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Abstract

This paper is a study of the problem of nonlinear wave motion of the free surface
of a body of fluid with a periodically varying bottom. The object is to describe the
character of wave propagation in a long wave asymptotic regime, extending the results
of R. Rosales & G. Papanicolaou [RP]. We take the point of view of perturbation of
a Hamiltonian system dependent on a small scaling parameter, with the starting point
being V.E. Zakharov’s Hamiltonian [Z] for the Euler equations for water waves. We
consider bottom topography which is periodic in horizontal variables on a short length
scale, with the amplitude of variation being of the same order as the fluid depth. The
bottom may also exhibit slow variations at the same length scale as, or longer than, the
order of the wavelength of the surface waves.

In the two dimensional case of waves in a channel, we give an alternate derivation
of the effective KdV equation that is obtained in [RP]. In addition, we obtain effective
Boussinesq equations that describe the motion of bidirectional long waves, in cases in
which the bottom possesses both short and long scale variations. In certain cases we
also obtain unidirectional equations that are similar to the KdV equation. In three
dimensions we obtain effective three dimensional long wave equations in a Boussinesq
scaling regime, and again in certain cases an effective KP system in the appropriate
unidirectional limit.

The computations for these results are performed in the framework of an asymptotic
analysis of multiple scale operators. In the present case this involves the Dirichlet-
Neumann operator for the fluid domain which takes into account the variations in
bottom topography as well as the deformations of the free surface from equilibrium.
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1 Introduction

Because of its relevance to coastal engineering, surface water wave propagation in the pres-
ence of an uneven bottom has been studied for many years. The character of coastal wave
dynamics can be very complex; waves are strongly affected by the bottom through shoaling
and the resulting variations in local linear wave speed, with the subsequent effects of re-
fraction, diffraction, and reflection. Nonlinear effects, which influence waves of appreciable
steepness even in the simplest of cases, have additional components due to wave/bottom as
well as nonlinear wave/wave interactions, as is seen for example in depth induced breaking.
The presence of bottom topography in the fluid domain introduces additional space and
time scales to the classical perturbation problem. The resulting nonlinear waves can have
a great influence on sediment transport and the formation of shoals and sandbars in near-
shore regions, effects which are strongly felt over the longest time scales of the problem. It
is therefore of central importance to understand the basic equations with which they are
described.

This paper is a reassessment and extension of the work of R. Rosales & G. Papanicolaou
[RP] on the long wave limit of the free surface problem of water waves in the presence of a
fluid domain of variable depth. It has been a general principle in the study of free surface
water waves that the long-wave asymptotic scaling regime describes many of the principal
aspects of the dynamics of wave motion. This is the focus of the present work, in which
we study the effect of a periodic variation of the bottom on the long wavelength limit of
free surface water waves. Analysing the Boussinesq scaling regime, we derive effective, or
homogenised coefficients for the resulting system of nonlinear dispersive equations, which is
related to the classical Boussinesq system. When considering inital data which is specifically
arranged to emphasize wave motion in one direction, we derive the effective coefficients for
the resulting KdV equation. Our analysis poses no assumptions on the amplitude nor the
slope of the bottom variations; they may be considered of order O(1). The analysis carries
through to the three dimensional case, where we derive a two-dimensional Boussinesq-like
system and expressions for its effective coefficients in the first case, and a KP system in
the case of wave motion in one direction alone. Because of the explicit nature of our
description of the long wave perturbation analysis, and the resulting expressions for the
effective coefficients of the long wave equations, we can make several general observations.
First is the fact that, among bottom variations with fixed mean depth, the linear wave speed
of long waves is slower than that of constant depth, strictly so for nonzero perturbations.
This has previously been noted in [RP] in the two dimensional problem. Secondly, we
give numerical computations of the effective coefficients of nonlinearity and of dispersion in
typical cases. Our conclusion is that for large bottom variations, nonlinear effects dominate
dispersive ones when the amplitude of bottom variations tends to the shoaling limit (with
the mean depth fixed). However the balance of dispersion to nonlinearity is maintained
through a remarkably large range, a fact which tends to further justify the use of the
Boussinesq and KdV approximations in the homogenisation limit.

We extend the results of [RP] to cases in which the bottom varies over long spatial
scales, in addition to the periodic variations on a length scale of order O(1). This is
a class of problems which has been of interest for many years, and has generally been
treated without the presence of the short-scale periodic bottom variations. The literature
is very extensive, and we cite in particular the papers of R.S. Johnson [J], J.W. Miles [M],
E. van Groesen & S.R. Pudjaprasetya [GP], S.B. Yoon & P.L.-F. Liu [YL], J.T. Kirby
[K], the review of C.C. Mei & P.L.-F. Liu [ML], and the books of G.B. Whitham [W] and
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A.C. Newell [N]. In our analysis, in the case in which the bottom topography varies on the
same length scale as the long waves of our scaling regime, we find a well defined Boussinesq
system with effective coefficients which are functions of the slow spatial variables X = εx.
The three-dimensional Boussinesq regime is similar. The resulting Hamiltonian PDEs,
which are nonlinear dispersive equations with variable coefficients, are quite interesting in
their own right. The derivation of an effective KdV equation is a more subtle matter,
and may be a bit artificial as significant bottom topography gives rise to scattering effects
which for solutions of the water waves problem will violate any Ansatz of unidirectionality.
Nonetheless there are several special situations in which one-way equations would make
sense, in particular where the slow variations of the bottom topography are small, where
the slow variations are of very gradual slope, or a combination of the two. We analyse these
situations, giving a criterion under which a KdV scaling regime exists, and deriving the
new form of the KdV equation when it does. In the most compelling cases, the effective
equation governing unidirectional wave motion is the KdV equation with variable coefficients
of nonlinearity and dispersion, with an additional equation for a wave component which
propagates in the opposite direction, due to scattering from the variable bottom topography.
The scattered wave is generated after the passage of the initial wave form; it is described by
a scalar wave equation with forcing terms formed from the solution of the variable coefficient
KdV equation. In many ways this parallels the work of [GP], although we augment our
derivation with an estimate of the time of validity of the approximation in the various
regimes of interest. There are a few differences in the conclusions as well. Our results
extend to unidirectional cases in three dimensions, with the same proviso, giving rise where
appropriate to KP-like systems of PDEs.

Our analysis is based on the point of view of the water waves problem as a Hamiltonian
system, and we treat the perturbation problem given by the long wavelength scaling limit
as a problem in systematic Hamiltonian perturbation theory. The starting point is the wa-
ter waves Hamiltonian originally due to V.E. Zakharov [Z], as represented by W. Craig &
C. Sulem [CS] using the Dirichlet-Neumann operator to express the Dirichlet integral for the
velocity potential over the fluid domain. The expansion of the Hamiltonian in a small pa-
rameter which governs the long wave/small amplitude asymptotic regime follows a method
given in W. Craig & M. Groves [CG] and W. Craig, P. Guyenne & H. Kalisch [CGK]. We
employ an expression for the Dirichlet-Neumann operator in the case of a variable bottom
which is similar to those of Y. Liu & D.K.P. Yue [LY] and R. Smith [S]. Using a theory
of multiple scale expansions for Fourier multiplier operators given in W. Craig, C. Sulem
& P.-L. Sulem [CSS1], and results on scale separation, we identify explicit expressions for
the effective coefficients of the limiting long wave problems. The fast Fourier transform is
used in the numerical evaluation of these coefficients. In an appendix we give a concise
derivation of the full Taylor expansion of the Dirichlet-Neumann operator in the present
case, with perturbed free surface and non-constant bottom topography; it is conceivable
that these expressions will be useful in other contexts, such as for numerical simulations of
Euler flow.

We do not address the problem of long wave limits over random bottom topography in
this paper, which is a more difficult, and probably a more important problem. Random
topography is a part of the analysis of [RP], where effective coefficients are derived for
evolution in the KdV scaling regime. The issue that arises in our approach is that the effect
of scale separation is much less distinct for random bottom topography, and the statistics
of bottom variations will enter in a stronger way, which will not depend simply on mean
values alone.
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2 The equations of motion

The fluid domain consists of the region S(β, η) = {(x, y) : x ∈ Rn−1,−h+β(x) < y < η(x)}
for spatial dimensions n = 2, 3, in which the fluid velocity is represented by the gradient of
a velocity potential,

u = ∇ϕ , ∆ϕ = 0 ; (2.1)

where β(x) denotes the bottom perturbation and η(x) denotes the surface elevation. The
quiescent water level is chosen at y = 0 and the reference constant depth is represented
by h. On the bottom boundary {y = −h + β(x)}, the velocity potential obeys Neumann
boundary conditions

∇ϕ · N(β) = 0 (2.2)

where N(β) = (1+ |∂xβ|2)−1/2(∂xβ,−1) is the exterior unit normal. The top boundary con-
ditions are the usual kinematic and Bernoulli conditions imposed on {(x, y) : y = η(x, t)},
namely

∂tη = ∂yϕ − ∂xη · ∂xϕ , ∂tϕ = −gη − 1

2
|∇ϕ|2 . (2.3)

The asymptotic analysis in this paper is from the point of view of the perturbation
theory of a Hamiltonian system with respect to a small parameter. For this purpose the
next section introduces the appropriate rephrasing of the above system of equations for
water waves as a Hamiltonian system with infinitely many degrees of freedom.

2.1 Hamilton’s canonical equations

The paper [Z] poses the equations of evolution (2.1), (2.2), (2.3) in the form of a Hamiltonian
system in the canonical variables (η(x), ξ(x)) where one defines ξ(x) = ϕ(x, η(x)), the
boundary values of the velocity potential on the free surface. The evolution equations take
the classical form

∂t

(
η
ξ

)
=

(
0 I
−I 0

)(
δηH
δξH

)
= J δH (2.4)

with the Hamiltonian functional given by the expression

H =

∫ ∫ η(x)

−h+β(x)

1

2
|∇ϕ(x, y)|2 dydx +

∫
g

2
η2(x) dx

=

∫
1

2
ξ(x)G(β, η)ξ(x) dx +

∫
g

2
η2(x) dx . (2.5)

The Dirichlet-Neumann operator G(β, η) is the singular integral operator which expresses
the normal derivative of the velocity potential on the free surface, in terms of the boundary
values ξ(x) and of the domain itself, as parametrized by the functions β(x) and η(x) which
define the lower and the upper boundaries of the fluid domain S(β, η). That is, let ϕ(x, y)
satisfy the boundary value problem

∆ϕ = 0 in S(β, η) , (2.6)

∇ϕ · N(β) = 0 on the bottom boundary {y = −h + β(x)} ,

ϕ(x, η(x)) = ξ(x) on the free surface {y = η(x)} .

