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Lattice nonlinear Schrodinger equations

Hamiltonian systems
» Hamiltonian vector fielen aphase spacer € H a Hilbert space

dv=Xu(v) = JgradH(v),  Vv(x,0)=\°(x), (1)

» Symplectic form

wX, Y) = (X, I7tY)y, IT=-J.

» Theflow  Vv(xt) = ¢ (V(x))
» Interest in orbits where

(W) : teR} =T™

anm-dimensional torus. This gives stable motions of (1).
» Invariant tori of maximal dimension ateagrangiartori, m = oo
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Lattice nonlinear Schrodinger equations

lattice nonlinear Sclidinger equation

» Hamiltonian system posed on a lattices Z*
1 2
7Ok = i + |Ok| "0k + £(AQ) (2)
with gg = 0, Dirichlet boundary conditions.
Phase space i§ = E?C(Zﬂ, and the symplectic form is

w =1} doe A da
» The Hamiltonian iH(q) : H — R

H

> pudowl® + 3ok + > (Uit + Ul 1)
k k

= N+4eP 3)
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Lattice nonlinear Schrodinger equations

Outline

Lattice nonlinear Schrodinger equations

Lagrangian invariant tori for lattice Schrodinger eqoas
A variational formulation for invariant tori

Details of the KAM iteration

Resonant situations
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Lagrangian invariant tori for lattice Schr 6dinger equations

Normal form

» Integrable unperturbed problem, wher= 0
Uncoupled anharmonic oscillators

1
i_atQK = ik + |a/ %0k , kez*t (4)

» Solutions of the unperturbed flow(q)
ok(t) = /1@ OR() = g+ I

> gauge invariance and thié-normK := [q|Z,: for 6 € T*

e’ai(a) = pi(¢’0)
From the fact thatH, K} = 0 are Poisson commuting
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Lagrangian invariant tori for lattice Schr 6dinger equations

Lagrangian tori

Theorem (WC & J. Geng (2008))

Letux = k. There existsg > 0 such that for0 < ¢ < ¢g there exists a
Cantor-like setD. C (°°(Z") such that forl € O. there is an
invariant Lagrangian torusT C E?C(Zﬂ for (4).

The torusT is of the form

k() = Vi€ O(Vel,

we(l) =+l +O(e)

The measure of the séL is positive (in some sense) and tends to full
measure as — 0.

The point is that there ameo external parameters
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Lagrangian invariant tori for lattice Schr 6dinger equations

parameters

» We use the classical KAM iteration scheme of iteration of
symplectic transformations.

» Parameters are used in order to avoid near-resonancess In th
case theaction variablegly)cz+ € (°°(Z") play the role of
parameters.

» In order to do this, the KAM iteration scheme has an augmented
number of nonresonance conditions. Namely, atthastep
&¥) = (w1,...,w,) the firstr-many tangential frequencies
satisfy

o 3} + (6,80 2 2

for k € Z" and for|¢| < 4.

Walter Craig McMaster University

Lagrangian and resonant tori



Lagrangian invariant tori for lattice Schr 6dinger equations

Theorem 2

Theorem (J. Geng (2008))

A similar result for the nonlinear Schdinger equation off0, 27|
with Dirichlet or periodic boundary conditions.

1 ,
i—atq = —Ag+ N (|g?)q

with h(|g[?) ~ +[q|* + - --
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Lagrangian invariant tori for lattice Schr 6dinger equations

Other results on Lagrangian tori

» J. Frohlich, T. Spencer & E. Wayne (1986) discrete Schgeli
equation with random potential(x, w), w € €2

J. Poschel (1990 mall divisors with spatial structure

L. Chierchia & P. Perfetti (1995) Frequenciggwhich grow
rapidly.

J. Bourgain (1996) wave equation with a potentiak);

v

v

v

U — 2u+ V(x)u+F(u) =0

v

J. Poschel (2002), smoothed NLS, with a potentiat)

J. Bourgain (2005), NLS, with a Fourier multiplier giving
parameters

v
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Lagrangian invariant tori for lattice Schr 6dinger equations

Extensions of the lattice NLS problem

1. linear frequencieg = k? the discrete harmonic operator, or the
Fourier transform of the nonlinear Schrodinger equatinit
Additionally s = k™.

2. The full line problemk € Z, with p # 11— to avoid resonance.
Easy extensions, taking y = —0k odd, orq_x = Q.

The general case is harder, but possible too.

