# On the singular set of the Navier – Stokes equations

#### Walter Craig

Department of Mathematics & Statistics



Session on Variational problems Joint CMS / SMM Meeting Guanajuato, Mexico September 22 2006

#### Collaborators

#### Andrei Biryuk Instituto Superior Tecnico, Lisbon



#### Slim Ibrahim

#### Arizona State University



#### Thanks to: NSERC, NSERC-LSI, NSF-FRG Canada Research Chairs Program

Walter Craig

McMaster University

## Abstract

- ► The singular set of a weak solution of Navier Stokes
- Geometric conditions for the branching of two weak solutions, depending upon their *singular sets*
- ► The variational equation along an orbit
- Conditions on the growth of Lyapunov exponents for the uniqueness of weak solutions.

## Outline

Introduction

The Navier - Stokes equations

The singular set

Lyapunov exponents of the variational equation

Open questions

## Navier – Stokes equations

The equations of motion of an incompressible viscous fluid

$$\partial_t u + (u \cdot \nabla)u = \Delta u - \nabla p$$
  

$$\nabla \cdot u = 0$$

$$u(x, 0) = u_0(x) \quad \text{initial data}$$
(1)

Space-time domain

$$D = \mathbb{R}^d$$
  $(x, t) \in D \times \mathbb{R}^+ := Q$ 

Alternatively  $D = \mathbb{T}^d$  and  $(x,t) \in \mathbb{T}^d \times \mathbb{R}^+ = Q$ 

A bounded smooth domain  $D \subseteq \mathbb{R}^d$ ; we leave this open.

Walter Craig

McMaster University

### Weak solutions

The usual definition of weak solutions over  $t \in [0, T]$  is that:

1. Integrability conditions

$$u \in L^{\infty}([0,T]; L^{2}(D)) \cap L^{2}([0,T]; H^{1}(D)) ,$$
  

$$p \in L^{1+2/d}(Q)$$
(2)

- 2. The pair (u, p) is a distributional solution of (1)
- 3. The energy inequality is satisfied

$$\int_{D} |u(x,t)|^2 dx + 2 \int_0^t \int_{D} |\nabla u(x,s)|^2 dx ds \le \int_{D} |u_0(x)|^2 dx$$
(3)

#### Definition (1)

Given a weak solution (u, p) of (1), the singular set  $S(u) \subseteq Q$  is the set of space-time points at which u(x, t) is not locally bounded.

That is,  $(x_0, t_0) \notin S(u)$  if there is a neighborhood  $B_r(x_0, t_0)$  such that

$$u \in L^{\infty}(B_r(x_0, t_0)) \tag{4}$$

This makes sense due to a theorem of Serrin (1962) which implies that if  $(x_0, t_0) \notin S(u)$ , then for all *k* (and with some  $0 < \alpha < 1$ )

 $\partial_x^k u(x,t) \in C^{\alpha}(B_{r/2}(x_0,t_0))$ 

The condition (4) has been improved by Escauriaza, Seregin and Sveràk (2003) to be  $u \in L^{\infty}L^{3}(Q_{r}(x_{0}, t_{0}))$ , for parabolic cylinders  $Q_{r}$ 

Walter Craig McMaster University Navier - Stokes

## Partial regularity

- The singular set S(u) is closed, by definition
- ▶ When d = 3 the set of singular times  $\tau(u) \in \mathbb{R}^+$  has zero 1/2-Hausdorff dimensional measure

 $\mathcal{H}^{1/2}(\tau(u))=0$ 

► If d = 3 and (u, p) is a suitable weak solution of (1) then the Caffarelli, Kohn & Nirenberg theorem (1982) states that its parabolic one-dimensional Hausdorff measure is zero;

 $\mathcal{P}^1(S(u))=0$ 

## The weak-strong uniqueness principle

There is a second classical theorem of Serrin (1963) which is a uniqueness result in the presence of a strong solution

Theorem (2)

Let  $(u_1, p_1)$  and  $(u_2, p_2)$  be two weak solutions of (1) on the space-time domain Q, emanating from the same initial data  $u_0(x)$ . Suppose that in fact  $u_1 \in L^{\infty}([0,T] \times D) \cap L^2([0,T] : H^{d/2}(D))$ . Then  $u_1 \equiv u_2$  over the time interval [0,T].

This states that weak solutions can only branch at singular times. Furthermore, all weak solutions that start from the initial data  $u_0(x)$  share the same first singular time  $T_0$ .

The regularity condition on  $u_1$  such that the same conclusion holds was recently improved and optimized by Pierre Germain (2006).

#### First Theorem

The case of  $D = \mathbb{T}^d$ .

Theorem (3)(A. Biryuk, S. Ibrahim & W. C. (2006)) Let  $(u_1, p_1)$  and  $(u_2, p_2)$  be two weak solutions of (1) on the domain  $[0, T] \times D \subseteq Q$ . Suppose their singular sets satisfy  $S(u_1) \cap S(u_2) = \emptyset$ . Then  $w := u_1 - u_2$  satisfies

 $||w(\cdot,t)||_2 \le C_1 \exp(C_2 t) ||w_0(\cdot)||_2$ 

for 0 < t < T.

