking collisions, experimental mea-
surements, and numerical modeling of the experiments.
As in the case of head-on collisions, the solution is as-
sumed to be in the asymptotic form as t → −∞ of
two solitary waves infinitely separated from one another.
In this case however these have velocity with the same
sign, and are ordered so that initially the larger ampli-
tude wave trails the smaller one. An overtaking colli-
sion consists of the larger solitary wave catching up with
and interacting with the smaller one, subsequently pass-
ing on and separating from it, and leaving a residual
(ηR(x, t), ξR(x, t)) trailing both of the resulting solitary
waves. This is consistent on a qualitative level with the
model interactions studied by Bona, Pritchard and Scott
[15]. Because the interaction is occurring between so-
lutions with velocities of the same sign, it takes place
over a long time interval, in contrast to the case of the
head-on collisions. The solitary waves resulting from
the interaction have very slightly modified amplitudes
and velocities, and they experience a substantial phase
shift, which is positive (that is, their centers are advanced
from where they would be had there not been an inter-
action). This is consistent with the phase shift for the
interaction of KdV solitons, and opposite in sign to the
case of head-on collisions. The major issues which in-
volve these interactions are (i) to exhibit a residual wave
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resulting from the inelastic nature of the interactions,
and (ii) to quantify the changes in amplitude, energy
and velocity due to the interaction (S1, S2) → (S+

1 , S
+
2 );

(iii) to quantify the phase shift (aj − a+
j ) + τ(c+j − cj),

j = 1, 2 and compare it with the analog quantity for
KdV two-solitons; and (iv) to understand the changes
in amplitude and other details of the dynamics of such
interactions. As in the counter-propagating case, these
interactions have the form of a scattering event, map-
ping (S1, S2, a1, a2) to (S+

1 , S
+
2 , a

+
1 , a

+
2 ) and generating

the residual (ηR(x, t), ξR(x, t)), all being determined by
the two input parameters (S1, S2).

Fig. 15 shows a sequence of spatial profiles taken of an
experimental overtaking collision between two waves in
the Penn State wave channel. Superposed on these pro-
files are two further traces; a sequence of spatial profiles
predicted by our numerical simulations, and the KdV
two-soliton which best fit the initial frame of the data.
Initial data for the numerical simulations were chosen in
a similar way to those for the head-on collision exper-
iments; with superimposed KdV single solitons, as the
wavemaker was programmed to produce these profiles.
Experimental measurements are taken from a moving
carriage above the wavetank, in order to keep the in-
teraction within the frame of the instrument assembly.
Because of uncertainties in the precise carriage position,
we had difficulty aligning the reference frame of the ex-
perimental data and the two sets of numerical profiles.
For this reason the sequence of profiles in Fig. 15 are
calibrated to be at precisely the same times during the
interaction, but they are plotted in the frame by individ-
ually aligning their respective centers of mass. Therefore
amplitude and relative phase information is accurately
reproduced, but absolute phase has been neglected.

One first notes that, while the shape of the experi-
mental data and the numerical simulations are very well
correlated throughout the interaction, the amplitude of
the experiment decays in time and in the last frame in
particular its amplitude is rather attenuated when com-
pared to the simulation. The numerical simulation also
over-predicts the phase shift after the interaction, espe-
cially that of the trailing wave. These two errors may
be due to the presence of dissipative processes in the
experiment that are not taken into account in the equa-
tions of motion (5)(6). These can be expected to play
a greater rôle in overtaking interactions than in head-on
collisions, as dissipative effects have more time to accu-
mulate. These effects are discussed in detail in Weidman
and Maxworthy [17], where experimental observations of
overtaking solitary wave collisions are reported. On the
other hand, the experiments are also compared to the
KdV equation; one sees that the KdV two-soliton solu-
tion has overshot the amplitude in almost all frames, and
is giving a different picture of the crest interactions at the
peak of the interaction. Overall, this result gives us a cer-
tain confidence in the predictive power of our numerical
simulations.

B. Phase shift and bounds on amplitude

In a sequence of further numerical simulations, we have
studied overtaking solitary wave collisions between mod-
erate to large amplitude waves. In Figs. 16-19 we present
the resulting space-time plots of the surfaces and the tra-
jectories of the crests, in the cases of amplitudes 0.4h and
0.3h, 0.4h and 0.1333 . . . h, 0.4 and 0.113h, and 0.4h and
0.1h respectively. The plots are given in a coordinate
frame moving approximately with the mean velocity of
the two initial solitary waves, in order to localize the in-
teraction into the frame of the image. One feature of all
of these interactions is that there are large phase shifts
(a+

j − aj) + τ(c+j − cj), j = 1, 2, and that both of these
quantities are positive. This is consistent with the phase
shifts that occur in the KdV two soliton solution, al-
though the actual values of the phase shifts for the KdV
solitons are larger.

A second feature is that the scattering event amplifies
the larger of the solitary waves. After the interaction,
the larger solitary wave ηS+

1

is of slightly larger ampli-

tude than ηS1
, a phenomenon which has been reported

previously in Fenton and Rienecker [3]. The data from
our numerical simulations are given in Table II.

It is clearly seen that the amplitude increase is of
0.1% or less in all cases. This is an order of magni-
tude smaller than the changes in amplitude observed in
counter-propagating interactions. We have to comment
that while this is in qualitative agreement with the nu-
merical study in [3] (of a single co-propagating interac-
tion), our measurements differ quantitatively from their
findings in that the increases (S+

1 −S1)/h we observe are
significantly smaller than that reported in their paper.
The difference can perhaps be attributed to the higher
precision of our numerics. A third feature of each of these
interactions is that the amplitude of the actual solution
η(x, t) never exceeds that of the larger solitary wave, nor
does it dip below the amplitude of the smaller. That is,
at each time t ∈ R, there is the estimate from above and
below

‖ηS2
(x)‖L∞

x
< ‖η(x, t)‖L∞

x
< ‖ηS+

1

(x)‖L∞

x
, (22)

where we are labeling the initial solitary waves so that
‖ηS2

(x)‖L∞

x
< ‖ηS1

(x)‖L∞

x
. This fact is verified in

Fig. 20, in which the maximum of the solution is plot-
ted in nondimensional time (solid line), with the upper
and lower bounds ‖ηS+

1

(x)‖L∞

x
and ‖ηS2

(x)‖L∞

x
super-

imposed in horizontal dashed lines. The greatest dip in
the amplitude of η(x, t) occurs at the peak time of the
interaction. This is in contrast to counter-propagating
collisions, where the amplitude at the peak of the inter-
action experiences a run-up of a significant factor greater
than the sum of the initial solitary waves. In the case
of co-propagating interactions, the result is to lower the
maximum at the peak of the interaction, and by a signifi-
cant factor. In Figs. 20(a) and 20(b), the maximum dips
below the arithmetic mean of the incoming amplitudes
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1
2 (‖ηS1

(x)‖L∞

x
+ ‖ηS2

(x)‖L∞

x
). In Fig. 20(c) the dip is

not so exaggerated, but nevertheless it is significant. We
recall for the reader that the estimate (22) also holds for
KdV two-solitons.