The exterior unit normal on the free surface is N(η) = (1 + |∂xη|2)−1/2(−∂xη, 1), through
which the Dirichlet-Neumann operator is expressed

G(β, η)ξ(x) = ∇ϕ(x, η(x)) · N(η)(1 + |∂xη|2)1/2 . (2.7)
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It is clearly a linear operator in ξ, however it is nonlinear with explicitly nonlocal behavior
in the two functions β(x) and η(x) which give the lower and upper boundaries of the fluid
domain. The form of this operator, and its description in terms of the two functions β(x) and
η(x) which define the fluid domain, are given in Section 2.2 below. The asymptotic analysis
of the Dirichlet-Neumann operator G(β, η) in a multiple scale regime plays a principal role
in the results in this paper.

2.2 The Dirichlet - Neumann operator

We seek expressions for the solution of the elliptic boundary value problem (2.6) defined in
the fluid domain S(β, η). The principal effort of our long wave analysis of the water wave
problem will be an appropriate asymptotic expansion of this operator in the presence of
nontrivial bottom topography defined through β(x), in a multiple scale regime. The bottom
variations represented by β(x) are taken to be of order O(1), while the surface deformations
η(x) will be small, so we will start with a description of the operator G(β, 0), which is the
case η(x) = 0. When the free surface is also nonconstant, as in the situation with nontrivial
solutions of the nonlinear water wave problem, a perturbation analysis for the effects of
nonzero η(x) will be used.

A central role is played by an expression for a harmonic function ϕ(x, y) defined on the
domain S(β, 0), expressed in terms of its boundary data ϕ(x, 0) = ξ(x) on the free surface
{y = 0}. In the undisturbed case, in which the bottom is flat, {y = −h, x ∈ R} the solution
is formally given by a Fourier multiplier operator in the x-variables. Using the notation
that ∂x = iD;

ϕ(x, y) =

∫ ∫
eik·(x−x′) cosh(k(y + h))

cosh(kh)
ξ(x′) dx′dk =

cosh((y + h)D)

cosh(hD)
ξ(x) . (2.8)

The result is not even a tempered distribution as a function of x ∈ Rn−1 when y > 0,
but expressions such as this are useful for our analysis, and will appear throughout this
paper. The operators with which we ultimately work will however give rise to well defined
distribution kernels. When the bottom topography is nontrivial, as represented by {y =
−h + β(x)}, the expression (2.8) is modified by adding a second term in order that the
solution satisfies the bottom boundary conditions

ϕ(x, y) =
cosh((y + h)D)

cosh(hD)
ξ(x) + sinh(yD)(L(β)ξ)(x) . (2.9)

The first term in (2.9) satisfies the homogeneous Neumann condition at y = −h while the
second term satisfies the homogeneous Dirichlet condition at y = 0. The operator L(β) in
the second term acts on the boundary data ξ(x) given on the free surface, giving a solution
to Laplace’s equation in the fluid domain. When the bottom is periodic in the x-variables,
this is tantamount to the cell problem of the method of homogenisation. Since we allow
bottom perturbations to be of order O(1), the form of L(β) is not explicit. An implicit
description of it is given in Section 2.3.

We now turn to the expansion of the operator G(β, η) for small but arbitrary pertur-
bations η(x) of the interface. As in the case of a flat bottom [CS, CSS2], we consider the
family of ‘elementary’ harmonic functions in the fluid domain S(β, η);

ϕk(x, y) =
cosh(k(y + h))

cosh(kh)
eikx +

∫
eipx sinh(py) ̂L(β)eikxdp . (2.10)
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In the calculation below, we will give the expansion of G(β, η) in powers of η (uniformly in
β). The Dirichlet-Neumann operator is defined by

G(β, η)ϕk(x, η(x)) = ∂yϕk − (∂xη)∂xϕk (2.11)

and G(β, η) =
∑

l G
(l)(β, η) where G(l) is of order l in η. Here,

∂yϕk = k
sinh(k(h + y))

cosh(hk)
eikx +

∫
peipx cosh(py) ̂L(β)eikxdp (2.12)

and

∂xϕk = ik
cosh((k(h + y))

cosh(hk)
eikx +

∫
ipeipx sinh(py) ̂L(β)eikxdp (2.13)

At order O(1) in η and O(η), one gets as predicted G(0) = D tanh(hD) + DL(β) and
G(1) = DηD −G(0)ηG(0). It becomes clear that, at higher order, one gets for G(l) the same
recursion formula as for the case of a flat bottom [CS] [CN], except that the role of the
operator G0 = D tanh(hD) is now replaced by G(0).

In Section 2.3, we derive an implicit formula for the operator L(β). In the Appendix,
we give a recursion formula for L(β) in powers of β, as well as a Taylor expansion of the
Dirichlet-Neumann operator G(β, η) in powers of both β and η.

2.3 Implicit formula for the operator L(β)

Two dimensional case: Although the operator L(β) is analytic for sufficiently small bottom
variations β(x) ∈ C1, we are considering variations which are of order O(1) and it is not a
Taylor expansion in the function β that we seek. Instead it is more useful to our methods
to develop an implicit expression for L(β) from which we can deduce information about the
long wave asymptotics of the resulting operator G(β, η).

Proposition 2.1. The operator L(β) can be written in the implicit form

L(β) = −B(β)A(β) , (2.14)

where the operators A(β) and C(β) are defined by

A(β)ξ =

∫
eikx sinh(β(x)k)sech(hk)ξ̂(k)dk , C(β)ξ =

∫
eikx cosh((−h + β(x))k)ξ̂(k)dk ,

(2.15)
and B(β) = C(β)−1.

Proof. Using (2.9), we will employ Fourier integral expressions for the various terms ap-
pearing in the bottom boundary condition (2.2),

∂yϕ(x, y) =

∫
eikxk sinh((y + h)k)sech(hk)ξ̂(k)dk +

∫
eikxk cosh(yk)L̂(β)ξ(k)dk . (2.16)

The Neumann bottom boundary conditions (2.2) are that ∂yϕ−(∂xβ)∂xϕ = 0. The implicit
formula for the operator L(β) is derived from this condition, using the definition of G(β, η)
and several differential identities. In particular,

(
D sinh((y + h)D)sech(hD) − i(∂xβ)D cosh((y + h)D)sech(hD)

)
ξ|y=−h+β

=

∫
eikx

(
sinh(β(x)k) − (i/k)∂x(sinh(β(x)k))

)
ksech(hk)ξ̂(k)dk

= −i∂x

∫
eikx sinh(β(x)k)sech(hk)ξ̂(k)dk = DA(β)ξ. (2.17)
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The terms involving the operator L(β) in the expression for ∂yϕ − (∂xβ)∂xϕ are

(
D cosh(yD)L(β) − i(∂xβ)D sinh(yD)L(β)

)
ξ|y=−h+β

=

∫
eikx

[
cosh((−h + β(x))k) − i(∂xβ) sinh((−h + β(x))k)

]
kL̂(β)ξ(k)dk

=

∫
eikx

[
cosh(hk)

(
cosh(β(x)k) − i(∂xβ) sinh(β(x)k)

)
− sinh(hk)

(
sinh(β(x)k)

−i(∂xβ) cosh(β(x)k)
)]

kL̂(β)ξ(k)dk

= −i∂x

∫
eikx

[
cosh(β(x)k) cosh(hk) − sinh(β(x)k) sinh(hk)

]
L̂(β)ξ(k)dk

= DC(β)L(β)ξ. (2.18)

The boundary condition involving the operator L(β) becomes

A(β)ξ + C(β)L(β)ξ = 0

which is L(β) = −B(β)A(β) .

Proposition 2.2. The inverse B(β) of the operator C(β) given in (2.15) is well defined.

Proof. Consider the problem in the half-space {y < 0}:

∆u = 0 , u(x, 0) = ξ(x) , ∂yu(x, 0) = 0 . (2.19)

The solution of this problem is given formally by the expression u(x, y) = cosh(yD)ξ(x),
and the operator C(β)ξ(x) = u(x,−h+β(x)) gives the trace on the curve y = −h+β(x) of
cosh(yD)ξ(x). Problem (2.19) is of course in general ill-posed. However to define B(β) =
C(β)−1, one considers the alternate problem

∆w = 0 for (x, y) ∈ S(β, 0) , ∂yw(x, 0) = 0 , w(x,−h + β(x)) = ζ(x) , (2.20)

which has a unique solution, and its trace on y = 0 is well-defined. Indeed

B(β)ζ(x) = C(β)−1ζ(x) = w(x, 0) .

Three dimensional case: It is straightforward to extend the formulation to three (or higher)
dimensions, using x = (x1, x2) ∈ R2 to refer to the two horizontal coordinates, and retaining
y for the vertical coordinate. Using the notation D = (D1, D2)

T = −i∂x = −i(∂x1
, ∂x2

)T ,
one writes |D| =

√
|D1|2 + |D2|2, and the first terms in the expansion of the Dirichlet-

Neumann operator are given by

G(0) = |D| tanh(h|D|) + |D|L(β) , G(1) = D · ηD − G(0)ηG(0) . (2.21)

Let us consider the configuration with an unperturbed free surface, η(x) = 0. In three
dimensions, the velocity potential can be expressed as

ϕ(x, y) =
cosh((y + h)|D|)

cosh(h|D|)
ξ(x) + sinh(y|D|)L(β)ξ(x) (2.22)
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where ϕ(x, 0) = ξ(x).
Similarly as for the two-dimensional case, the operator L(β) can be determined through

the Neumann condition at the bottom The corresponding implicit formula for the operator
L(β) in three dimensions is

L(β) = −
D

|D|
· B(β)A(β)

D

|D|
(2.23)

where A(β) = sinh(β|D|)sech(h|D|) , C(β) = cosh((β − h)|D|) , B(β) = C(β)−1 .

2.4 Integral formula for the operator B(β)

It is of interest to notice that the operator B(β) can be written explicitly in terms of
integrals involving the Dirichlet condition ζ at the bottom and the Dirichlet-Neumann
operator G(−h + β) associated to the bottom.