The constants  $C_1, C_2$  depend only upon  $|u_j|_{L^{\infty}([0,T] \times D \setminus N(S(u_i)))}$ 

| Walter Craig |            |
|--------------|------------|
| McMaster     | University |

#### Corollary (4)

Let  $(u_1, p_1)$  and  $(u_2, p_2)$  be two weak solutions of (1) on the domain  $D \times [0, T] \subseteq Q$  with the same initial data  $u_0(x)$ . Let  $S(u_1)$  and  $S(u_2)$  be their singular sets. Then

 $S(u_1) \cap S(u_2) \neq \emptyset$ 

unless  $S(u_1) = S(u_2) = \emptyset$ , in which case  $u_1 \equiv u_2$  on  $[0, T] \times D$ .

The significance is that one can only have branching of weak solutions from common space-time singular points.

#### First theorem - microlocal version

Theorem (5)

Let  $(u_1, p_1)$  and  $(u_2, p_2)$  be two weak solutions of (1) and suppose that

- 1.  $WF(u_1) \cap WF(u_2) = \emptyset$
- 2. *For*  $z = (x, t) \in S(u_1) \cap S(u_2)$  *then*

 $\zeta = (0,\tau) \notin WF_z(u_1) \cup WF_z(u_2)$ 

Then for 0 < t < T,  $w := u_1 - u_2$  satisfies

 $||w(\cdot,t)||_2 \le C_1 \exp(C_2 t) ||w_0(\cdot)||_2$ 

In particular, if  $w_0 = 0$  then in this situation  $u_1 \equiv u_2$  and  $WF(u_j) = \emptyset$ 

#### A primer on microlocal analyis

A rapid introduction for the non-microlocal specialists. Let u(z) be a tempered distribution, for  $z = (x, t) \in Q$ .

- Singular support S(u): The point z<sub>0</sub> ∉ S(u) when there exists a cutoff function η ∈ C<sub>0</sub><sup>∞</sup> with η(z<sub>0</sub>) = 1 such that the product ηu ∈ C<sub>0</sub><sup>∞</sup>
- Equivalently, z<sub>0</sub> ∉ S(u) if under Fourier transform,

   *η̂u*(ζ) → 0 for |ζ| → ∞
- ▶ Wave front set WF(u): The phase space point  $(z_0, \zeta^0) \notin WF(u)$ when there exists a cutoff function  $\eta \in C_0^\infty$  with  $\eta(z_0) = 1$  and a cone  $\Gamma$  containing  $\zeta^0$  such that

 $\widehat{\eta u}(\zeta) \to 0$  for all  $|\zeta| \to \infty$  with  $\zeta$  in the cone  $\Gamma$ 

## Theorem: $\mathbb{R}^d$ version

#### Definition (6)

A system of near singular sets of a weak solution (u, p) is a family of closed sets  $S_K(u)$  such that  $S(u) = \bigcap_{K>1} S_K(u)$ , and |u(x, t)| < K for  $(x, t) \notin S_K(u)$ .

Theorem (7)

Let  $(u_1, p_1)$  and  $(u_2, p_2)$  be two weak solutions of (1) on  $\mathbb{R}^d \times [0, T] \subseteq Q$  with the same initial data  $u_0(x)$ . Suppose that there is K and near singular sets  $S_K(u_1)$ ,  $S_K(u_2)$  which are compact. Then for 0 < t < T the difference  $w := u_1 - u_2$  satisfies

 $||w(\cdot,t)||_2 \le C_1 \exp(C_2 t) ||w_0(\cdot)||_2$ 

The issue is one of compactness of the singular set

Walter Craig

McMaster University

Compact near singular sets

For d = 3, with initial data satisfying

$$\int_{\mathbb{R}^3} |u_0(x)|^2 \ |x| dx < +\infty$$

If (u, p) is a suitable weak solution, the theory of Caffarelli, Kohn and Nirenberg (1982) shows that there do exist compact sets  $S_K(u)$ 

## Note on different settings

• On  $D = \mathbb{T}^d$  we can adjust

$$\int_{\mathbb{T}^d} u \, dx = 0 \,, \qquad \text{and} \quad p(x,t) \quad \text{periodic}$$

## Theorem (8)(our extension of Serrin's *a priori* interior regularity)

Let (u, p) be a weak solution of (1) over  $Q = \mathbb{T}^d \times \mathbb{R}^+$  with  $\int_{\mathbb{T}^d} u \, dx = 0$  and p(x, t) periodic. If  $(x, t) \notin S(u)$  then for some  $\rho$ 

 $(u,p) \in C^{\infty}(B_{\rho}(x,t))$ 

## Galilean transformations

The issue is over regularity in time. Given any solution (u, p) define a new velocity and pressure field (u', p')

$$z = (x, t) \quad \mapsto \quad z' = (x + c(t), t)$$
$$u(x, t) \quad \mapsto \quad u' = u(x + c(t), t) - \dot{c}(t)$$
$$p(x, t) \quad \mapsto \quad p' = p(x + c(t), t) + \ddot{c}(t) \cdot x$$

Then (u', p') is also a solution of the Navier – Stokes equations.