C. Residual

What is not evident from the plots presented in Figs.
16, 17, 18 and 19 is the presence of a residual ηR(x, t)
emerging from the collision. In fact the residual exists,
but it is very small; we have imaged it with an essen-
tially 100-fold magnification in the scale of the vertical
axis in Figs. 21 and 22. Fig. 21 plots the interaction of
two solitary waves with S1 = 0.4h and S2 = 0.3h, at
three points in time. A small depression forms behind
the two main peaks during the collision, which devel-
ops into a well defined but very small trailing residual
as the two main solitary waves separate from the inter-
action. On this matter, Fenton and Rienecker [3] did
not observe a residual in their simulations of overtaking
collisions for the full Euler equations, up to the degree
of precision of their calculation. We note that numeri-
cal observations of residuals resulting from an overtaking
collision of solitary waves to model equations are well
known [15], [11]. Fig. 22 is a similarly magnified plot
of the simulation of an interaction between two solitary
waves with S1 = 0.4h and S2 = 0.1h that appears in
Fig. 19. Features of the residual ηR(x, t) are qualita-
tively the same, but it possesses somewhat of a higher
wavenumber spectrum. Again it is of an amplitude that
is virtually undetectible in the non-magnified plot or in
numerical simulations with less precision.

D. The Lax categories

A comparison between the different cases represented
in Figs. 16, 17, 18 and 19 brings us to a discussion of
the geometry of overtaking solitary wave collisions. We
find that these interactions can be categorized into three
types, closely related to the three Lax categories of two-
soliton collisions for the KdV equation. When the ampli-
tudes of the two incident solitary waves are close to being
comparable, then the interaction looks like the one pic-
tured in Fig. 16; namely at each point in time there are
two well-defined and separate crests in the solution. The
amplitude of the trailing crest is initially the larger S1,
and it decreases monotonically through the interaction
to the lower amplitude S+

2 . The leading crest does the
opposite, increasing monotonically in time. Throughout
the interaction they never meet. This is the same behav-
ior as the KdV two-solitons of category (a), as described
in Lax [16]. In the situation that the amplitudes of the
incident solitary waves are very different, the interaction
looks like the one pictured in Fig. 19 . As the two waves
approach each other, the smaller crest is drawn towards
the larger wave and absorbed by it, a process which ac-

celerates the crest of the larger wave. After a time in-
terval during which there is a unique central crest, the
smaller wave is re-emitted from the back of the princi-
pal wave, slightly modified in amplitude, after which it
separates from the larger wave. This is the behavior of
KdV two-soliton solutions in the Lax category (c) (ex-
cept for the inelastic changes in amplitude). Between
these two cases is an intermediate one, which for soli-
tary wave interactions is pictured in Fig. 17. It is a
more complicated picture; the smaller crest is first ab-
sorbed and then re-emitted from the larger wave, after
which there is a central region consisting of two crests.
In this region the smaller one grows while the larger
shrinks until they have essentially traded their relative
sizes; the interaction then undoes itself in a similar way.
The pattern of crest absorption and re-emission is given
in Fig. 17(b), and it is essentially identical to the inter-
action of KdV two-solitons in Lax’ category (b). What is
different for solitary waves solutions of Euler’s equations
is that the transitions occur for different values of the
two incident amplitudes. For the KdV equation, when
considering two-soliton interactions with amplitudes re-
spectively S1 ≥ S2, the transition from category (a) to

(b) occurs at the ratio S1/S2 = (3 +
√

5)/2 ∼ 2.62 . . . ,
and the transition from (b) to (c) when S1/S2 = 3. In
the case of interactions of solitary waves, the transition
curves between categories occur for different values of S1

and S2, and are not simply functions of the amplitude ra-
tio. In a series of trials with S1 = 0.4h and with varying
S2, we have found that the transition value from category
(a) to (b) and from (b) to (c) to be given by:

S1

S2
≤ 2.941 category(a) (23)

2.941 <
S1

S2
≤ 3.536 category(b)

3.536 <
S1

S2
category(c)

In the simulations presented in Figs. 16, 17 and 19 this
ratio is 1.33 . . . , 3 and 4 respectively. At the transition
point from category (b) to (c) the central single crest at
the peak of the interaction is just on the edge of splitting
for an instant into two separated crests, and it apparently
propagates with infinite velocity at this instant; this is
captured in Fig. 18.

The appearance of three categories of two soliton in-
teraction is an algebraic fact about the KdV equation,
but it was not evident to us that co-propagating solitary
wave interactions for the water waves problem would be
so restricted. We made some attempt to find other ge-
ometric categories of interactions, for example between
very large waves or between waves of very different am-
plitudes. However in all of our simulations, we found that
the interactions fell within one of the three categories.

There have been previous studies which compare the
Lax categories for KdV two-solitons with water waves.
Weidman and Maxworthy [17] made experimental obser-
vations of overtaking collisions in the three categories.
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Numerical simulations of overtaking collisions are re-
ported by Mirie and Su [11] and Wu [18] for model long
wave equations, and by Fenton and Rienecker [3] for Eu-
ler’s equations. The latter reference also notes the shift in
the transition boundaries for these categories, presenting
a case of a category (b) overtaking interaction.

With this discussion in hand, we return to comment on
the sequence of experimental measurements in Fig. 15.
Noting that the amplitudes of the two incident waves are
0.730 cm and 2.295 cm respectively, their ratio is 3.14 . . . ,
which for the KdV equation is of category (c). However
for solitary waves it apparently falls well into the geomet-
ric category (b), and therefore a KdV two-soliton cannot
be expected to be able to reproduce the detailed features
of an overtaking collision in this regime. Considering the
geometry of the wave profile, the numerical simulations
of solitary waves observed in the laboratory do quite well
in reproducing the evolving free surface in the experimen-
tal measurements in Fig. 15, despite the disagreements
in the amplitudes due to the attenuation of the waves in
the experiment.

The category of an interaction is observed to have an
influence on the degree of inelasticity of the solitary wave
interaction. Table II gives the data from a sequence of
numerical simulations of co-propagating solitary wave in-
teractions, where a wave of height 0.4h overtakes ones of
height respectively 0.3h, 0.1333h, 0.113h and 0.1h. We
document the change in amplitude of the two component
waves due to the collision, as well as the energy of the
residual that is created as a result of the interaction. In
all of our simulations, the larger solitary wave gains am-
plitude as a result of the interaction, at the expense of the
smaller which loses amplitude. However it appears that
this phenomenon does not change monotonically with
the sizes of the two incident solitary waves. Further-
more the relative energy loss to the residual, which again
is an order of magnitude smaller than that for counter-
propagating interactions, is also not observed to be uni-
formly decreasing as the amplitude of the smaller wave
decreases, at least over the range we have examined. It
is apparent from the data that category (a) interactions
are closer to being elastic, while category (b) and (c) in-
teractions are less clean than those of category (a), and
are more effective at transferring energy to the residual
of the collision.