Let us consider first the two-dimensional case. The fundamental solution of the Laplace
equation in the half plane {y < 0} with Neumann boundary conditions is given by the
method of images as

Γ(x,x’) =
1

2π

(
ln |x − x’| + ln |x − x

′
∗|

)

=
1

2π

(
ln

√
(x − x′)2 + (y − y′)2 + ln

√
(x − x′)2 + (y + y′)2

)
(2.24)

where x = (x, y), x
′ = (x′, y′) and x

′
∗ = (x′,−y′) is the reflection of x

′ with respect to the
surface plane y = 0. Using Green’s identity for a point at the surface, we have

w(x, 0) = B(β)ζ(x) =

∫
∇Γ(x,x’) · N(β)

√
1 + |∂x′β|2 ζ(x′) dx′

−

∫
Γ(x,x’)G(−h + β)ζ(x′) dx′ (2.25)

where N(β) = (1 + |∂x′β|2)−1/2(∂x′β,−1) is the exterior unit normal to the bottom bound-
ary. Substituting (2.24) into (2.25), we get:

Proposition 2.3. In two dimensions, the operator B(β) can be written in terms of the
Dirichlet condition ζ at the bottom and the Dirichlet-Neumann operator G(−h + β) associ-
ated to the bottom in the form

B(β)ζ(x) =
1

π

∫
(∂x′β) (x′ − x) + h − β(x′)

(x − x′)2 + (β(x′) − h)2
ζ(x′) dx′

−
1

2π

∫
ln

[
(x − x′)2 + (β(x′) − h)2

]
G(−h + β)ζ(x′) dx′ . (2.26)

In the special case β = 0 (flat bottom), the formula reduces to

B(0)ζ(x) = e−h|D|ζ(x) + tanh(h|D|)e−h|D|ζ(x) = sech(hD)ζ(x) = C(0)−1ζ(x) . (2.27)

A formula similar to (2.26) can be written in three dimensions. The fundamental solution
of the Laplace equation is now given by

Γ(x,x’) = −
1

4π

(
1

[(x1 − x′
1)

2 + (x2 − x′
2)

2 + (y − y′)2]1/2

+
1

[(x1 − x′
1)

2 + (x2 − x′
2)

2 + (y + y′)2]1/2

)
(2.28)
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where x = (x1, x2, y), x
′ = (x′

1, x
′
2, y

′). Using the same derivation,

Proposition 2.4. In three dimensions, the operator B(β) can be written in terms of the
Dirichlet condition ζ at the bottom and the Dirichlet-Neumann operator G(−h + β) in the
form

B(β)ζ(x1, x2) =
1

2π

∫
1

[(x1 − x′
1)

2 + (x2 − x′
2)

2 + (β − h)2]1/2
G(−h + β)ζ dx′

1dx′
2

−
1

4π

∫
(∂x′

1
β) (x1 − x′

1) + (∂x′
2
β) (x2 − x′

2) − h + β

[(x1 − x′
1)

2 + (x2 − x′
2)

2 + (β − h)2]3/2
ζ dx′

1dx′
2 . (2.29)

3 Multiple scale analysis

We will use extensively several mathematical results on multiple scale analysis, and the
behavior of Fourier multiplier operators under these scalings. Most of the analytic re-
sults have been addressed in prior work, and appear in A. Bensoussan, J.-L. Lions and
G. Papanicolaou [BLP], and in particular the case of Fourier multipliers and more general
pseudodifferential operators is discussed in [CSS1]. In the present context, only a subset of
this analysis is required, and for the convenience of the reader we include in this section a
complete presentation of what we need.

3.1 Asymptotic expansions of multiple scale operators

The basic Ansatz of the theory of multiple scale expansions is of a functional form f(x,X) :
R2(n−1) → C, where x ∈ Rn−1, X ∈ Rn−1 and X = εx is the spatial variable describing
long scale variations. The dependence of a multiscale function f on the short scale variable
x may be periodic, or possibly will be assumed to have other behavior, for example to stem
from a more general stationary ergodic process. In the analysis in this paper it is important
to describe the asymptotic behavior of Fourier multiplier operators on multiscale functions.

We will use the notation that Dx = (1/i)∂x and DX = (1/i)∂X . For m = m(k) a
function of k ∈ Rn−1, a Fourier multiplier operator is given by

m(Dx)f(x) =
1

(2π)(n−1)/2

∫
eik·xm(k)f̂(k) dk . (3.1)

Appropriate Fourier multiplier operators for our asymptotic expansions obey the standard
estimates for a symbol, namely that m(k) is a multiplier of order p if it is smooth and
satisfies

|∂α
k m(k)| ≤ Cα(1 + |k|2)

p−|α|
2 . (3.2)

Theorem 3.1. Let m(k) be a Fourier multiplier operator of order p. (i) Suppose that f(X)
is a smooth function of the slow variables X. Then

m(Dx)f(εx) = (m(εDX)f)(εx) =
∑

|α|≤q

1

α!
εα∂α

k m(0)(Dα
Xf)(εx) + O(|εq+1Dq+1

X f |) . (3.3)

(ii) Suppose that f(x,X) is a smooth multiscale function. Then

m(Dx)f(x, εx) =
∑

|α|≤q

1

α!
∂α

k m(Dx)εαDα
Xf(x,X)|X=εx

+O(|εq+1(1 + |Dx|
2)

p−|q|−1

2 Dq+1
X f(x,X)|X=εx|) . (3.4)
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Proof. In fact statement (i) follows from (ii), but it is nice to give the calculation indepen-
dently for clarity of the proof. We use the expression of the Fourier transform

f(εx) =
1

(2π)(n−1)/2

∫
eiK·εxf̂(K) dK =

1

(2π)(n−1)/2

∫
eik·xf̂(k/ε)

1

εn−1
dk . (3.5)

Therefore the action of a Fourier multiplier on f(εx) is given by

m(Dx)f(εx) =
1

(2π)(n−1)/2

∫
eik·xm(k)f̂(k/ε)

1

εn−1
dk

=
1

(2π)(n−1)/2

∫
eiεK·xm(εK)f̂(K) dK

=
1

(2π)(n−1)/2

∫
eiεK·x

( ∑

|α|≤q

ε|α|

α!
∂α

k m(0)Kα + Rq

)
f̂(K) dK . (3.6)

This is tantamount to the expression given in (3.3). The symbol estimates on Fourier
multipliers account for the estimate of the error Rq appearing in the formula (3.3).

The calculation for statement (ii) also starts from an expression for the Fourier trans-
form, this time for a multiscale function,

f(x, εx) = f(x,X)|X=εx =
1

(2π)n−1

∫ ∫
ei`·xeiL·X |X=εxf̂(`, L) d`dL . (3.7)

Therefore the action of a Fourier multiplier is given by

(m(Dx)f)(x, εx) =
1

(2π)n−1

∫ ∫
eik·(x−x′)m(k)f(x′) dx′dk

=
1

(2π)2(n−1)

∫ ∫
eik·(x−x′)m(k)

∫ ∫
ei`·x′

eiL·X′
|X=εxf̂(`, L) d`dLdx′dk

=
1

(2π)n−1

∫ ∫
ei(`+εL)·xm(` + εL)f̂(`, L) d`dL . (3.8)

Refering to the good behavior of the multiplier m(k) under differentiation,

(m(Dx)f)(x, εx) =
1

(2π)n−1

∫ ∫
ei`·xeiL·(εx)

∑

α≤q

1

α!
∂α

k m(`)εαLαf̂(`, L) d`dL + Rq+1

=
∑

α≤q

1

α!
∂α

k m(Dx)εαDα
Xf(x,X)|X=εx + Rq+1 . (3.9)

An estimate of the remainder term Rq+1 gives the result (ii) stated in (3.4).

3.2 Scale separation

This section develops the basic results which are used in the asymptotic expansions of
multiple scale Fourier multiplier and pseudo-differential operators in this paper. The phe-
nomenon of separation of scales is clearest in the case of periodic behavior in the short
scales of the problem.
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Lemma 3.2. Suppose that the function g(x) = g(x + γ) is continuous, and is periodic with
respect to a lattice of translations γ ∈ Γ ⊆ Rn−1, and that the function f(X) is integrable
and smooth. Then the short scales represented in g(x) and the long scales represented by
X = εx in f(εX) are asymptotically separated. That is, for all N we have the estimate

∫
g(x)f(εx) dx =

∫
g(x)f(X)|X=εx dx = g

∫
f(X)

1

εn−1
dX + O(εN ) (3.10)

where g = |Rn−1/Γ|−1
∫
R

n−1
/Γ

g(x) dx.

Proof. Using the Plancherel identity,

∫
f(εx)g(x) dx =

∫
f̂(k/ε)

1

εn−1
ĝ(k) dk =

∫
f̂(K)ĝ(εK) dK .

Since g(x) is periodic over a fundamental domain Tn−1 = Rn−1/Γ, then

ĝ(k) =
∑

κ∈Γ′

cn ĝκδ(k − κ) ,

where cn =
√

(2π)n−1/|Tn−1|, ĝκ = |Tn−1|−1/2
∫
T

n−1 e−iκ·xg(x)dx, and we have

∫
f̂(K)ĝ(εK) dK = ε−(n−1)

∑

κ∈Γ′

cnf̂(k/ε) ĝκ .

Using that |f̂(K)| ≤ CN (1 + |K|2)−N/2 for all N , we have

∫
f̂(K)ĝ(εK) dK = ε−(n−1)

∑

κ∈Γ′

cnf̂(k/ε)ĝκ

= ε−(n−1)cn ĝ0f̂(0)

+
∑

κ∈Γ′\{0}

ε−(n−1)f̂(κ/ε)cn ĝκ

= ε−(n−1)g

∫
f(X) dX + O(εN ) . (3.11)

When the function g(x,X) is a multiscale function itself, the analogous result is as
follows.

Lemma 3.3. Suppose that g(x, εx) is continuous, and periodic in the variables x of the
short scales with respect to the lattice Γ ⊆ Rn−1. For any integrable, smooth function f(X)
then ∫

R
n−1

g(x, εx)f(εx)dx =

∫
g(X)f(X)

1

εn−1
dX + O(εN ) (3.12)

where g(X) = |Rn−1/Γ|−1
∫
R

n−1
/Γ

g(x,X) dx.
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4 Long wave scaling of the Hamiltonian

The bottom of the fluid region is allowed to vary both on a scale of order O(1), as well
as on a slowly varying length scale. In the periodic case, this is modeled by a multiscale
Ansatz on the function whose graph describes the bottom. We make no assumptions on
the amplitude of β, and indeed it is allowed to be of order O(1). In this section, we will
consider the case in which the bottom varies only on the short length scale, that is β = β(x)
is independent of the parameter ε. In the subsequent section we will extend our analysis to
the more general case in which β = β(x,X; ε) where X = εx, which is to say that there are
variations of the bottom topography which occur on the length scale of the long waves in
the problem, or possibly longer.

4.1 The Boussinesq scaling regime

The fundamental long wave scaling for the problem of surface water waves represents a bal-
ance between linear dispersive and nonlinear effects in the dynamics of the surface evolution.
The traditional scaling that anticipates this balance is through the transformation

X = εx , εξ′(X) = ξ(x) , ε2η′(X) = η(x) . (4.1)

Scaling the time variable will be taken as an ε-dependent time change for the resulting
Hamiltonian system (2.4). This represents the Boussinesq scaling regime for the problem
of surface water waves in two dimensions. From the Boussinesq regime, we can recover the
KdV equation by choice of an appropriate moving reference frame.

Introducing the scaling transformation into the Hamiltonian, we are given

H(η′, ξ′) =
ε2

2

∫
ξ′(εx)G(β(x, εx), ε2η′(εx))ξ′(εx) dx +

g

2

∫
ε4η′2(εx) dx . (4.2)

The basic task is to compute the relevant contributions in the expansion of the Dirichlet-
Neumann operator. The two first orders in this expansion are given by

G(0) = D tanh(hD) + DL(β) (4.3)

G(1) = DηD − G(0)ηG(0) (4.4)

When L(β) = 0, one recovers the formulation of the water wave problem with uniform
depth, whose long wave limits have been investigated in a similar manner in [CG]. In order
to determine the contributions from terms involving DL and since the bottom deformations
are not assumed to be small, we use the implicit formula for L(β). Note that a priori the
operator D = Dx + εDX in our two-scale problem, reducing to D = Dx when acting on
functions of x alone, or to D = εDX when acting on functions of X alone.