3. Different nonlinearities and perturbations

H =" ulal® + h(la®) + &> At
k

k.t
with A, = Aj,, as long as

h@) ~[g*+--,  |Ac| < ek
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Lagrangian invariant tori for lattice Schr 6dinger equations

» Gauge invarianceoy e+ — {einK}keZ+

» We may break gauge invariande= h(q, q) with extra
nonresonance conditions.
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A variational formulation for invaria

Resonant invariant tori

» Mapping of a torusS(0) : T — H

» Flow invarianceS(0 + tQ2) = ¢(S(0))
Frequency vectof € R™,

» This implies that both

S=JgradH(S), and &S=Q-0S (5)
» Problem:Solve (5) for(S(0), (2).
This is generally a small divisor problem.
Rewrite (5) as

J0 - 95S—gradH(S) =0. (6)
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A variational formulation for invaria

A variational formulation
Consider the space of mappings: X := {S(0) : T — H}.
Suppose thain < +oo
» Defineaction functionals
1 _
S = 3 /m<sa L96,S) df
slj = J7'0yS
This is the moment map fanappings
» Theaverage Hamiltonian

A~ [ HEo)®
osH = gradH(S)
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A variational formulation for invaria

interpretation

Consider the subvariety of defined by fixed actions

Ma = {S€X:11(S) = a,...In(S) = am} C X

Variational principle:critical points ofH(S) on M, correspond to
solutions of equation (6), with Lagrange multiplier

NB: All of H(S), I;(S) andM, are invariant under the action of the
torusT™; that is7, : S(0) — S0 + ), a € T™
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A variational formulation for invaria

This poses several questions

» Two questions.

1. Do critical points exist oiM,?
Note that the following operators are degenerate on theespiac
mappingsx:

Q-J37%9S,  Q-3719,S- 6ZH(0)

2. How to understand questions of multiplicity of solutions?
» Proposal to address this question

1. Use KAM or Nash — Moser methods with parameters
Direct Nash — Moser methods rely on solutions of the linestiz
equations via resolvant expansions (Frohlich — Spendienates)
2. Equivariant Morse — Bott theory of critical™ orbits.
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A variational formulation for invaria

prior results

Theorem (C-Q Cheng (1993))
The existence of a minimal = (n — 1)-dimensional resonant torus.
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Hamiltonian at the/-th KAM step
» The Hamiltonian after completing the — 1)-th KAM step

HV - Nl/ + Pl/

where
N, )} 17) 4 3 QO law?
k>v
and where = (&, - - - §,) are theparameters
» Renormalization

C ( 3/251 5%52/2627 Ty (5152 cee Eu—l) 3/261/)

» functions of the frequency parameters will in general betimo
functions of¢ (and therefore satisfy ‘tame’ estimatescin
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frequency dependence
» The approximate-th tangential frequencieg,= 1,...v are

W = Wl(€) = p+ G+ 738 (0)

and thev-th normal frequenciek > v are

O = QK(€) = i+ 2320

» The perturbation of the frequencies satisfies

196 T (C)[|L= (07) < CePli=H
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» Decompose the perturbation
Pz/ - Ql/ + Rz/
where we count on the pat, for its nonlinear term

Q=IIDGE R+ o)
j=1

k<v k>v

» The variableg|*), #()) are symplectic polar coordinates about
a point¢ in action space

Ok = 1/ (&f/sz + &:ﬁlk)eiek

» The HamiltonianR, contains the rest of the terms
Ro= > (Rkas(1)e®™) g

kéa3; rest
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Introduce an additional tangential degree of freedom

» Write the (v + 1)-th oscillator as a new degree of freedom
2= 0ys1 =/ (Eg1 + lpg1)e?+
» Study the terms of the Hamiltonid®), that need to be addressed

to regain the normal form

R} = S R)kas(1 @) g’y
2/e|+|al+[B|<4,x

» The conditionsx include k| + o — 5| > 0 and in addition that

20|+ || +168] <3,  diam (supfe, 8)) < —log(e,+1)
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cohomological equation
» Let the mean value d®, be[R,], the cohomological equation is

{N,,Fu} + (R}~ [R}]) =0

» The new Hamiltonian is given by composing with the time-one
flow of Xg,

Fu
Hl/+l =H,o S‘ot:ll

» Renormalizing variables, 1 — 5i/flgy+1 and
l+1 — €2 41,41, we have

3/2 2 [
Z=(p4+1 = \/(€V+1§u+1 + 5V+1|1/+l)el +

Finally rescale the Hamiltonia, 1 — gljlel,H
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Rescaled Hamiltonian
» The rescaled Hamiltonian takes the form

Hor = (@ 00) 40l + Y Qo

k>v+1
v+1 l/+l
—|—(H &) (e u+1 el + 3 > Z 12+ = Z o)
=1 k>1/+1

1 y 2
Thus setugfl )(5) Oy g+ (HJ 1 5,) y/+15v+l
» The large-ish constant on the linear term

174
2 3/2
([Ten?edagatvin
j=1

is used in the excision procedure for the next parametePset.
» Choice of small parameter for a convergent scheme: 5(9/5)
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Descriptions of situations in which there are resonant tori
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Thank you
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