VI. AN ANALYSIS OF THE RESIDUAL

The purpose of this section is to present two relations
satisfied by the residual (ηR(x, t), ξR(x, t)) resulting from
a solitary wave collision. We show (i) there is a rela-
tionship between ∆Sj and the energy eR carried by the
residual, and (ii) we prove a rigorous estimate giving an
upper bound for eR. The estimate (ii) holds under the
assumption that solitary wave collisions satisfy three hy-
potheses, which are observed to hold in our numerical
simulations. However, we do not at present have a rigor-

ous proof of this fact, and they remain hypotheses of the
result.

Our discussion of the residual is based on three con-
served quantities: the added mass M(η), the momen-
tum I(η, ξ) and the energy H(η, ξ), defined respectively
in (9), (10) and (7). Exact solitary wave profiles occur
in one parameter families (ηS(x − tc), ξS(x − tc)), with
S ∈ [0, Smax]. The solitary wave solutions have well de-
fined values of the three conserved quantities, which we
denote respectively m(S) = M(ηS), µ(S) = I(ηS , ξS),
and e(S) = H(ηS , ξS). A solitary wave of amplitude S
moving from left to right has positive momentum µ(S),
while one of the same amplitude moving from right to left
has identical mass m(S) and energy e(S), and negative
momentum of the same absolute value.

We give initial data with asymptotic behavior for t→
−∞ as in (17), so that the values of the total added
mass, total momentum and total energy for our solution
(η(x, t), ξ(x, t)) are given by

MT = m(S1) +m(S2)

IT = µ(S1) + µ(S2)

ET = e(S1) + e(S2) . (24)

Because they are conserved quantities, these values are
preserved after an interaction, where we have observed
that the solution takes the form (18), consisting of two
separating solitary waves (ηS+

1

, ξS+

1

) and (ηS+

2

, ξS+

2

), with

in addition a residual (ηR(x, t), ξR(x, t)).
Our first assumption, which we denote (H1) is that this

will be the case in every binary solitary wave interaction;
therefore after the interaction the conserved quantities
can be calculated to be

MT = m(S+
1 ) +m(S+

2 ) +mR

IT = µ(S+
1 ) + µ(S+

2 ) + µR

ET = e(S+
1 ) + e(S+

2 ) + eR . (25)

Taking the difference before and after the interaction
gives us the relations

(m(S1) −m(S+
1 )) + (m(S2) −m(S+

2 )) = mR

(µ(S1) − µ(S+
1 )) + (µ(S2) − µ(S+

2 )) = µR

(e(S1) − e(S+
1 )) + (e(S2) − e(S+

2 )) = eR . (26)

Let ∆Sj = Sj − S+
j for j = 1, 2; the mean value

theorem implies that for j = 1, 2 there exist interme-
diate values S∗

j (m), S∗
j (µ), and S∗

j (e) in the intervals

[min{S+
j , Sj},max{S+

j , Sj}] such that

m(Sj) −m(S+
j ) = m′(S∗

j (m))∆Sj

µ(Sj) − µ(S+
j ) = µ′(S∗

j (µ))∆Sj

e(Sj) − e(S+
j ) = e′(S∗

j (e))∆Sj . (27)

To avoid overly clumsy notation we will write
m′(S∗

j (m)) = m′
j , and similarly for µ′

j and e′j . The three



12

relations (26) are rewritten

m′

1∆S1 +m′

2∆S2 = mR

µ′

1∆S1 + µ′

2∆S2 = µR

e′1∆S1 + e′2∆S2 = eR . (28)

In practice, the differences ∆Sj = Sj−S+
j are very small,

implying that the quantities m′
j , µ

′
j and e′j are very close

to the values for the derivatives m′(Sj), µ
′(Sj), e

′(Sj)
respectively, which are specified by the initial data.

In particular, in the symmetric counter-propagating
case, we have S := S1 = S2, which implies by symmetry
that ∆S := ∆S1 = ∆S2 and IT = 0 and µR = 0. Equa-
tions (28) give relations between the mass and energy of
the residual and the change in amplitude of the solitary
waves due to the interaction;

2m′∆S = mR , 2e′∆S = eR . (29)

For small amplitudes S, solitary waves behave similarly
to KdV solitons, and in particular their added mass, mo-
mentum and energy scale asymptotically in parallel with
the KdV soliton profile ηS ∼ 2S sech2(

√
Sx). That is,

m(S) = M(ηS) ∼ C1

√
S

µ(S) = I(ηS , ξS) ∼ C2S
3/2

e(S) = H(ηS , ξS) ∼ C3S
3/2 . (30)

Comparing this with our numerical simulations of soli-
tary waves, Fig. 23 is a log-log plot showing the power
law behavior of the energy of the solitary wave family
through the range of solutions that we have generated
using Tanaka’s method; it is well matched to the power
law C3S

3/2.
From (30) the asymptotic behavior of ∆Sj , j = 1, 2

and the quantities mR, µR and eR for small Sj are re-
lated. In the symmetric case, equations (29) determine
the relationship

C1S
−1/2∆S = mR

3C3S
1/2∆S = eR (31)

between the asymptotic behavior of ∆S and the quanti-
ties mR and eR as S → 0.

A. Estimates of the residual

To continue this analysis, we make a second assump-
tion (H2), that for sufficiently large time t+ after the
interaction, the two solitary wave components of the re-
sulting solution are well separated both from each other
and essentially from the support of the residual (as ob-
served in Fig. 10). Therefore because (ηS+

1

, ξS+

1

) and

(ηS+

2

, ξS+

2

) are small where ηR(x, t) is important, we have

mR = M(ηR), µR = I(ηR, ξR), eR = H(ηR, ξR) . (32)

The relation (28) can then be used to form an estimate
for the residual term. Our considerations are divided into
three cases.

1. Symmetric counter-propagating case

In this instance, solutions satisfy IT = 0 and IR = 0,
which also implies that ∆S1 = ∆S2. Equations (29)
imply that

eR = β(S)mR for β(S) =
e′

m′
∼ ∂e

∂m
(S) . (33)

Given the condition (H2) that the residual is essentially
separated from the two scattered solitary waves, this
states that H(ηR, ξR) = β(S1)M(ηR), which is to say
that

1
2

∫

ξRG(ηR)ξR + gη2
R dx = β(S)

∫

ηR(x, t) dx . (34)

After the interaction at a time t+ at which the assump-
tion (H2) holds, the two solitary wave components are
separated by a distance 2L.

We will further assume (H3) that the principal contri-
bution to the residual, in the counter-propagating case,
lies within the interval (−L,L) (as is clearly shown in Fig.
10). The identity (34) gives rise to an estimate for the
residual over this interval; indeed the Cauchy-Schwartz
inequality implies

∫ L

−L

ηR(x, t+) dx ≤
√

2L
(

∫ L

−L

η2
R(x, t+) dx

)1/2
. (35)

Used in the relation (34) this implies that

g

2

∫ L

−L

η2
R(x, t+) dx

≤ β(S)
√

2L
(

∫ L

−L

η2
R(x, t+) dx

)1/2
, (36)

which is to say that there is a bound on the potential
energy of the residual;

(

∫ L

−L

η2
R(x, t+) dx

)1/2 ≤ 2β(S)

g

√
2L . (37)

Using this in the relation (34) for a second time gives
control of the kinetic energy as well, that is;

1
2

∫

ξRG(ηR)ξR + gη2
R dx (38)

≤ β(S)
√

2L
(

∫ L

−L

η2
R(x, t+) dx

)1/2 ≤ β2(S)
4L

g
.