Define b(x) = β(x) − h. The operators A(β) and C(β) which appear in the implicit
formula for the operator L(β) in (4.3), act on functions ξ(X) in the long-scale variables.
They can be expanded as

A(β) = sinh(β(x)D)sech(hD) = sinh(εβ(x)DX )sech(εhDX) ,

= εβ(x)DX − 1

2
ε3h2β(x)D3

X + 1

6
ε3β(x)3D3

X + O(ε4) , (4.5)

C(β) = cosh(b(x)D) = cosh(b(x)(Dx + εDX)) ,

= cosh(b(x)Dx) + εb(x) sinh(b(x)Dx)DX

+ 1

2
ε2b(x)2 cosh(b(x)Dx)D2

X + 1

6
ε3b(x)3 sinh(b(x)Dx)D3

X + O(ε4) . (4.6)
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From (4.6), we find for the inverse of C(β)

B(β) = C(β)−1 = B0(β) − εB0(β)b(x) sinh(b(x)Dx)B0(β)DX

− 1

2
ε2B0(β)b(x)2 cosh(b(x)Dx)B0(β)D2

X

+ε2B0(β)b(x) sinh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)B0(β)D2
X

−ε3 1

6
B0(β)b(x)3 sinh(b(x)Dx)B0(β)D3

X

+ε3 1

2
B0(β)b(x) sinh(b(x)Dx)B0(β)b(x)2 cosh(b(x)Dx)B0(β)D3

X

+ε3 1

2
B0(β)b(x)2 cosh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)B0(β)D3

X

−ε3B0(β)b(x) sinh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)

×B0(β)b(x) sinh(b(x)Dx)B0(β)D3
X + O(ε4) , (4.7)

where B0(β) stands for the inverse of the operator cosh(b(x)Dx), acting on functions of the
short scale variables x. Using (4.5) and (4.7), the operator DL(β) = −DB(β)A(β) acting
on functions of the long-scale variables ξ(X) can be approximated by

DL(β) = −εDxB0(β)β(x)DX

−ε2B0(β)β(x)D2
X + ε2DxB0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D2

X

+ε3 1

2
h2DxB0(β)β(x)D3

X − ε3 1

6
DxB0(β)β(x)3D3

X

+ε3 1

2
DxB0(β)b(x)2 cosh(b(x)Dx)B0(β)β(x)D3

X

+ε3B0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D3
X

−ε3DxB0(β)b(x) sinh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D3
X

+ε4 1

2
h2B0(β)β(x)D4

X − 1

6
ε4B0(β)β(x)3D4

X

+ε4 1

2
B0(β)b(x)2 cosh(b(x)Dx)B0(β)β(x)D4

X

−ε4 1

2
h2DxB0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D4

X

+ε4 1

6
DxB0(β)b(x) sinh(b(x)Dx)B0(β)β(x)3D4

X

+ε4 1

6
DxB0(β)b(x)3 sinh(b(x)Dx)B0(β)β(x)D4

X

−ε4 1

2
DxB0(β)b(x) sinh(b(x)Dx)B0(β)b(x)2 cosh(b(x)Dx)B0(β)β(x)D4

X

−ε4 1

2
DxB0(β)b(x)2 cosh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D4

X

−ε4B0(β)b(x) sinh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D4
X

+ε4DxB0(β)b(x) sinh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)

×B0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D4
X + O(ε5) . (4.8)

In a similar way, for the terms of equation (4.4) involving DL in G(1), we obtain

D tanh(hD)ηDL(β) = −ε3D2
x tanh(hDx)B0(β)β(x)η′(X)DX

+ε4D2
x tanh(hDx)B0(β)b(x) sinh(b(x)Dx)B0(β)β(x)η′(X)D2

X

−ε4Dx tanh(hDx)B0(β)β(x)η′(X)D2
X

−ε4hD2
xsech(hDx)2B0(β)β(x)DXη′(X)DX

−ε4Dx tanh(hDx)B0(β)β(x)DXη′(X)DX + O(ε5) , (4.9)
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and

DLηDL = ε3DxB0(β) sinh(β(x)Dx)Dxsech(hDx)B0(β)β(x)η′(X)DX

−ε4DxB0(β) sinh(β(x)Dx)Dxsech(hDx)

×B0(β)b(x) sinh(b(x)Dx)B0(β)β(x)η′(X)D2
X

+ε4DxB0(β) sinh(β(x)Dx)sech(hDx)B0(β)β(x)η′(X)D2
X

−ε4hDxB0(β) sinh(β(x)Dx)Dx tanh(hDx)

×sech(hDx)B0(β)β(x)DXη′(X)DX

+ε4DxB0(β)β(x) cosh(β(x)Dx)Dxsech(hDx)

×B0(β)β(x)DXη′(X)DX

−ε4DxB0(β)b(x) sinh(b(x)Dx)B0(β) sinh(β(x)Dx)

×Dxsech(hDx)B0(β)β(x)DXη′(X)DX

+ε4B0(β) sinh(β(x)Dx)Dxsech(hDx)

×B0(β)β(x)DXη′(X)DX + O(ε5) . (4.10)

The term DLηD tanh(hD) only gives first contributions at order O(ε5) which we will not
consider in this paper. Note that the contributions from G(2) and higher orders are also
not relevant for expansions only up to order O(ε4). Inserting the expansions for the various
operators and keeping the terms up to order O(ε3) yields the following expression for the
Hamiltonian

H = 1

2

∫
−ε2DxB0(β)β(x)ξ′(X)DXξ′(X) + ε3gη′2(X)

+ε3
(
h + DxB0(β)b(x) sinh(b(x)Dx)B0(β)β(x)

−B0(β)β(x)
)
ξ′(X)D2

Xξ′(X) dX + O(ε4) , (4.11)

from which, by virtue of Lemma 3.2 on scale separation, it follows that

H =
ε3

2

∫
(h + c1)ξ

′(X)D2
Xξ′(X) + gη′2(X) dX + O(ε4) , (4.12)

where c1 = −B0(β)β(x). The overbar denotes the mean value over a period of the domain.
In particular the term Dx(B0(β)β(x)ξ′(X)) in (4.11) has mean value zero, being a total
derivative, and it drops from the Hamiltonian at any finite order in ε.

Recalling from [CGK] that the scaling (4.1) modifies the symplectic structure so that
J = ε3J ′ and dropping the primes, the equations of motion can be expressed as

∂tη = δξH/ε3 = (h + c1)D
2
Xξ , ∂tξ = −δηH/ε3 = −gη , (4.13)

and, writing u = ∂Xξ, they become

∂tη = −(h + c1)∂Xu , ∂tu = −g∂Xη . (4.14)

In this linear approximation, the constant coefficient c1 represents the correction to uniform
depth, leading to a change in wavespeed c0 =

√
g(h + c1).

Dispersive and nonlinear effects appear when considering the next order of approxima-
tion, retaining terms up to order O(ε5). It is clear that all terms of order O(ε3), as well as
all terms which have the first factor which is a derivative Dx in (4.8), (4.9) and (4.10), will
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not contribute to the Hamiltonian by virtue of the lemma on scale separation, as they have
zero mean value on the periodic fundamental domain Tn−1. The Hamiltonian then reads

H =
ε3

2

∫
(h + c1)ξ

′(X)D2
Xξ′(X) + gη′2(X)

+ε2(1 + c2)ξ
′(X)DXη′(X)DXξ′(X)

−ε2(c3 + 1

3
h3)ξ′(X)D4

Xξ′(X) dX + O(ε7) , (4.15)

with
c2 = −B0(β) sinh(β(x)Dx)Dxsech(hDx)B0(β)β(x) , (4.16)

and

c3 = − 1

2
h2B0(β)β(x) + 1

6
B0(β)β(x)3 − 1

2
B0(β)b(x)2β(x)

+B0(β)b(x) sinh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)B0(β)β(x) . (4.17)

In terms of u′ = ∂Xξ′ (and dropping the primes), the corresponding equations of motion
are given by

∂tη = −∂X((h + c1 + ε2(1 + c2)η)u) − ε2(c3 + 1

3
h3)∂3

Xu ,

∂tu = −g∂Xη − ε2(1 + c2)u∂Xu , (4.18)

which constitute extensions of the Boussinesq equations to the case of a varying depth.
The time of validity of the approximation given by these equations is at least of order
O(ε−2), which is the same as the problem with a bottom to the fluid domain of uniform
depth β(x) = 0. When β(x) = 0, or otherwise when the coefficients c1, c2 and c3 vanish,
equations (4.18) reduce to the Boussinesq equations for a uniform depth.

4.2 The KdV limit

In this section, we adopt the procedure given in [CG] to derive a unidirectional analog to
equations (4.18). Starting from the Hamiltonian (4.15) in the form

H = 1

2

∫
ε3gη′2(X) + ε3(h + c1)u

′2(X) + ε5(1 + c2)η
′(X)u′2(X)

−ε5(c3 + 1

3
h3)(∂Xu′(X))2 dX + O(ε7) , (4.19)

we introduce the new variables r and s such that

η′ = 4

√
(h + c1)

4g
(r + s) , u′ = 4

√
g

4(h + c1)
(r − s) . (4.20)

The Hamiltonian becomes

H = 1

2

∫
ε3

√
g(h + c1)(r

2 + s2) + ε5

(
1 + c2

2

)
4

√
g

4(h + c1)
(r3 − r2s − rs2 + s3)

−ε5(c3 + 1

3
h3)

√
g

4(h + c1)

(
(∂Xr)2 − 2(∂Xr)(∂Xs) + (∂Xs)2

)
dX . (4.21)
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It is also useful to transform the system into a coordinate frame moving with the character-
istic velocity c0 =

√
g(h + c1), which is effected by subtracting the conserved momentum

integral

c0I = ε3c0

∫
η′u′ dX = 1

2
ε3

√
g(h + c1)

∫
(r2 − s2) dX (4.22)

from the Hamiltonian. This yields

H − c0I = 1

2

∫
2ε3

√
g(h + c1)s

2 + ε5

(
1 + c2

2

)
4

√
g

4(h + c1)
(r3 − r2s − rs2 + s3)

−ε5(c3 + 1

3
h3)

√
g

4(h + c1)

(
(∂Xr)2 − 2(∂Xr)(∂Xs) + (∂Xs)2

)
dX .(4.23)

The evolution equations for r and s can now be written as

∂tr = −∂Xδr(H − c0I)/ε3 , ∂ts = ∂Xδs(H − c0I)/ε3 . (4.24)

In explicit terms, this is the following system of two coupled equations

∂tr = −ε2

(
1 + c2

4

)
4

√
g

4(h + c1)
∂X(3r2 − 2rs − s2)

−ε2(c3 + 1

3
h3)

√
g

4(h + c1)
(∂3

Xr − ∂3
Xs) , (4.25)

∂ts = 2
√

g(h + c1)∂Xs − ε2

(
1 + c2

4

)
4

√
g

4(h + c1)
∂X(r2 + 2rs − 3s2)

−ε2(c3 + 1

3
h3)

√
g

4(h + c1)
(∂3

Xr − ∂3
Xs) . (4.26)

The solution r corresponds to a predominantly right-moving component, while s corresponds
to a predominantly left-moving component.

