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Hamiltonian systems
◮ Hamiltonian vector fieldon aphase space. v ∈ H a Hilbert space

∂tv = XH(v) = JgradvH(v) , v(x, 0) = v0(x) , (1)

◮ Symplectic form

ω(X, Y) = 〈X, J−1Y〉H , JT = −J .

◮ The flow v(x, t) = ϕt(v0(x))
◮ Interest in orbits where

{ϕt(v0) : t ∈ R} = T
m

anm-dimensional torus. This gives stable motions of (1).
◮ Invariant tori of maximal dimension areLagrangiantori, m = ∞
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lattice nonlinear Schrödinger equation
◮ Hamiltonian system posed on a latticek ∈ Z

+

1
i
∂tqk = µkqk + |qk|

2qk + ε(∆q)k (2)

with q0 = 0, Dirichlet boundary conditions.
Phase space isH = ℓ2

C
(Z+), and the symplectic form is

ω = i
∑

k dqk ∧ dqk
◮ The Hamiltonian isH(q) : H 7→ R

H =
∑

k

µk|qk|
2 + 1

2|qk|
4 + ε

∑

k

(qkqk+1 + qkqk+1)

= N + εP (3)
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Outline

Lattice nonlinear Schrödinger equations

Lagrangian invariant tori for lattice Schrödinger equations

A variational formulation for invariant tori

Details of the KAM iteration

Resonant situations
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Normal form
◮ Integrable unperturbed problem, whenε = 0

Uncoupled anharmonic oscillators

1
i
∂tqk = µkqk + |qk|

2qk , k ∈ Z
+ (4)

◮ Solutions of the unperturbed flowϕ0
t (q)

qk(t) =
√

Ike
i(µk+Ik)t , Ω0

k(I) = µk + Ik

◮ gauge invariance and theℓ2-normK := ‖q‖2
ℓ2: for θ ∈ T

1

eiθϕt(q) = ϕt(e
iθq)

From the fact that{H, K} = 0 are Poisson commuting
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Lagrangian tori

Theorem (WC & J. Geng (2008))
Letµk = k. There existsε0 > 0 such that for0 < ε < ε0 there exists a
Cantor-like setOε ⊆ ℓ∞(Z+) such that forI ∈ Oε there is an
invariant Lagrangian torusT ⊆ ℓ2

C
(Z+) for (4).

The torusT is of the form

qk(t) =
√

Ike
iωk(I)t + O(

√

εIk) ,

ωk(I) = µk + Ik + O(ε)

The measure of the setOε is positive (in some sense) and tends to full
measure asε → 0.

The point is that there areno external parameters.
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parameters

◮ We use the classical KAM iteration scheme of iteration of
symplectic transformations.

◮ Parameters are used in order to avoid near-resonances. In this
case theaction variables(Ik)k∈Z+ ∈ ℓ∞(Z+) play the rôle of
parameters.

◮ In order to do this, the KAM iteration scheme has an augmented
number of nonresonance conditions. Namely, at theν th step
~ω(ν) = (ω1, . . . , ων) the firstν-many tangential frequencies
satisfy

|〈k, ~ω(ν)〉 + 〈ℓ, ~Ω(ν)〉| ≥
γν

|k|τν

for k ∈ Z
ν and for|ℓ| ≤ 4.
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Theorem 2

Theorem (J. Geng (2008))
A similar result for the nonlinear Schrödinger equation on[0, 2π]
with Dirichlet or periodic boundary conditions.

1
i
∂tq = −∆q + εh′(|q|2)q

with h(|q|2) ≃ ±|q|4 + · · ·
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Other results on Lagrangian tori

◮ J. Fröhlich, T. Spencer & E. Wayne (1986) discrete Schrödinger
equation with random potentialV(x, ω), ω ∈ Ω

◮ J. Pöschel (1990),Small divisors with spatial structure
◮ L. Chierchia & P. Perfetti (1995) Frequenciesµk which grow

rapidly.

◮ J. Bourgain (1996) wave equation with a potentialV(x);

∂2
t u− ∂2

xu + V(x)u + F(u) = 0

◮ J. Pöschel (2002), smoothed NLS, with a potentialV(x)

◮ J. Bourgain (2005), NLS, with a Fourier multiplier giving
parameters
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Extensions of the lattice NLS problem
1. linear frequenciesµk = k2 the discrete harmonic operator, or the

Fourier transform of the nonlinear Schrödinger equation on S
1.

Additionally µk = kn.
2. The full line problemk ∈ Z, with µk 6= µ−k to avoid resonance.

Easy extensions, takingq−k = −qk odd, orq−k = qk.
The general case is harder, but possible too.

3. Different nonlinearities and perturbations

H =
∑

k

µk|qk|
2 + h(|qk|

2) + ε
∑

k,ℓ

qkAk,ℓqℓ

with Akℓ = A∗
ℓk, as long as

h(q) ≃ |q|4 + · · · , |Ak,ℓ| ≤ e−ρ|k−ℓ|
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◮ Gauge invariance{qk}k∈Z+ → {eiψqk}k∈Z+

◮ We may break gauge invariance,h = h(q, q) with extra
nonresonance conditions.
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Resonant invariant tori
◮ Mapping of a torusS(θ) : T

m 7→ H

◮ Flow invarianceS(θ + tΩ) = ϕt(S(θ))
Frequency vectorΩ ∈ R

m.
◮ This implies that both

∂tS= J gradvH(S) , and ∂tS= Ω · ∂θS (5)

◮ Problem:Solve (5) for(S(θ),Ω).
This is generally a small divisor problem.