This estimate is valid throughout the parameter range for
which our hypotheses (H1), (H2) and (H3) hold. From
our numerical simulations we anticipate that they will
hold for at least 0.025 ≤ S ≤ 0.5h.

Estimate (38) gives rise to a quantitative bound on
the residual in the setting of interactions between small
solitary waves. From (30) we have that e(S) ∼ C4m

3(S)
and therefore β(S) = ∂me ∼ C5m

2. We conclude that,
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at least for small initial amplitudes S, the energy carried
from the interaction by the residual is bounded above by

H(ηR, ξR) ≤ β2(S)
6L

g
≤ C6S

2 . (39)

i.e. energy loss due to inelastic collisions is bounded
above by the second power of amplitude. The relative
energy loss in this case is bounded by

H(ηR, ξR)/ET ≤ C7S
1/2 . (40)

2. General counter-propagating case

The general case follows an argument along similar
lines. Expression (28) gives three equations for the two
unknowns ∆S1 and ∆S2. This implies that there is an
additional relation betwen the quantitiesmR, µR and eR,
which in turn can give rise to information on the residual
(ηR, ξR). One checks that the function ∂mµ(S) is mono-
tone increasing (indeed Fig. 3 shows that the impulse
as a function of the mass increases faster than linearly,
at least over the interval 0 ≤ S/h < 0.5 which covers
all of our experiments and numerical simulations) which
implies that system (28) can be solved for (∆S1,∆S2)
as a function of (mR, µR). The result gives an explicit
extra relation between the conserved quantities for the
residual, in the form

eR = α(S1, S2)µR + β(S1, S2)mR . (41)

Assuming that (H2) is valid, this is the identity

1
2

∫

ξRG(ηR)ξR + gη2
R dx (42)

= α(S1, S2)

∫

ηR∂xξR dx+ β(S1, S2)

∫

ηR(x, t) dx .

Under the Galilean transformation (x, ξR) → (x −
t∆c, ξR − x∆c) this becomes

1
2

∫

ξRG(ηR)ξR + gη2
R dx (43)

= (α− ∆c)

∫

ηR∂xξR dx

+(β + α∆c− (∆c)2

2
)

∫

ηR(x, t) dx .

Making the choice of ∆c = α, we then have

1
2

∫

ξRG(ηR)ξR + gη2
R dx

= (β +
α2

2
)

∫

ηR(x, t) dx . (44)

We denote by β′ = β + α2

2 the result of the Galilean
coordinate transformation. In the asymmetric counter-
propagating case, relying upon assumption (H3) that the

most important component of the residual lies between
the two scattered solitary waves, and using the line of
argument above, the deduction is that the energy of the
residual is bounded;

1
2

∫

ξRG(ηR)ξR + gη2
R dx ≤ (β′(S1, S2))

2 4L

g
. (45)

Consider small amplitude interactions, for |S| << 1 we
parametrize S1 = a1S, S2 = a2S, with the difference a2−
a1 ∼ S. Then an estimate analogous to (39) shows that

H(ηR, ξR) ≤ (β′(S))2
4L

g
≤ C8S

2 , (46)

and similarly for the relative error in (40). When a2 −
a1 = O(1) more accurate rigorous upper estimate would
be of interest.

3. Co-propagating case

Finally, in the co-propagating case, the numerical sim-
ulations clearly show the residual to be trailing both of
the scattered solitary waves ηS+

1

and ηS+

2

. We replace

the assumption (H3) with its analog for this situation,
namely (H3’) that the principal contribution to the resid-
ual ηR remains in motion in the same direction as the soli-
tary waves themselves. The rôle of the interval [−L,L]
in the analysis is replaced by the interval [0, L′], where
at time t+ after the interaction L′ is sufficiently large
for this interval to contain the most important compo-
nent of (ηR, ξR). The extra identity derived from (28)
is similar in character to (45). We note that the inter-
val [−L,L] in the counter-propagating case is relatively
short, as the dynamics of a head-on collision are a rapid
process. Overtaking collisions on the other hand take a
long time to complete, and therefore we expect that the
interval [0, L′] is substantially longer, and the estimate
analogous to (46) in this case is weaker since the overall
constant factor is larger.

B. Comparison with data

We focus on the case of symmetric counter-propagating
interactions, comparing the date in Table I with the rela-
tion (29). Fig. 24 is a log-log plot of the data in column
3 of Table I, representing the change in amplitude of a
solitary wave due to a symmetric head-on collision. The
data fit a power law ∆S ∼ γ1(S/h)

p1 with p1 = 1.5 and
γ1 = 1.05 × 10−2. There are two exceptional points,
corresponding to S = 0.025h and S = 0.05h, which over-
estimate ∆S/h to some extent (by 5×10−5 and 6×10−5

respectively). This is possibly related to the fact that
the solitary waves emerging from a collision of this form
have amplitudes lower than their asymptotic values, and
require a certain relaxation time to reach them. For col-
lisions of small amplitude waves, the relaxation time is
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very long, and our measurements of the amplitudes S+
j /h

are possibly taken before the time at which the solution
has effectively achieved its final state up to the accuracy
of the simulation.

Fig. 25 is a log-log plot of the total energy of the
residual eR. The data fit a power law in the form
eR ∼ γ2(S/h)

p2 with p2 = 2, and γ2 = 5 × 10−2. The
same two data points S = 0.025h, S = 0.05h are again
measured slightly larger than the linear fit to the bulk of
the data (by similarly small amounts), for what seems to
us to be the same reason. We note that p1 and p2 satisfy
the relationship indicated by (31) as required, namely
p2 = p1 + 1/2. We further note that, while the estimate
(39) is simply an upper bound on the energy of the resid-
ual, our observations are that it scales in powers of the
amplitude S/h in an optimal manner as S/h→ 0.

With this data, the reasoning for small residual and
amplitude changes is not from a high order effect in pow-
ers of S/h, rather it can be attributed as a consequence
of the constants γj , j = 1, 2 being very small.

These findings are at odds with Su and Mirie [6] and
Byatt-Smith [23], who predict that a residual is gener-
ated by the interaction only at order O((S/h)3) in an
asymptotic expansion, with the result that the energy
of the residual is eR = O((S/h)11/2). They also predict
that the changes in amplitude are ∆S = o((S/h)3). Us-
ing the relation (31), this behavior of eR implies that
in fact ∆S = O((S/h)5). Both of these predictions dis-
agree with the data from our simulations over the range
(S/h) ∈ [0.025, 0.5]. Two of the possible reasons for this
difference are that (1) the regime of validity of the asymp-
totic expansion in [6] is limited to values of S/h smaller
than those in the range of our simulations, or (2) the
asymptotic analysis of [6, 23] predict well the initiation
of a wave collision, but represent less well the detailed
dynamics during the height of the collision, and the sub-
sequent separation of the solution into two solitary waves
plus residual. This latter possibility would also account
for the fact that [6] predicts very well the run-up of a
solitary wave collision, but less well the later details of
the interaction, see Fig. 8.