The KdV regime consists in restricting one’s attention to regions of the phase space
where the equation for r decouples to lowest order from the equation for s. Concentrating
on the region of the phase space that corresponds to a predominantly right-moving evolution
(this will be the region where s remains of order O(ε2)), all terms but those which depend
on r alone in the right-hand side of (4.25) are of higher order in ε and thus can be neglected.
It has been proved in Craig [C] that this regime is valid over time intervals of order O(ε−2)
if the initial conditions are appropriately chosen. Setting T = ε2t, which is a time change
for the Hamiltonian, we have a closed equation for the variable r, namely

∂T r = −3

(
1 + c2

2

)
4

√
g

4(h + c1)
r∂Xr − (c3 + 1

3
h3)

√
g

4(h + c1)
∂3

Xr , (4.27)

which is the KdV equation whose coefficients are modified to account for the rapidly varying
depth. When c1, c2 and c3 are zero, equation (4.27) reduces to the classical KdV equation.

4.3 Properties of the coefficients

The coefficients c1, c2 and c3 derived in Section 4.1 are of central concern to understand
the effects of bottom topography on long wave evolution of the free surface problem. They
are given by explicit expressions which are functionals of the perturbation β(x) of the
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bottom. To fix a reference depth, we normalize
∫ 2π
0 β(x)dx = 0. In this section, we give an

alternate proof of the fact that c1 ≤ 0, which was remarked in [RP]. That is, the presence
of nontrivial topography results in a smaller velocity

√
g(h + c1) for linear evolution of long

waves. In addition, we compute numerically the coefficients c1, c2 and c3 for the particular
perturbation β(x) = β0 cos(x) as functions of the amplitude β0 (0 ≤ β0 ≤ h). We also
evaluate the ratio

R =
3

2

(
1 + c2

c3 + 1

3
h3

)
4

√
4(h + c1)

g
, (4.28)

of the coefficients of nonlinearity to dispersion in the KdV equation which determines the
dominant effect as β0 increases.

Proposition 4.1. For bottom perturbations β(x) with zero mean value, the effective depth
h = h + c1 satisfies h ≤ h, with equality only if β(x) = 0.

Proof. Let β(x) be of zero mean value and consider w a solution of the problem

∆w = 0 in S(β, 0), ∂yw = 0 on y = 0, w(x,−h + β(x)) = β(x) . (4.29)

By the definition of B0(β)β, we have c1 = −
∫ 2π
0 w(x, 0) dx. Firstly,

0 =

∫ ∫

S(β,0)
∆w dxdy =

∫ 2π

0
∂yw(x, 0) dx −

∫

y=−h+β
∂Nw dσ ,

so we conclude that
∫
y=−h+β ∂Nw dσ = 0 . Secondly, integrating the function (w(x, y) −

y)∆w over S(β, 0), we find

∫ ∫

S(β,0)
|∇w|2 dxdy −

∫ ∫

S(β,0)
∂yw dxdy

=

∫ 2π

0
(w − y)∂yw(x, 0) dx +

∫

y=−h+β
(w − y)∂Nw dσ .

Since ∂yw(x, 0) = 0 and (w − y)|y=−h+β = h, both terms in the RHS vanish and we have

∫ ∫

S(β,0)
|∇w|2 dxdy =

∫ ∫

S(β,0)
∂yw dxdy =

∫ 2π

0
w(x, 0) dx −

∫ 2π

0
β(x) dx .

Because β(x) has zero mean value, the quantity
∫ 2π
0 w(x, 0) dx ≥ 0, and vanishes only when

w(x, y) is identically zero. We remark that the same conclusion c1 < 0 holds in arbitrary
spatial dimensions.

The numerical calculations of c1, c2 and c3 are performed using a Fourier spectral
method. The Fourier multipliers involving β(x)Dx are consistently expanded up to third
order in β, and explicit Fourier multiplier operations are performed using Fast Fourier
Transforms. Typically, we chose a number of modes equal to 512 and g = h = 1. Figure 1
shows graphs of the coefficients h+c1, 1+c2 and 1

3
h3+c3. We note that all three coefficients

decrease with increasing β0. The interpretation is that the time scale describing the KdV
regime is slower with increasing β0. Better approximations to c1, c2 and c3 can be obtained
for β0 close to h by including higher-order terms, but this would not change qualitatively
the results.
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Figure 1: Coefficients h+c1, 1+c2 and c3+ 1

3
h3 as functions of β0. The bottom perturbation

is β(x) = β0 cos(x). Computations are performed with a number of modes equal to 512 and
h = 1. Expressions of c1, c2 and c3 are expanded up to third order in β.

Figure 2 shows the ratio R between the effective coefficients of nonlinearity and dis-
persion in the resulting KdV equation (4.27). We observe that nonlinear effects dominate
dispersive effects as β0 approaches h. However, the two effects seem to be remarkably of
the same order of magnitude until β0 ' 0.7h. As β0/h approaches unity, the ratio diverges.
Therefore, the KdV regime, in which dispersive and nonlinear effects are balanced, remains
valid for a significant range of β0.

4.4 Long-wave approximation to the three-dimensional problem

Two kinds of long-wave scalings are usually possible: ones which are isotropic in both
horizontal directions and ones which have different length scales in the x1- and x2-directions.
We will focus on the latter in this section. A common nonisotropic spatial scaling regime
deals with wave motions which are long in one horizontal direction and very long in the
other. For this purpose, we introduce spatial and amplitude scalings as follows

X1 = εx1 , X2 = ε2x2 , εξ′(X1, X2) = ξ(x1, x2) , ε2η′(X1, X2) = η(x1, x2) . (4.30)

Let us consider first the case where the bottom only varies on a single length scale O(1) in
both horizontal directions, namely β = β(x1, x2). Again, we do not assume any smallness
of the amplitude of β. The same procedure as in two dimensions is applied to expand the
Hamiltonian in powers of the small parameter ε. We will use the implicit formula for L(β)
in three dimensions. In the first approximation, the Hamiltonian is written as

H =
ε3

2

∫
(h + c1)ξ

′D2
X1

ξ′ + gη′2 dX1dX2 + O(ε5) , (4.31)

where c1 = −B0(β)β. As above, B0(β) stands for the inverse of the operator cosh(b|D|)
and b(x1, x2) = β(x1, x2)− h. Dropping the primes, the corresponding equations of motion
are given by

∂tη = δξH/ε3 = −(h + c1)∂
2
X1

ξ , ∂tξ = −δηH/ε3 = −gη , (4.32)
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Figure 2: Ratio R of nonlinear to dispersive coefficients as a function of β0. Computations
are performed with a number of modes equal to 512 and g = h = 1.

which coincide with the linear approximation that we derived for the two-dimensional equa-
tions. At the second order approximation, we have

H =
ε3

2

∫
(h + c1)ξ

′D2
X1

ξ′ + gη′2 + ε2(1 + c2)ξ
′DX1

η′DX1
ξ′

−ε2(c3 + 1

3
h3)ξ′D4

X1
ξ′ + ε2(h + c1)ξ

′D2
X2

ξ′ dX1dX2 + O(ε7) , (4.33)

with

c2 = −B0(β) sinh(β|D|)D2
x1
|D|−1sech(h|D|)B0(β)β

−B0(β) sinh(β|D|)Dx1
Dx2

|D|−1sech(h|D|)B0(β)β , (4.34)

and

c3 = − 1

2
h2B0(β)β + 1

6
B0(β)β3 − 1

2
B0(β)b2 cosh(b|D|)D2

x1
|D|−2B0(β)β

+B0(β)b sinh(b|D|)Dx1
|D|−1B0(β)b sinh(b|D|)Dx1

|D|−1B0(β)β

− 1

2
B0(β)b sinh(b|D|)(1 − D2

x1
|D|−2)|D|−1B0(β)β . (4.35)

Note here that |D| =
√
|Dx1

|2 + |Dx2
|2. The evolution of η and ξ is now governed by

∂tη = −∂X1
((h + c1 + ε2(1 + c2)η)∂X1

ξ) − ε2(c3 + 1

3
h3)∂4

X1
ξ − ε2(h + c1)∂

2
X2

ξ ,

∂tξ = −gη − 1

2
ε2(1 + c2)(∂X1

ξ)2 . (4.36)

4.5 The KP equation

The KP equation is a three-dimensional analog of the KdV equation, which is derived
under the assumption that transverse variations of the wave motions in the x2-direction are
weaker than those in the x1-direction. Its derivation in the present Hamiltonian framework
is carried out by means of the same technique as that described in Section 4.2. Let us
express the Hamiltonian (4.33) in terms of u′ = ∂X1

ξ′,

H =
ε3

2

∫
(h + c1)u

′2 + gη′2 + ε2(1 + c2)η
′u′2

−ε2(c3 + 1

3
h3)(∂X1

u′)2 + ε2(h + c1)(∂
−1
X1

∂X2
u′)2 dX1dX2 + O(ε7) . (4.37)
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Making the further change of variables

η′ = 4

√
(h + c1)

4g
(r + s) , u′ = 4

√
g

4(h + c1)
(r − s) , (4.38)

one arrives at

H =
ε3

2

∫ √
g(h + c1)(r

2 + s2) + ε2

(
1 + c2

2

)
4

√
g

4(h + c1)
(r3 − r2s − rs2 + s3)

−ε2(c3 + 1

3
h3)

√
g

4(h + c1)
((∂X1

(r − s))2

+ε2

(
h + c1

2

)√
g

h + c1

(
∂−1

X1
∂X2

(r − s)
)2

dX1dX2 . (4.39)

Subtracting the momentum integral (4.22) and restricting the phase space to an ε2-neighborhood
of η ∼ u as in the two-dimensional case, the Hamiltonian reduces to

H − c0I =
ε3

2

∫
ε2

(
1 + c2

2

)
4

√
g

4(h + c1)
r3 − ε2(c3 + 1

3
h3)

√
g

4(h + c1)
(∂X1

r)2

+ε2

(
h + c1

2

)√
g

h + c1
(∂−1

X1
∂X2

r)2 dX1dX2 , (4.40)

which is valid up to order O(ε5). One can write a system of equations for r and s, in terms
of a slow time variable T = ε2t, as

∂T r = −∂X1
δr(H − c0I)/ε5 = −3

(
1 + c2

2

)
4

√
g

4(h + c1)
r∂X1

r

−(c3 + 1

3
h3)

√
g

4(h + c1)
∂3

X1
r − (h + c1)

√
g

h + c1
∂−1

X1
(∂2

X2
r) , (4.41)

∂T s = ∂X1
δs(H − c0I)/ε5 = 0 , (4.42)

which is accurate up to terms of order O(ε2). Equation (4.41) corresponds to the KP
equation for a rapidly varying bottom topography in three dimensions, while equation
(4.42) implies that in the present approximation there is no change in s, at least over time
intervals T ∈ [−T0(ε), T0(ε)], with T0(ε) = O(ε−2).