The function  $\dot{c}(t)$  can be quite irregular, indeed only Hölder  $C^{\alpha}$ ,  $\alpha = 2/(2+d)$  when the pressure  $p \in L^{1+2/d}(Q)$ . However boundary conditions place further restrictions on c(t), which lead to the regularity theorem (7).

## The variational equations

► Turn to the study of the case of two weak solutions on  $\mathbb{T}^d$  for which

$$S(u_1) = S(u_2)$$

and conditions under which we can conclude  $u_1 \equiv u_2$ .

► Consider one of our weak solutions (u<sub>1</sub>, p<sub>1</sub>), and linearize the equations about it, writing a variation as (δu<sub>1</sub>, δp<sub>1</sub>) = (v, q)

$$\partial_t v + (u_1 \cdot \nabla)v + (v \cdot \nabla)u_1 - \Delta v + \nabla q = 0$$
 (5)  
$$\nabla \cdot v = 0$$
  
initial data  $v(x, 0) = v_0(x)$ 

#### Lyapunov exponents

 By (formal) integrations by parts, solutions of the variational equations satisfy a differential identity

$$\partial_t \|w(t)\|_2^2 + 2\|\nabla w\|_2^2 + \int w\Big((u_1 \cdot \nabla)w + (w \cdot \nabla)u_1 + \nabla q\Big) \, dx = 0$$

► Denote a solution of this variational identity from  $t = T_1$  to  $t = T_2$  by  $v(\cdot, T_2) = \Phi(T_2, T_1)v(\cdot, T_1)$ 

• Is there a constant  $\Lambda$  such that

$$\|\Phi(T_2,T_1)v(\cdot,T_1)\|_{L^2} \le e^{\Lambda(T_2-T_1)}\|v(\cdot,T_1)\|_{L^2}?$$

▶ No. In general 
$$\Lambda = +\infty$$

#### Fourier truncation

- ► Consider solutions v<sup>N</sup>(·, T<sub>2</sub>) = Φ<sup>N</sup>(T<sub>2</sub>, T<sub>1</sub>)v<sup>N</sup>(·, T<sub>1</sub>) of the truncated equations

$$\Pi_N \Big( \partial_t * + (u_1 \cdot \nabla) * + (* \cdot \nabla) u_1 \Big) \Pi_N v^N - \Delta \Pi_N v^N + \Pi_N \nabla q^N = 0$$

$$\nabla \cdot \Pi_N v^N = 0$$
(6)
initial data 
$$\Pi_N v^N(x, 0) = \Pi_N v_0(x)$$

► Take the best constant  $\Lambda_N$  such that for all  $0 \le T_1 < T_2 \le T$  $\|v_N(\cdot, T_2)\|_{L^2} \le e^{\Lambda_N(T_2 - T_1)} \|v_N(\cdot, T_1)\|_{L^2}$ 

## Exponents $\Lambda_N$

- Of course Λ<sub>N</sub> = Λ<sub>N</sub>(u<sub>1</sub>, p<sub>1</sub>) depends upon the solution. What is the growth of Λ<sub>N</sub> in N?
- A universal upper bound

Theorem (9): BCI (2006) If  $(u_1, p_1)$  is a weak solution of (1) then

 $\Lambda_N \leq C_1 N$ 

But of course it could be less.

#### Second Theorem

#### Which conditions imply that weak solutions are unique

Theorem (10): BCI (2006) Let  $(u_1, p_1)$  and  $(u_2, p_2)$  be two weak solutions defined on the domain  $\mathbb{T}^d \times [0, T]$ , with the same singular set  $S(u_1) = S(u_2)$ . Let

 $w := u_2 - u_1$ 

- If  $w \in C^{\omega}$  then in fact  $w \equiv 0$ .
- ▶ In case  $\Lambda_N = C_1$  bounded, whenever  $w \in L^{\infty}([0,T] : H^1(\mathbb{T}^d))$ , then  $w \equiv 0$ .

#### Theorem (10)(continued)

- In case  $\Lambda_N = C_1 \log(N)$ , then  $w \in L^{\infty}([0,T] : H^{1+\varepsilon}(\mathbb{T}^d))$ implies  $w \equiv 0$ , for any  $\varepsilon$ .
- ▶ When  $\Lambda_N = C_1 N^{\beta}$ ,  $0 < \beta < 1$  then  $w \in L^{\infty}([0, T] : G^{\gamma}(\mathbb{T}^d))$ implies  $w \equiv 0$ , where  $\gamma = \gamma(\beta)$ .

In any case, the conclusion is that the set of possible different weak solutions is smaller if the Lyapunov exponents of the variational equation grow less rapidly.

## Open questions

Theorem (9) is a structural result for the set of weak solutions which arise from a given initial datum  $u_0(x)$ .

- ► How to parametrize this set?
- ► Is the set *S*(*u*) a perfect set (meaning that it contains no isolated points)?
- ► Can we at least show that the first singularity of a weak solution u(x, t) is not isolated?

#### Thank you

Walter Craig McMaster University Navier - Stokes