C. Discussion of previous rigorous results

There are a certain number of rigorous results on the
approximation of general solutions of the problem of sur-
face water waves by solutions of model equations. In
particular the KdV equation plays a rôle when the ini-
tal data are taken to be in the form of η0(x) = ε2q(εx),

ξ0(x) = εp(εx) for sufficiently small ε =
√

S/h, which
is the appropriate scaling for the long-wave limit. This
has a bearing on the problem of solitary wave collisions
when the initial data consists of two KdV solitons, as
they are taken to approximate the interaction. An ini-
tial step in this direction appears in Craig [19], where
the result is a justification of the use of solutions of the
KdV equation to approximate solutions of the water wave

problem in two space dimensions. The work of Schneider
and Wayne [20] extends [19], allowing for solitary wave
initial data, and for the phenomenon that data for the
water wave problem, adapted suitably to the scaling of
the KdV regime (and somewhat localized) breaks up into
an essentially left-moving component and an essentially
right-moving component as time evolves, with each of
these components being well approximated by solutions
of two decoupled KdV equations,

−2∂T q
− =

1

3
∂3

X−
q− + 3q−∂X−

q−

2∂T q
+ =

1

3
∂3

X+
q+ + 3q+∂X+

q+ , (47)

where X± = ε(X ± t) and X is a Lagrangian spa-
tial coördinate in long-wave scaling. Rigorous theorems
on the higher order corrections to the approximation
given by the KdV equation are given in recent papers of
Wright [22] and Bona, Colin and Lannes [21], following
prior work of Wayne and Wright [38] on the Boussinesq
and KdV models. The corrections derived in the for-
mer paper consist of two linearized KdV equations, one
for each direction of propagation, and an inhomogeneous
wave equation coupling the two KdV equations. In [22]
these are

−2∂Tf
− =

1

3
∂3

X−
f− + 3∂X−

(q−f−) + J−

2∂T f
+ =

1

3
∂3

X+
f+ + 3∂X+

(q+f+) + J+ (48)

∂2
τp− ∂2

Xp = 3∂2
X

(

q−(X − τ, ε2τ)q+(X + τ, ε2τ)
)

.

The functions J± are explicit nonlinear expressions in
q± and their derivatives. These corrections enter the
solution at order O(ε4) = O((S/h)2), and the rigorous
Sobolev bounds on the resulting higher order error are
of order O(ε11/2) = O((S/h)11/4). In the case of soli-
tary wave collisions, the rôle of this inhomogeneous wave
equation is essentially to describe the residual, and its
order of magnitude is consistent with our error bounds
above. For it to be consistent with the results of [6], the
correction p would have to vanish. Of course these results
are only valid for small ε.

VII. CONCLUSIONS

The results in this paper include experimental mea-
surements of precisely generated solitary wave interac-
tions, accurate numerical simulations of such collisions,
and an analytic result on their scattering which gives an
upper bound on energy loss to the inelastic nature of the
collision process. In a first sequence of numerical simula-
tions of counter-propagating interactions between identi-
cal solitary waves, we reproduce the findings of Cooker,
Weidman and Bale [4] using our independent methods,
thereby providing a validation of our numerical approach
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and giving a verification of their as well as our own find-
ings. Elements of the comparison include measurements
of the run-up and wall residence time of collisions. Our
numerical results on run-up are consistent with the pre-
dictions of Su and Mirie [6], while our results on the wall
residence time are very close to those of Cooker, Wei-
dman and Bale [4], which deviate from the expressions
given in the former article. Both the latter reference and
our results correspond to the experimental observations
in Maxworthy [5].

In addition, the accuracy of our numerical simulations
allows us to quantify the degree of inelasticity of these
symmetric solitary wave collisions, which we have found
to be very small but nonetheless nonzero in all cases we
have examined. In the case of counter-propagating in-
teractions between solitary waves of different sizes, we
have taken the wavetank data from head-on solitary wave
collisions and compared it with matched numerical sim-
ulations, finding that the run-up, the phase lag and as
well the details of the geometry of the numerical soli-
tary wave collisions predict quite accurately the measure-
ments taken of the experiments. With this confidence in
the precision of our numerical methods, the simulations
allow us to measure the changes in mass, momentum
and energy, as well as amplitude and velocity, of solitary
waves due to an inelastic head-on collision. The result-
ing residual wave possesses a characteristic-shaped oscil-
latory profile, and it propagates essentially as a solution
of the linear equations, at least subsequent to a point
in time somewhat after the collision. The post-collision
solitary waves exhibit strong evidence of stability, prop-
agating away from the residual and leaving an interval
of quiescent water surface between itself and the resid-
ual. The existence of a residual is qualitatively consistent
with the asymptotic predictions of Su and Mirie [6] and
Byatt-Smith [23]. However on a quantitative level our
numerical data are at odds with their findings. In all
cases we observed, both solitary waves exit from the col-
lision with amplitudes slightly smaller than their entering
values, with the amount of this change being directly re-
lated to the energy carried away from the collision by the
residual.

Our observations and numerical simulations of co-
propagating solitary wave interactions provide insight
into this class of overtaking collisions. Again in all cases
we observe the formation of a residual, in these cases
trailing behind the smaller of the solitary waves after
the collision. However this residual is typically even less
pronounced than in the counter-propagating case. Ad-
ditionally, we observed that the larger solitary wave ex-
its from an interaction with slightly increased amplitude,
while the smaller one loses amplitude. While counter-
propagating collisions resulted in the maximum ampli-
tude of the solution (the run-up) being substantially more
than the sum of the entering solitary wave amplitudes,
co-propagating collisions are of a very different character;
in all cases the maximum of the solution does not exceed
the maximum among the amplitudes of the two incident

and the two resulting solitary waves from the collision
(which we find to be the amplitude of the largest exiting
solitary wave). Nor does the maximum of the solution at
any time lie below the minimum of the amplitudes of the
four involved solitary waves.

We further find that interactions between co-
propagating solitary waves fit very neatly into the three
geometrical categories introduced by Lax [16] to describe
two-soliton solutions of the KdV equation. However
the transition points between the categories for solitary
waves are not identical to their values for the KdV equa-
tion. This difference serves to explain in part the good fit
between the experimental observations of co-propagating
solitary wave interactions and the numerical simulations,
and the discrepancies between both of these and the KdV
approximation to the interaction. We have also found
that the category of a solitary wave interaction influ-
ences the degree to which it is inelastic; category (a)
interactions are apparently very close to elastic, while in-
teractions in categories (b) and (c) are more effective in
generating a residual.