5 Bottom topography with multiple spatial scales

5.1 The two-dimensional Boussinesq regime

We consider the Boussinesq scaling (4.1) but now allow the bottom to vary both on a length
scale O(1) as well as on a slowly varying scale, namely β = β(x,X) where X = εx. Again,
no assumption is made on the amplitude of β. It also may be possible that more than one
slow scale behavior is present, whereupon we write β = β(x,X; ε). We will make explicit
the behavior of multiple scales. As before, the effort in the asymptotic expansion is almost
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entirely in examining the Dirichlet-Neumann operator, giving the result that

DL(β) = −εDxB0(β)βDX

−ε2DXB0(β)βDX + ε2DxB0(β)b sinh(bDx)DXB0(β)βDX

+ε3 1

2
h2DxB0(β)βD3

X − ε3 1

6
DxB0(β)β3D3

X

+ε3 1

2
DxB0(β)b2 cosh(bDx)D2

XB0(β)βDX

+ε3DXB0(β)b sinh(bDx)DXB0(β)βDX

−ε3DxB0(β)b sinh(bDx)DXB0(β)b sinh(bDx)DXB0(β)βDX

+ε4 1

2
h2DXB0(β)βD3

X − ε4 1

6
DXB0(β)β3D3

X

+ε4 1

2
DXB0(β)b2 cosh(bDx)D2

XB0(β)βDX

−ε4 1

2
h2DxB0(β)b sinh(bDx)DXB0(β)βD3

X

+ε4 1

6
DxB0(β)b sinh(bDx)DXB0(β)β3D3

X

+ε4 1

6
DxB0(β)b3 sinh(bDx)D3

XB0(β)βDX

−ε4 1

2
DxB0(β)b sinh(bDx)DXB0(β)b2 cosh(bDx)D2

XB0(β)βDX

−ε4 1

2
DxB0(β)b2 cosh(bDx)D2

XB0(β)b sinh(bDx)DXB0(β)βDX

−ε4DXB0(β)b sinh(bDx)DXB0(β)b sinh(bDx)DXB0(β)βDX

+ε4DxB0(β)b sinh(bDx)DXB0(β)b sinh(bDx)

×DXB0(β)b sinh(bDx)DXB0(β)βDX + O(ε5) , (5.1)

in the resulting expansion of G(0) in (4.3), and in the expansion of the term G(1) in (4.4),
one finds that

D tanh(hD)ηDL(β) = −ε3D2
x tanh(hDx)B0(β)βη′(X)DX

+ε4D2
x tanh(hDx)B0(β)b sinh(bDx)η′(X)DXB0(β)βDX

−ε4Dx tanh(hDx)η′(X)DXB0(β)βDX

−ε4hD2
xsech(hDx)2DXB0(β)βη′(X)DX

−ε4Dx tanh(hDx)DXB0(β)βη′(X)DX + O(ε5) , (5.2)

and one finds that

DL(β)ηDL(β) = ε3DxB0(β) sinh(βDx)Dxsech(hDx)B0(β)βη′(X)DX

−ε4DxB0(β) sinh(βDx)Dxsech(hDx)

×B0(β)b sinh(bDx)η′(X)DXB0(β)βDX

+ε4DxB0(β) sinh(βDx)sech(hDx)η′(X)DXB0(β)βDX

−ε4hDxB0(β) sinh(βDx)Dx tanh(hDx)

×sech(hDx)DXη′(X)B0(β)βDX

+ε4DxB0(β)β cosh(βDx)Dxsech(hDx)

×DXη′(X)B0(β)βDX

−ε4DxB0(β)b sinh(bDx)DXB0(β) sinh(βDx)

×Dxsech(hDx)B0(β)βη′(X)DX

+ε4DXB0(β) sinh(βDx)Dxsech(hDx)

×B0(β)βη′(X)DX + O(ε5) . (5.3)
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For simplicity of notation, the quantities β and b are written without any independent
variables in (5.1), (5.2) and (5.3) but recall that β = β(x,X) and b = b(x,X) = β(x,X)−h
are functions of multiple spatial scales.

Retaining explicit calculations of terms of up to order O(ε3), the Hamiltonian reads

1

ε3
H = 1

2

∫
−ε−1DxB0(β)βξ′(X)DXξ′(X) + gη′2(X)

− (1 − DxB0(β)b sinh(bDx)) ξ′(X)DXB0(β)βDXξ′(X)

+hξ′(X)D2
Xξ′(X) dX + O(ε1) . (5.4)

Again, the lemma of scale separation allows us to write

1

ε3
H = 1

2

∫
gη′2(X) − (h + c1(X))(DX ξ′)2 dX + O(ε) , (5.5)

where c1 = −B0(β)β. Dropping the primes, the corresponding equations of motion are
given in terms of u = ∂Xξ by

∂tη = −∂X((h + c1)u) , ∂tu = −g∂Xη . (5.6)

In this form, equations (5.6) only differ from (4.14) by the X-dependence of the coefficient
c1. Higher order corrections can be derived in a similar way. Keeping terms up to order
O(ε5) in the Hamiltonian, we have

1

ε3
H = 1

2

∫
gη′2(X) − (h + c1(X))(DX ξ′)2 − εc2(X)(DXξ′)2 − ε2c3(X)(DXξ′)2

+ε2(c4(X) + 1

3
h3)(DXξ′)D3

Xξ′ − ε2c5(X)(D2
Xξ′)2 − ε2(1 + c6(X))η′(X)(DXξ′)2 dX

+O(ε3) , (5.7)

with
c2 = B0(β)b sinh(bDx)DX

(
B0(β)β

)
− 1

2
DX

(
B0(β)b sinh(bDx)B0β

)
, (5.8)

c3 = 1

2
B0(β)b2 cosh(bDx)D2

X

(
B0(β)β

)

+DX

(
B0(β)b sinh(bDx)

)
B0(β)b sinh(bDx)DX

(
B0(β)β

)

− 1

2
DX

(
B0(β)b2 cosh(bDx)DX

(
B0(β)β

)

+DX

(
B0(β)b sinh(bDx)

)
B0(β)b sinh(bDx)B0(β)β

+B0(β)b sinh(bDx)B0(β)b sinh(bDx)DX

(
B0(β)β

))
, (5.9)

c4 = − 1

2
h2B0(β)β + 1

6
B0(β)β3 − 1

2
B0(β)b2β , (5.10)

c5 = B0(β)b sinh(bDx)B0(β)b sinh(bDx)B0(β)β , (5.11)

and
c6 = −B0(β) sinh(βDx)Dxsech(hDx)B0(β)β . (5.12)

The equations of motion given by this approximation are

∂tη = −∂X

(
(h(X) + ε2(1 + c6)η)u

)
− ε2∂2

X

(
( 1

3
h3 + c4 + c5)∂Xu

)
,

∂tu = −g∂Xη − 1

2
ε2∂X

(
(1 + c6)u

2
)

. (5.13)
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where the effective depth is expressed by h(X) = h + c1 + εc2 + ε2c3 + 1

2
ε2(∂2

Xc4).
Recall that the coefficients ci are X-dependent. One can see that the presence of a

slowly varying bottom topography introduces additional dispersive and nonlinear terms in
the evolution equation of η. It can be seen from the form of the terms of order O(ε5) in the
expansion of the rescaled Dirichlet-Neumann operator (5.1) that there are nonzero terms in
the approximate Hamiltonian (5.7) of order O(ε6), and therefore the time interval of validity
of these equations is less than in the case of a bottom with no variations on a slow spatial
scale. The most pessimistic view states that the error terms implied in the approximate
long wave equations (5.13) are of order O(ε3), and therefore it affords the possibility that
over time intervals longer than T (ε) = o(ε−1 ) the error can grow to compete with the terms
retained in the system of equations (5.13).

5.2 The three-dimensional Boussinesq regime

In the three dimensional situation, in cases where the bottom varies both on a length
scale O(1) as well as on a slowly varying scale in both horizontal directions (i.e. β =
β(x1, X1, x2, X2)), we find up to order O(ε3) and O(ε5), respectively

H =
ε3

2

∫
gη′2 − (h + c1)(DX1

ξ′)2 dX1dX2 + O(ε4) , (5.14)

where c1 = −B0(β)β and

H =
ε3

2

∫
gη′2 − (h + c1)(DX1

ξ′)2 − εc2(DX1
ξ′)2

−ε2c3(DX1
ξ′)2 + ε2(c4 + 1

3
h3)(DX1

ξ′)D3
X1

ξ′ − ε2c5(D
2
X1

ξ′)2

−ε2(1 + c6)η
′(DX1

ξ′)2 − ε2(h + c1)(DX2
ξ′)2

+ε2c7(DX1
ξ′)(DX1

DX2
ξ′) dX1dX2 + O(ε6) , (5.15)

with

c2 = B0(β)b sinh(b|D|)Dx1
|D|−1DX1

(B0(β)β)

− 1

2
DX1

(
B0(β)b sinh(b|D|)Dx1

|D|−1B0β
)

, (5.16)

c3 = DX1
(B0(β)b sinh(b|D|))Dx1

|D|−1B0(β)b sinh(b|D|)Dx1
|D|−1DX1

(B0(β)β)

+ 1

2
B0(β)b2 cosh(b|D|)D2

x1
|D|−2D2

X1
(B0(β)β)

+ 1

2
B0(β)b sinh(b|D|)(1 − D2

x1
|D|−2)|D|−1D2

X1
(B0(β)β)

+B0(β)b sinh(b|D|)Dx2
|D|−1DX2

(B0(β)β)

− 1

2
DX1

(
B0(β)b2 cosh(b|D|)D2

x1
|D|−2DX1

(B0(β)β)

+B0(β)b sinh(b|D|)(1 − D2
x1
|D|−2)|D|−1DX1

(B0(β)β)

+DX1
(B0(β)b sinh(b|D|))Dx1

|D|−1B0(β)b sinh(b|D|)Dx1
|D|−1B0(β)β

+B0(β)b sinh(b|D|)Dx1
|D|−1B0(β)b sinh(b|D|)Dx1

|D|−1DX1
(B0(β)β)

)
, (5.17)

c4 = − 1

2
h2B0(β)β + 1

6
B0(β)β3 − 1

2
B0(β)b2 cosh(b|D|)D2

x1
|D|−2B0(β)β

− 1

2
B0(β)b sinh(b|D|)(1 − D2

x1
|D|−2)|D|−1B0(β)β , (5.18)
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c5 = B0(β)b sinh(b|D|)Dx1
|D|−1B0(β)b sinh(b|D|)Dx1

|D|−1B0(β)β , (5.19)

c6 = −B0(β) sinh(β|D|)D2
x1
|D|−1sech(h|D|)B0(β)β

−B0(β) sinh(β|D|)Dx1
Dx2

|D|−1sech(h|D|)B0(β)β , (5.20)

and
c7 = −iB0(β)b sinh(b|D|)Dx2

|D|−1B0(β)β . (5.21)

The corresponding approximate equations of motion to lowest order are,

∂tη = −∂X1

(
(h(X1, X2) + ε2(1 + c6)η)∂X1

ξ
)
− ε2∂2

X1

(
(c4 + 1

3
h3 + c5)∂

2
X1

ξ
)

−ε2∂X2
((h + c1)∂X2

ξ) ,

∂tξ = −gη − 1

2
ε2(1 + c6)(∂X1

ξ)2 , (5.22)

where the effective depth in this situation is given by the expression

h = h + c1 + εc2 + ε2c3 + 1

2
ε2(∂2

X1
c4) −

1

2
ε2(∂X2

c7) .