Rewrite (5) as

J−1Ω · ∂θS− gradvH(S) = 0 . (6)
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A variational formulation
Consider the space of mappingsS∈ X := {S(θ) : T

m 7→ H}.
Suppose thatm < +∞

◮ Defineaction functionals

I j(S) =
1
2

∫

Tm
〈S, J−1∂θj S〉dθ

δSI j = J−1∂θj S

This is the moment map formappings
◮ Theaverage Hamiltonian

H(S) =

∫

Tm
H(S(θ)) dθ

δSH = gradvH(S)
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interpretation

Consider the subvariety ofX defined by fixed actions

Ma = {S∈ X : I1(S) = a1, . . . Im(S) = am} ⊆ X

Variational principle:critical points ofH(S) on Ma correspond to
solutions of equation (6), with Lagrange multiplierΩ.

NB: All of H(S), I j(S) andMa are invariant under the action of the
torusT

m; that isτα : S(θ) 7→ S(θ + α) , α ∈ T
m.
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This poses several questions

◮ Two questions.
1. Do critical points exist onMa?

Note that the following operators are degenerate on the space of
mappingsX:

Ω · J−1∂θS , Ω · J−1∂θS− δ2
SH(0)

2. How to understand questions of multiplicity of solutions?
◮ Proposal to address this question

1. Use KAM or Nash – Moser methods with parameters
Direct Nash – Moser methods rely on solutions of the linearized
equations via resolvant expansions (Fröhlich – Spencer estimates)

2. Equivariant Morse – Bott theory of criticalT
m orbits.
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prior results

Theorem (C-Q Cheng (1993))
The existence of a minimalm = (n− 1)-dimensional resonant torus.
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Hamiltonian at theν-th KAM step
◮ The Hamiltonian after completing the(ν − 1)-th KAM step

Hν = Nν + Pν

where
Nν = 〈ων(ξ), Iν〉 +

∑

k>ν

Ων
k(ξ)|qk|

2

and whereξ = (ξ1, · · · ξν) are theparameters
◮ Renormalization

ζ = (ε
3/2
1 ξ1, ε

2
1ε

3/2
2 ξ2, · · · , (ε1ε2 . . . εν−1)

2ε3/2
ν ξν)

◮ functions of the frequency parameters will in general be smooth
functions ofζ (and therefore satisfy ‘tame’ estimates inξ).
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frequency dependence

◮ The approximateν-th tangential frequencies,k = 1, . . . ν are

ωνk = ωνk (ξ) = µk + ζk + ε
2/3
1 f νk (ζ)

and theν-th normal frequencies,k > ν are

Ων
k = Ων

k(ξ) = µk + ε
2/3
1 f νk (ζ)

◮ The perturbation of the frequencies satisfies

‖∂ζj f νk (ζ)‖L∞(Oν) ≤ Ce−ρ|j−k|
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◮ Decompose the perturbation

Pν = Qν + Rν

where we count on the partQν for its nonlinear term

Qν = (

ν
∏

j=1

ε2
j )

(1
2

∑

k≤ν

I2
k +

∑

k>ν

|qk|
4
)

◮ The variables(I (ν), θ(ν)) are symplectic polar coordinates about
a pointξ in action space

qk =

√

(ε
3/2
k ξk + ε2

kIk)e
iθk

◮ The HamiltonianRν contains the rest of the terms

Rν =
∑

kℓαβ; rest

(Rν)kℓαβ(I
(ν))ℓei(k·θ(ν)) qαqβ
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Introduce an additional tangential degree of freedom
◮ Write the(ν + 1)-th oscillator as a new degree of freedom

z = qν+1 =
√

(ξν+1 + Iν+1)e
iθ

ν+1

◮ Study the terms of the HamiltonianRν that need to be addressed
to regain the normal form

RN
ν =

∑

2|ℓ|+|α|+|β|≤4,∗

(Rν)kℓαβ(I
(ν))ℓei(k·θ(ν)) zα1zβ1qα

′

qβ
′

◮ The conditions∗ include|k| + |α − β| > 0 and in addition that

2|ℓ| + |α′| + |β′| ≤ 3 , diam (supp(α, β)) ≤ −log(εν+1)
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cohomological equation
◮ Let the mean value ofRν be[Rν ], the cohomological equation is

{Nν , Fν} + (RN
ν − [RN

ν ]) = 0

◮ The new Hamiltonian is given by composing with the time-one
flow of XFν

Hν+1 = Hν ◦ ϕFν

t=1

◮ Renormalizing variablesξν+1 → ε
3/2
ν+1ξν+1 and

Iν+1 → ε2
ν+1Iν+1, we have

z = qν+1 =

√

(ε
3/2
ν+1ξν+1 + ε2

ν+1Iν+1)e
iθ

ν+1

Finally rescale the HamiltonianHν+1 → ε−2
ν+1Hν+1
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Rescaled Hamiltonian
◮ The rescaled Hamiltonian takes the form

Hν+1 = 〈ω(ν), I (ν)〉 + Ων
ν+1Iν+1 +

∑

k>ν+1

Ων
k |qk|

2

+(
ν+1
∏

j=1

εj)
2(ε

−1/2
ν+1 ξν+1Iν+1 +

1
2

ν+1
∑

k=1

I2
k +

1
2

∑

k>ν+1

|qk|
4)

Thus setω(ν+1)
ν+1 (ξ) = Ων

ν+1 + (
∏ν

j=1 εj)
2ε

3/2
ν+1ξν+1

◮ The large-ish constant on the linear term

(
ν

∏

j=1

εj)
2ε

3/2
ν+1ξν+1Iν+1

is used in the excision procedure for the next parameter setOν+1.
◮ Choice of small parameter for a convergent schemeεν = ε

(9/5)ν

1
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Descriptions of situations in which there are resonant tori
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Thank you
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