Under three hypotheses on the nature of a solitary
wave collision, we formulate a rigorous result for an up-
per bound on the energy loss in a solitary wave collision
due to its inelastic nature. The hypotheses are essen-
tially that (H1 ) solitary wave collisions are binary inter-
actions and result in two exiting solitary waves plus a
residual, (H2 ) in the regime of amplitudes considered,
solitary waves are stable (to two dimensional perturba-
tions caused by collisions), and (H3 ) the residual lies es-
sentially in the expected region of the free surface. From
these assumptions, using the conservation of added mass,
momentum and energy, we derive an upper bound on
the possible energy transfer to the residual from a col-
lision. For small amplitude counter-propagating inter-
actions, this estimate is seen to give the sharp order of
magnitude for the energy of the residual.
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APPENDIX: MODIFIED TANAKA’S METHOD

Tanaka’s method for computing exact solitary waves
is based on Cauchy’s integral theorem for the complex
velocity potential, in a reference frame moving with the
wave speed c. The crest velocity Vc fully defines the wave
field and the dimensionless crest velocity qc = Vc/c is
used as a parameter in the problem. The original method
by Tanaka [9] was modified by Cooker [39] to use the wave
height S instead of qc as a parameter. We propose here a
modified version which is based on an alternate integral
formulation.

Following Tanaka [9], we introduce the complex veloc-
ity potential W = ϕ + iψ, choosing ϕ = 0 at the crest
and ψ = 0 at the flat bottom. The fluid region is mapped
onto the strip 0 < ψ < 1, −∞ < ϕ < ∞ in the W -plane
with ψ = 1 corresponding to the free surface. We also
introduce the quantity Ω = ln(dW/dz), where z = x+ iy
(x being the horizontal coordinate and y the vertical one
pointing upward). In terms of the magnitude q of the
velocity and the angle θ between the velocity and the x-
axis, Ω can be expressed as Ω = τ − iθ with τ = ln q.
Throughout the fluid region, Ω is an analytic function of
z and W , which tends to zero at infinity.

The Bernoulli condition at the free surface and the
kinematic condition at the bottom can then be expressed
as

dq3

dϕ
= − 3

F 2
sin θ on ψ = 1 , (A.1)

and

θ = 0 on ψ = 0 , (A.2)

respectively, where F = c/
√
gh is the Froude number.

The problem of finding solitary wave solutions is thus
transformed into the problem of finding a complex valued
function Ω that is analytic with respect to W within the
unit strip 0 < ψ < 1, that decays at infinity, and satisfies
the two boundary conditions (A.1) and (A.2). This can
be done by iteration.

The main steps in the iterative procedure are as fol-
lows:

1. Fix an initial guess for 0 < qc < 1 and τ(ϕ), such
that τ(0) = ln qc and τ(∞) = 0.

2. Compute the singular integral

−θ(ϕ) = PV

∫ ∞

−∞

τ(ϕ′)

2 sinh
(

π(ϕ′−ϕ)
2

) dϕ′ , (A.3)

for θ(ϕ) (see Woods [40]). This formulation of
θ(ϕ) (involving the Hilbert transform for a fixed
strip) is completely equivalent to that in the orig-
inal method. However it is computationally more
efficient, as it does not require to solve a linear sys-
tem for θ(ϕ) at each iteration and only one integral
needs to be evaluated instead of three integrals (see
Equation (3) in Tanaka [9]).

3. Integrate to find F 2 from θ(ϕ);

1− q3c = − 3

F 2

∫ ∞

0

sin θ(ϕ) dϕ . (A.4)

4. Evaluate

q3(ϕ) − q3c = − 3

F 2

∫ ϕ

0

sin θ(ϕ′) dϕ′ , (A.5)

to find q3(ϕ) from θ(ϕ) and F 2.

5. Determine new τ(ϕ) = ln q(ϕ).

6. Repeat steps (b)–(e) until convergence is achieved
for F 2.

The wave profile and velocity potential are determined
from the free surface velocity. As in Tanaka [9], for the
calculation of steep solitary waves, the variable transfor-
mation

ϕ = αγ + γm , (A.6)

is introduced, where α is a positive real number and
m a positive odd integer. Lagrangian interpolation and
trapezoidal rule are used to evaluate numerically the in-
tegrals in (A.3), (A.4) and (A.5). Typically, for S = 0.4h,
α = 0.01, m = 5 and a convergence criterion on F 2 equal
to 10−10, it was found that 60 iterations are necessary to
achieve convergence. This is essentially the same number
of iterations as required by Tanaka’s original method.

[1] G. G. Stokes, “On the theory of oscillatory waves,” Trans.
Camb. Phil. Soc. 8, 441 (1847).

[2] R. K.-C. Chan, and R. Street, “A computer study of

finite amplitude water waves,” J. Comput. Phys. 6, 68
(1970).

[3] J. D. Fenton, and M. M. Rienecker, “A Fourier method



17

for solving nonlinear water-wave problems: application
to solitary-wave interactions,” J. Fluid Mech. 118, 411
(1982).

[4] M. J. Cooker, P. D. Weidman, and D. S. Bale, “Reflection
of a high-amplitude solitary wave at a vertical wall,” J.
Fluid Mech. 342, 141 (1997).

[5] T. Maxworthy, “Experiments on the collision between
two solitary waves,” J. Fluid Mech. 76, 177 (1976).

[6] C. H. Su, and R. M. Mirie, “On head-on collisions be-
tween two solitary waves,” J. Fluid Mech. 98, 509 (1980).

[7] J. G. B. Byatt-Smith, “An integral equation for unsteady
surface waves and a comment on the Boussinesq equa-
tion,” J. Fluid Mech. 49, 625 (1971).

[8] M. Oikawa, and N. Yajima, “Interaction of solitary waves
- a perturbation approach to nonlinear systems,” J. Phys.
Soc. Japan 34, 1093 (1973).

[9] M. Tanaka, “The stability of solitary waves,” Phys. Flu-
ids 29, 650 (1986).

[10] W. Craig, and C. Sulem, “Numerical simulation of grav-
ity waves,” J. Comput. Phys. 108, 73 (1993).

[11] R. M. Mirie, and C. H. Su, “Collisions between solitary
waves,” J. Fluid Mech. 115, 475 (1982).

[12] J. L. Bona, and M. Chen, “A Boussinesq system for two-
way propagation of nonlinear dispersive waves,” Physica
D 116, 191 (1998).

[13] J. Hammack, and H. Segur, “The Korteweg–de Vries
equation and water waves: Part 2. Comparison with ex-
periment,” J. Fluid Mech. 65, 289 (1974).

[14] Q. S. Zou, and C. H. Su, “Overtaking collision between
two solitary waves,” Phys. Fluids 29, 2113 (1986).

[15] J. L. Bona, W. G. Pritchard, and L. R. Scott, “Solitary-
wave interaction,” Phys. Fluids 23, 438 (1980).

[16] P. D. Lax, “Integrals of nonlinear equations of evolution
and solitary waves,” Comm. Pure Appl. Math. 21, 467
(1968).