Recall that all coefficients ci depend on X1 and X2.

5.3 Unidirectional equations in a regime with multiple spatial scales

In order to derive a unidirectional equation in the Boussinesq regime with multiple spatial
scales, we extend our analysis by considering the more general case where β = β(x,X; ε).
The equations of motion consist of a system of coupled equations for the right- and left-
moving components. The coupling at first order, which determines the role of wave scatter-
ing, is measured by the slope of the effective depth in the problem. Two typical examples
of multiscale dependence for the bottom are

β = β(x, X̃) , X̃ = εαX = εα+1x , (5.23)

β = β0(x) + εγβ1(x, X̃) , X̃ = εδX = εδ+1x , (5.24)

where α, γ, δ ≥ 0. The parameters α in (5.23) and γ + δ in (5.24) provide a measure for the
steepness of the slowly varying bottom. This is the regime in which the bottom perturbation
varies over an even longer length scale than the wave motion represented by η(X) and ξ(X).
To illustrate the problem, we will present the analysis only in the case (5.23) which was
also considered by E. van Groesen & S.R. Pudjaprasetya [GP].

At the second order of approximation, the Hamiltonian (5.7) is given by

H =
ε3

2

∫
gη′(X)2 +

(
h + c1(X̃) + εα+1c2(X̃) + ε2α+2c3(X̃)

+ 1

2
ε2α+2(∂2

X̃
c4(X̃))

)
u′(X)2

−ε2( 1

3
h3 + c4(X̃) + c5(X̃))(∂Xu′(X))2

+ε2(1 + c6(X̃))η′(X)u′(X)2 dX + O(ε5+α) . (5.25)

Making the change of variables

η′ =
4

√
h(X̃)

4g
(r + s) , u′ = 4

√
g

4h(X̃)
(r − s) , (5.26)
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where the effective depth h is

h(X̃) = h + c1(X̃) + εα+1c2(X̃) + ε2α+2c3(X̃) + 1

2
ε2α+2∂2

X̃
c4(X̃) , (5.27)

the Hamiltonian becomes

H =
ε3

2

∫ √
gh(r2 + s2) − ε2( 1

3
h3 + c4 + c5)

[(
4

√
g

4h
∂Xr

)2

− 2

(
4

√
g

4h
∂Xr

)(
4

√
g

4h
∂Xs

)
+

(
4

√
g

4h
∂Xs

)2
]

+ ε2

(
1 + c6

2

)
4

√
g

4h
(r3 − r2s − rs2 + s3) dX + o(ε5 ) . (5.28)

The evolution equations for r and s are now written as

∂t

(
r
s

)
=

1

ε3

(
−∂X

1

4
εα

(
∂X̃ log(h)

)

− 1

4
εα

(
∂X̃ log(h)

)
∂X

)(
δrH
δsH

)
. (5.29)

The solutions r and s correspond to predominantly right- and left-moving wave motions,
respectively. The presence of the non-diagonal terms 1

4
εα∂X̃ log(h(X̃)) in (5.29) is a conse-

quence of the bottom variations and gives rise to the effect of wave scattering. Note that,
unlike the case of a rapidly varying bottom topography, we do not subtract the momentum
integral from the Hamiltonian in order to transform to a moving reference frame, since
momentum is not a conserved quantity when the depth is variable.

In case that α = 0, the result (5.29) is the following system of two coupled KdV-like
equations;

∂tr = −∂X

(
C0(X)r + ε2∂X(C1(X)(∂Xr − ∂Xs)) + ε2C2(X)(3r2 − 2rs − s2)

)
(5.30)

+S(X)
(
C0(X)s − ε2∂X(C1(X)(∂Xr − ∂Xs)) + ε2C2(X)(−r2 − 2rs + 3s2)

)
,

∂ts = ∂X

(
C0(X)s − ε2∂X(C1(X)(∂Xr − ∂Xs)) + ε2C2(X)(−r2 − 2rs + 3s2)

)
(5.31)

−S(X)
(
C0(X)r + ε2∂X(C1(X)(∂Xr − ∂Xs)) + ε2C2(X)(3r2 − 2rs − s2)

)
.

The coefficients are defined as

C0(X) =

√
gh(X̃) , C1(X) = ( 1

3
h3 + c4 + c5)

√
g

4h
,

C2(X) = 1

4
(1 + c6) 4

√
g

4h
, S(X) = 1

4

(
∂X̃ log(h)

)
.

In (5.30) and (5.31), the expression for the effective linear phase speed is C0(X); we note
that this includes higher order terms in ε. Because of the strong coupling between the
wave fields r(X, t) and s(X, t), these two do not separate into independent solutions for a
unidirectional regime.

When α > 0, and when the initial data r0(X) and s0(X) are functions which are localized
spatially, the analysis divides into several cases.
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Case (1): When α ≥ 2, corresponding to very mild slopes, and initial conditions s0 = O(ε2),
one rescales s = ε2s′ and r = r′ in equations (5.30), (5.31). Dropping terms of higher order,
we have

∂tr
′ = −∂X

(
C0(X)r′ + ε2

(
∂X(C1(X)∂Xr′) + 3C2(X)r′2

))

∂ts
′ = ∂X

(
C0(X)s′ − ∂X(C1(X)∂Xr′) − C2(X)r′2

)
− εα−2S(X)C0(X)r′ . (5.32)

This system consists of an equation in closed form for r ′(X, t), which is a KdV equation with
slowly varying coefficients representing a principally right-moving wave field, and a second
equation for a reflected wave s′(X, t). The solution s′(X, t) is recovered from r′(X, t) by
quadrature along left-moving characteristics, defined by Ẋ = −C0(X).

This system of equations describing r ′(X, t) is a valid asymptotic regime at least over
time intervals of order T (ε) = o(ε−1 ), the same time interval as for the Boussinesq system
(5.13), but a strictly shorter time interval than the case of the KdV equation with constant
coefficients (as arising with a flat or a rapidly varying bottom without slow spatial varia-
tions). This is due in part to the nature of the error from truncation of the Hamiltonian.
Furthermore, over such time intervals the scattering component s′(X, t) remains bounded.
This latter fact is true because initial conditions r ′0(X) which is spatially localized (that is,
essentially supported in a neighborhood of diameter O(1)) gives rise to solutions r ′(X, t)
which move essentially to the right. The quadrature for the scattering component s ′(X, t) is
along left-moving characteristics, which encounter regions in which r ′(X, t) is of significant
amplitude only over intervals of length O(1). Therefore s′(X, t) does not grow by an amount
larger than O(1), even for quadrature over long time intervals, as much as T (ε) = o(ε−1 ).
This will not be the case over longer intervals, for initial conditions which is not spatially
localized, for instance in case the inital conditions are periodic.

Case (2): When 3/2 ≤ α < 2 and the initial conditions satisfy s0 = O(εα), we obtain
equations for r(X, t) = r′(X, t) and s(X, t) = εαs′(X, t) which are again in the form of a
KdV equation coupled to an equation for the left-moving scattered field;

∂tr
′ = −∂X

(
C0(X)r′ + ε2(∂X(C1(X)∂Xr′) + 3C2(X)r′2)

)
(5.33)

∂ts
′ = ∂X

(
C0(X)s′ − ε2−α∂X(C1(X)∂Xr′) − ε2−αC2(X)r′2

)
− S(X)C0(X)r′.(5.34)

Equation (5.33) is a KdV equation in r with variable coefficients. The evolution of the
reflected component of the solution s′(X, t) is governed by (5.34). From the scaling, it is
proportional to the slope of the bottom. As in the previous case, this scaling regime is valid
for time intervals of order T (ε) = o(ε−1 ).

Case (3): When 1 < α < 3/2 and the initial conditions satisfy s0 = O(εα), the system of
equations describing r′(X, t) is still given by (5.33), but the error in truncation is potentially
larger, and the time interval in which one is assured of the validity of the approximation is
shorter, namely T (ε) = o(ε2 (1−α)).

Case (4): If α = 1 the basic equation for the right-moving component r ′(X, t) is modified
by a coupling term to the reflected component. The appropriate scaling is r(X, t) = r ′(X, t)
and s(X, t) = εs′(X, t), giving rise to the system of equations

∂tr
′ = −∂X

(
C0(X)r′ + ε2(∂X(C1(X)∂Xr′) + 3C2(X)r′2)

)

+ε2S(X)C0(X)s′

∂ts
′ = ∂X(C0(X)s′) − S(X)C0(X)r′ . (5.35)
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The scaling regime gives a valid approximation for both r ′(X, t) and s′(X, t), for time
intervals of order T (ε) = o(ε−1 ) as in Case (1); it is of this length because of the increased
accuracy given by inclusion of the extra coupling term, although we sacrifice the simplicity
of a decoupled equation for r′(X, t). We also note that because of the coarser scaling in s′

the permissible error is greater.

Case (5): Finally, if 0 < α ≤ 1, the evolutions of r ′ = r and εαs′ = s decouple only weakly,
and over time intervals of order O(ε−2α). A coarse description of the evolution is given by

∂tr
′ = −∂X(C0(X)r′)

∂ts
′ = ∂X(C0(X)s′) − S(X)C0(X)r′ , (5.36)

where the error of truncation is O(ε2α). Dispersion in the right-moving component is not
as significant as scattering effects in this linear system, and therefore dispersive terms have
been eliminated. Returning to the case α = 0 corresponds to the fully coupled system
(5.30), (5.31).

Similar results can be obtained for a bottom topography of the form (5.24). In particular,
the case γ = 2, δ = 0 was examined by G. Whitham [W]. It should be noted that KdV-type
equations for a slowly varying bottom in this setting have also been derived by several other
authors, including R. S. Johnson [J], J. Miles [M] and A. Newell [N].

The present analysis can be extended to three dimensions in a straightforward manner.
For brevity, we will only give one example. Assuming that the wave motion is primarily
one-dimensional in the x1-direction and that the bottom has the following dependence

β = β(x1, X̃1, x2, X̃2) , (5.37)

where X̃1 = εαX1 = εα+1x1 and X̃2 = ε2αX2 = ε2α+2x2, a three-dimensional analog of
(5.32), for α ≥ 2 can be derived as

∂tr = −

√
gh∂X1

r − ε2

√
g

4h
(c4 + 1

3
h3 + c5)∂

3
X1

r

−3ε2 4

√
g

4h

(
1 + c6

2

)
r∂X1

r − ε2

√
g

4h
(h + c1)∂

−1
X1

(∂2
X2

r) , (5.38)

with h redefined as

h(X̃1, X̃2) = h + c1 + εα+1c2 + ε2α+2c3 + 1

2
ε2α+2∂2

X̃1

c4 −
1

2
ε2α+2∂X̃2

c7 . (5.39)

Equation (5.38) can be viewed as the KP equation with slowly varying coefficients for very
mild slopes of the bottom.