[17] P. D. Weidman, and T. Maxworthy, “Experiments on
strong interactions between solitary waves,” J. Fluid
Mech. 85, 417 (1978).

[18] T. Y. Wu, “Nonlinear waves and solitons in water,” Phys-
ica D 123, 48 (1998).

[19] W. Craig, “An existence theory for water waves and
the Boussinesq and Korteweg–de Vries scaling limits,”
Comm. Part. Diff. Eq. 10, 787 (1985).

[20] G. Schneider, and C. E. Wayne, “The long-wave limit
for the water wave problem. I. The case of zero surface
tension,” Comm. Pure Appl. Math. 53, 1475 (2000).

[21] J. L. Bona, T. Colin, and D. Lannes, “Long wave approx-
imations for water waves,” Preprint (2005).

[22] J. D. Wright, “Corrections to the KdV approximation for
water waves,” SIAM J. Math. Anal., In press.

[23] J. G. B. Byatt-Smith, “The reflection of a solitary wave
by a vertical wall,” J. Fluid Mech. 197, 503 (1988).

[24] V. E. Zakharov, “Stability of periodic waves of finite am-
plitude on the surface of a deep fluid,” J. Appl. Mech.
Tech. Phys. 9, 190 (1968).

[25] R. Coifman, and Y. Meyer, “Nonlinear harmonic analysis
and analytic dependence,” AMS Proc. Symp. Pure Math.
43, 71 (1985).

[26] W. Craig, P. Guyenne, D. P. Nicholls, and C. Sulem,
“Hamiltonian long wave expansions for water waves over
a rough bottom,” Proc. R. Soc. A 461, 839 (2005).

[27] W. Craig, P. Guyenne, and H. Kalisch, “Hamiltonian
long wave expansions for free surfaces and interfaces,” to
appear in Comm. Pure Appl. Math.

[28] P. Guyenne, and D. P. Nicholls, “Numerical simulation
of solitary waves on plane slopes,” Math. Comput. Simul.
69, 269 (2005).

[29] J. G. B. Byatt-Smith, and M. S. Longuet-Higgins, “On
the speed and profile of solitary waves,” Proc. R. Soc.
London, Ser. A 350, 175 (1976).

[30] J. Hunter, and J.-M. Vanden-Broeck, “Solitary and peri-
odic gravity-capillary waves of finite amplitude,” J. Fluid
Mech. 134, 205 (1983).

[31] D. P. Nicholls, “Traveling water waves: spectral contin-
uation methods with parallel implementation,” J. Com-
put. Phys 143, 224 (1998).

[32] M. Frigo, and S. G. Johnson, “The fastest Fourier
transform in the West,” MIT-LCS-TR-728, available at
http://theory.lcs.mit.edu/fftw/.

[33] W. J. D. Bateman, C. Swan, and P. H. Taylor, “On the
efficient numerical simulation of directionally spread sur-
face water waves,” J. Comput. Phys. 174, 277 (2001).

[34] M. S. Longuet-Higgins, and E. D. Cokelet, “The defor-
mation of steep surface waves on water. I. A numerical
method of computation,” Proc. R. Soc. London, Ser. A
350, 1 (1976).

[35] D. G. Dommermuth, and D. K. P. Yue, “A high-
order spectral method for the study of nonlinear gravity
waves,” J. Fluid Mech. 184, 267 (1987).

[36] J. Hammack, D. Henderson, P. Guyenne, and M. Yi,
“Solitary-wave collisions,” Proc. ASME Offshore Me-

chanics and Arctic Engng, (A symposium to honor
Theodore Yao-Tsu Wu) Vancouver, Canada, June 2004,
World Scientific.

[37] D. P. Renouard, F. J. Seabra-Santos, and A. M. Tem-
perville, “Experimental study of the generation, damping
and reflexion of a solitary wave,” Dyn. Atmos. Oceans 9,
341 (1985).

[38] C. E. Wayne, and J. D. Wright, “Higher order modula-
tion equations for a Boussinesq equation,” SIAM J. Appl.
Dyn. Syst. 1, 271 (2002).

[39] M. Cooker, “The interaction between steep water waves
and coastal structures,” PhD thesis, University of Bristol,
UK, 1990.

[40] L. C. Woods, The theory of subsonic plane flow (Cam-
bridge University Press, 1961).



18

30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x/h

η/
h

FIG. 1: Solitary waves of height S/h = 0.1, 0.3, 0.5, 0.8 com-
puted by the modified Tanaka’s method.
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FIG. 2: Bifurcation branch amplitude vs. speed for soli-
tary waves of the Euler equations, computed by the modified
Tanaka’s method.
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FIG. 3: Impulse vs. mass for solitary waves of the Euler
equations of amplitudes S/h = 0.1 to 0.8, computed by the
modified Tanaka’s method. Note the convexity of the graph
over the range 0.8 ≤ m ≤ 1.9.
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FIG. 4: Head-on collision of two solitary waves of equal height
S/h = 0.1: (a) (x, t)-plot and (b) crest trajectory. The am-

plitude after collision is S+/h = 0.0997 at t/
p

h/g = 90. The
phase lag is (aj − a+

j )/h = 0.1370.
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FIG. 5: Head-on collision of two solitary waves of equal height
S/h = 0.4: (a) (x, t)-plot and (b) crest trajectory. The am-

plitude after collision is S+/h = 0.3976 at t/
p

h/g = 90. The
phase lag is (aj − a+

j )/h = 0.3257.
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the head-on collision of two solitary waves of equal height
S/h = 0.4. The attachment and detachment times ta and td

are represented by circles. This is comparable to Figs. 4(a)(b)
of Cooker, Weidman and Bale [4].
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perturbation results to second-order (dashed line) and third-
order (dotted-dashed line) reported in Su and Mirie [6].
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FIG. 9: Head-on collision of two solitary waves of equal height
S/h = 0.1 at (a) t/

p

h/g = 21 (before collision), (b) 45 (dur-
ing collision), (c) 90 (after collision). The vertical scale is
magnified in order to observe the dispersive trailing waves
generated after the collision.
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FIG. 10: Head-on collision of two solitary waves of equal
height S/h = 0.4 which are initially well separated from each

other, at (a) t/
p

h/g = 0, (b) 340, (c) 780.
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FIG. 11: Fourier spectrum of the residual ηR at (a) t/
p

h/g =
0.02, (b) 13.20, (c) 24.60, (d) 42.90, (e) 66.00, (f) 89.10, for the
head-on collision of two solitary waves of equal height S/h =
0.4. For comparison, the Fourier spectrum of the solitary wave
component of the full solution ηS(x) is of amplitude 19.9870.
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S/h S+/h (S − S+)/h ET eR (×103) eR

ET
(×103)

0.025 0.02490 0.00010 0.011 0.092 8.358
0.05 0.04983 0.00017 0.034 0.192 5.564
0.075 0.07476 0.00024 0.065 0.338 5.174
0.1 0.09964 0.00036 0.102 0.598 5.865
0.15 0.14930 0.00070 0.191 1.378 7.203
0.2 0.19892 0.00108 0.299 2.517 8.403
0.25 0.24859 0.00141 0.425 3.809 8.968
0.3 0.29834 0.00166 0.565 5.400 9.562
0.35 0.34788 0.00212 0.718 7.791 10.855
0.4 0.39738 0.00262 0.882 8.817 9.999
0.45 0.44534 0.00466 1.054 16.323 15.488
0.5 0.49311 0.00689 1.231 24.712 20.067

TABLE I: Ratio of the amplitude loss, and comparison of the
energy of the residual with the total energy at t/

p

h/g = 80
as a function of incident wave height, for the head-on collision
of two solitary waves of equal height.
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FIG. 12: Asymmetric head-on collision of two solitary waves
of height S1 = 1.217, S2 = 1.063 (cm) at (a) t = 18.29993,
(b) 18.80067, (c) 19.05257, (d) 19.10173, (e) 19.15088, (f)
19.19389, (g) 19.32905, (h) 19.50109 (s): numerical results
(solid line), experimental results (dots), sum of two KdV soli-
tons (dashed line).
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FIG. 13: Asymmetric head-on collision of two solitary waves
of height S1/h = 0.4, S2/h = 0.1: (a) (x, t)-plot and (b) crest
trajectory. The amplitudes after collision are S+

1 /h = 0.3996,

S+
2 /h = 0.0992 at t/

p

h/g = 90 for the large, small wave
respectively. The phase lags are (a1 − a+

1 )/h = 0.1211, (a2 −
a+
2 )/h = 0.3597 respectively.
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FIG. 14: Asymmetric head-on collision of two solitary waves
of height S1/h = 0.4, S2/h = 0.3: (a) (x, t)-plot and (b) crest
trajectory. The amplitudes after collision are S+

1 /h = 0.3987,

S+
2 /h = 0.2983 at t/

p

h/g = 90 for the large, small wave
respectively. The phase lags are (a1 − a+

1 )/h = 0.3021, (a2 −
a+
2 )/h = 0.3223 respectively.
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FIG. 15: Overtaking collision of two solitary waves of heights
S1 = 2.295, S2 = 0.730 (cm) at (a) t = 2.90304, (b) 5.50196,
(c) 6.40513, (d) 7.05025, (e) 7.60014, (f) 8.50024, (g) 9.50478,
(h) 11.30191 (s): numerical results (solid line), experimental
results (dots), KdV two-soliton solution (dashed line). The
three sets of data are plotted in a reference frame with zero
relative speed for the centres of mass.
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FIG. 16: Overtaking collision of two solitary waves of height
S1/h = 0.4, S2/h = 0.3: (a) (x, t)-plot and (b) crest tra-
jectory. The amplitudes after collision are S+

1 /h = 0.4004,

S+
2 /h = 0.2999 at t/

p

h/g = 4000 for the large, small wave
respectively. The phase shifts are (a+

1 − a1)/h = 6.5665,
(a+

2 − a2)/h = 5.6194 respectively. The collision is repre-
sented in a reference frame moving approximately with the
mean velocity of the two solitary waves.
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FIG. 17: Overtaking collision of two solitary waves of height
S1/h = 0.4, S2/h = 0.1333: (a) (x, t)-plot and (b) crest tra-
jectory. The amplitudes after collision are S+

1 /h = 0.4001,

S+
2 /h = 0.1332 at t/

p

h/g = 1000 for the large, small wave
respectively. The phase shifts are (a+

1 − a1)/h = 2.7424,
(a+

2 − a2)/h = 4.0591 respectively.
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FIG. 18: Overtaking collision of two solitary waves of height
S1/h = 0.4, S2/h = 0.113: (a) (x, t)-plot and (b) crest tra-
jectory. The amplitudes after collision are S+

1 /h = 0.4001,

S+
2 /h = 0.1129 at t/

p

h/g = 1000 for the large, small wave
respectively. The phase shifts are (a+

1 − a1)/h = 2.5462,
(a+

2 − a2)/h = 3.3274 respectively.



37

(a)

0
20

40
60

80
100

120
140

160

0

100

200

300

400

500

600

700

800

900

1000

0

0.1

0.2

0.3

0.4

0.5

x/h

t/(h/g)1/2

η/
h

(b)

70 75 80 85 90 95
300

350

400

450

500

550

600

x/h

t/(
h/

g)
1/

2

FIG. 19: Overtaking collision of two solitary waves of height
S1/h = 0.4, S2/h = 0.1: (a) (x, t)-plot and (b) crest tra-
jectory. The amplitudes after collision are S+

1 /h = 0.4003,

S+
2 /h = 0.0999 at t/

p

h/g = 1000 for the large, small wave
respectively. The phase shifts are (a+

1 − a1)/h = 2.2974,
(a+

2 − a2)/h = 3.6159 respectively.
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FIG. 20: Time evolution of the amplitude ‖η(x, t)‖L∞(Rx) for
the overtaking collision of two solitary waves of height (a)
S1/h = 0.4, S2/h = 0.3, (b) 0.4, 0.1333 and (c) 0.4, 0.1.
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FIG. 21: Overtaking collision of two solitary waves of height
S1/h = 0.4, S2/h = 0.3 at (a) t/

p

h/g = 1190 (before col-
lision), (b) 1490 (during collision), (c) 1740 (after collision).
The vertical scale is magnified in order to observe the disper-
sive trailing wave generated after the collision.
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FIG. 22: Overtaking collision of two solitary waves of height
S1/h = 0.4, S2/h = 0.1 at (a) t/

p

h/g = 295 (before colli-
sion), (b) 445 (during collision), (c) 745 (after collision). The
vertical scale is magnified in order to observe the dispersive
trailing wave generated after the collision.
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S1/h S+
1 /h (S+

1 − S1)/h S2/h S+
2 /h (S2 − S+

2 )/h ET eR
eR

ET
Category

(×105) (×105)
0.4 0.4004 0.0004 0.3 0.2999 0.0001 0.689 19.458 28.235 (a)
0.4 0.4001 0.0001 0.1333 0.1332 0.0001 0.497 8.310 16.717 (b)
0.4 0.4001 0.0001 0.113 0.1129 0.0001 0.480 7.801 16.235 (c)
0.4 0.4003 0.0003 0.1 0.0999 0.0001 0.471 1.886 4.001 (c)

TABLE II: Ratio of the amplitude loss, and comparison of
the energy eR of the residual to the total energy ET of the
full numerical solution at t/

p

h/g = 4000 (S2/h = 0.3),

t/
p

h/g = 1000 (S2/h = 0.1333, 0.113, 0.1) as a function of
incident wave heights, for the overtaking collision of two soli-
tary waves of different heights.
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FIG. 23: Total energy ET vs. wave amplitude S/h: numerical

results (circles), power law (S/h)3/2 (solid line).
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FIG. 24: Change in amplitude ∆S/h = (S − S+)/h vs.
wave amplitude S/h: numerical results (circles), power law

(S/h)3/2 (solid line).
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FIG. 25: Energy of the residual eR vs. nondimensional wave
amplitude S/h: numerical results (circles), power law (S/h)2

(solid line).