6 Conclusions

We study the long-wave asymptotic regime for water waves in a fluid domain of variable
depth as a perturbation problem for a Hamiltonian system depending on a small parameter.
The formulation of the problem in terms of Zakharov’s Hamiltonian, using an expression
for the Dirichlet integral in terms of the Dirichlet-Neumann operator, is convenient for
the analysis. When the bottom varies periodically on a short length scale, the motion of
long wavelength solutions is essentially governed by a system related to the Boussinesq
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equation, whose effective coefficients are determined by homogenisation averages. In a
regime emphasizing one-way propagation, the same conclusion holds for solutions of a KdV
equation. Similar results hold in the three dimensional case, where bi-directional long
wavelength motions are governed by a Boussinesq-like system, and one-way motions by
a system closely related to the KP equations. Expressions for the coefficients are quite
explicit, and typical cases are computed numerically. We find that (1) the linear wave
speed of the long waves is slower for non-constant bottom variations, than that of a flat
bottom with the same average depth. This recovers the result of [RP] in two dimensions for
a periodic bottom. (2) For bottom variations with fixed average depth, but which approach
the shoaling limit, the effective coefficient of the nonlinear term dominates the effective
coefficients of dispersive terms in the KdV equation. However this is significant only for
very large variations, and over a large range of bottom perturbations the nonlinearity and
the dispersive effects are quite well balanced. This serves to justify the use of the Boussinesq
and KdV equations for a wide range of bottom topography. (3) The time scale of the effects
of both nonlinearity and dispersion are significantly slower for large amplitude variations of
the bottom (always considering the average depth fixed).

In cases in which the periodic variations of the bottom themselves vary on the long
length scale, we derive a number of Hamiltonian PDEs with variable coefficients to describe
the evolution of surface waves. Because of the presence of the variations in the bottom, there
are additional terms in the long wave equations. Even at the lowest order in perturbation
theory, terms are present which describe the linear effect of reflection of waves by the
bottom topography. Denoting the effective depth by h(X), we show that the linear reflection
from left-propagating to right-propagating modes (and vice versa) is proportional to S =
∂X log(h). This coefficient depends upon X = εx, as do the resulting effective coefficients
of dispersion and nonlinearity; it appears both in the two dimensional Boussinesq system
and in its three dimensional analogue.

In the general case, the quantity S(X) is of order O(1), and it does not make sense to
seek special solutions whose motion is principally unidirectional; any such solution generates
a substantial reflection in an O(1) length of time. However in cases in which S = S(X; ε)
also depends upon the scaling parameter ε, such as when the long wavelength variations are
small amplitude, or have small slope, or both, then ∂Xh(X; ε) ∼ O(εα), and it is possible
to proceed further. Depending on the value of α, we find five different regimes that can be
described in detail.

Finally we would like to point out that the formulation of the Dirichlet-Neumann op-
erator as given in this paper is suitable for the numerical simulation of the full equations
of the water wave problem with bottom topography. The recursive expressions in terms
of Fourier multipliers and of surface/bottom variations can be numerically evaluated using
a spectral method with Fast Fourier Transforms. Numerical results will be presented in a
separate paper.

A Taylor expansions of G(β, η) and L(β)

In Section 2.2, we give a Taylor expansion of the Dirichlet-Neumann operator G(β, η) in
powers of η. The recursion formula for G(β, η) is found to be the same as that for the case
of a flat bottom, with the operator L(β) being absorbed in the lowest order term G(0) of the
recursion formula. Here we present an alternate formulation for G(β, η) as a double series
in both β and η. This requires in particular a Taylor expansion of L(β) in powers of β.
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Consider the Dirichlet-Neumann operator in the form G(β, η) =
∑

j,l Gj,l(β, η) where
the Gj,l are homogeneous of degree j and l in powers of β and η respectively. The terms
G0,l identify with the terms in the expansion of the Dirichlet-Neumann operator for a flat
bottom. It is convenient to compute the coefficients Gj,0 which correspond to a domain
with a flat interface and a variable bottom topography. For this purpose let us consider the
problem 2.6 with η = 0. Its solution can be expressed in the form (2.9). By the definition
of G, we have

G(β, 0)ξ ≡ ∂yϕ(x, 0) = D tanh(hD)ξ + DL(β)ξ . (A.1)

Equivalently,
G0,0 = D tanh(hD) , Gj,0 = D tanh(hD) + DLj(β) , (A.2)

where the Lj(β) are the terms in the expansion of L(β) in powers of β. To compute them
explicitly, we write the Neumann condition at y = −h + β(x)

(∂yϕ − ∂xβ∂xϕ)(x,−h + β) = 0 , (A.3)

and expand the various terms in powers of β.
From the expression (2.9) for the function ϕ(x, y) one calculates its derivatives. We now

formally perform the Taylor expansions of the operators

D sinh((h + y)D)|y=−h+β =
∑

l odd

βl

l!
Dl+1 , D cosh((h + y)D)|y=−h+β =

∑

l even

βl

l!
Dl+1 ,

D sinh(yD)|y=−h+β =
∑

l even

βl

l!
(−D)l+1 sinh(hD) +

∑

l odd

βl

l!
(−D)l+1 cosh(hD) ,

D cosh(yD)|y=−h+β =
∑

l even

βl

l!
Dl+1 cosh(hD) −

∑

l odd

βl

l!
Dl+1 sinh(hD) . (A.4)

It is important to notice that in the above expansions, the operator D does not act on β.
Equation (A.3) is now rewritten as

∑

l odd

βl

l!
sech(hD)Dl+1 +

∑

l even

βl

l!
cosh(hD)L(β) −

∑

l odd

βl

l!
sinh(hD)L(β)

−i(∂xβ)
(βl

l!
sech(hD)Dl+1 +

∑

l odd

βl

l!
cosh(hD)L(β) −

∑

l even

βl

l!
Dl+1 sinh(hD)L(β)

)

= 0 . (A.5)

Identification of the terms in powers of β leads at order O(1) to L0 = 0 , L1 = −sech(hD)βsech(hD) .
L2 = sech(hD)βD sinh(hD)L1 . More generally, the recursion formula takes the form: for
j odd,

Lj = −sech(hD)
[βj

j!
sech(hD)Dj+

j−1∑

l=2, even

βl

l!
Dl cosh(hD)Lj−l−

j−2∑

l=1, odd

βl

l!
Dl sinh(hD)Lj−l

]
,

(A.6)
and, for j > 0 even,

Lj = −sech(hD)
[ j−2∑

l=2, even

βl

l!
Dl cosh(hD)Lj−l −

j−1∑

l=1, odd

βl

l!
Dl sinh(hD)Lj−l

]
. (A.7)
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We point out that the recursion formula given in (A.6) and (A.7) can be directly obtained
by a Taylor expansion of the implicit formula for L(β) in powers of β.

The recursion formula of L(β) can be easily extended to three dimensions, taking the
form: for j odd,

Lj = −
D

|D|
sech(h|D|) ·

[βj

j!
sech(h|D|)|D|j−1D +

j−1∑

l=2, even

βl

l!
cosh(h|D|)|D|l−1DLj−l

−

j−2∑

l=1, odd

βl

l!
sinh(h|D|)|D|l−1DLj−l

]
, (A.8)

and, for j > 0 even,

Lj = −
D

|D|
sech(h|D|)·

[ j−2∑

l=2, even

βl

l!
cosh(h|D|)|D|l−1DLj−l−

j−1∑

l=1, odd

βl

l!
sinh(h|D|)|D|l−1DLj−l

]
.

(A.9)
Putting together the expansions of L(β) in powers of β above and the expansions of

G(β, η) in terms of L(β) and powers of η as given in Section 2.3, one obtains an expression
for the series expansion of the Dirichlet-Neumann operator as a double series in β(x) and
η(x). Using the fact that G(β, η) is self-adjoint, one can write: for any j > 0 and l > 0
even,

Gj,l = Lj |D|l−1D ·
ηl

l!
D −

l−2∑

p=0, even

|D|l−p ηl−p

(l − p)!
Gj,p

−

l−1∑

p=1, odd

G0,0|D|l−p−1 ηl−p

(l − p)!
Gj,p −

l−1∑

p=1, odd

j−1∑

q=0

Lj−q|D|l−p ηl−p

(l − p)!
Gq,p,(A.10)

and, for any j > 0 and l odd,

Gj,l = −
l−2∑

p=1, odd

|D|l−p ηl−p

(l − p)!
Gj,p −

l−1∑

p=0, even

G0,0|D|l−p−1 ηl−p

(l − p)!
Gj,p

−
l−1∑

p=0, even

j−1∑

q=0

Lj−q|D|l−p ηl−p

(l − p)!
Gq,p . (A.11)
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Poincaré 14, pp. 615-667.

[CSS1] W. Craig, C. Sulem and P.-L. Sulem. 1992 Nonlinear modulation of gravity
waves: a rigorous approach. Nonlinearity 5, pp. 497-552.

[GP] E. van Groesen and S.R. Pudjaprasetya. 1993 Uni-directional waves over slowly
varying bottom. Part I: Derivation of KdV type equation. Wave Motion 18,
pp. 345-370.

[J] R.S. Johnson. 1973 On the development of a solitary wave moving over an
uneven bottom. Proc. Cambridge Philos. Soc. 73, pp. 183-203.

[K] J.T. Kirby. 1997 Nonlinear dispersive long waves in water of variable depth.
in Gravity waves in water of finite depth (ed. J.N. Hunt). Advances in Fluid
Mechanics, vol. 10, pp. 55-125.

[LY] Y. Liu and D.K.P. Yue. 1998 On generalized Bragg scattering of surface waves
by bottom ripples. J. Fluid Mech. 356, pp. 297-356.

[ML] C.C. Mei and P.L.-F. Liu. 1993 Surface waves and coastal dynamics. Ann. Rev.
Fluid Mech. 25, pp. 215-240.

[M] J.W. Miles. 1979 On the Korteweg-de Vries equation for a gradually varying
channel. J. Fluid Mech. 91, pp. 181-190.

[NP] A. Nachbin and G. Papanicolaou. 1992 Water waves in channels of rapidly
varying depth. J. Fluid Mech. 241, pp. 311-332.

[N] A.C. Newell. 1985 Solitons in Mathematics and Physics. SIAM, Philadelphia.

[RP] R. Rosales and G. Papanicolaou. 1983 Gravity waves in a channel with a rough
bottom. Stud. Appl. Math. 68, pp. 89-102.

[S] R. Smith. 1998 An operator expansion formulation for nonlinear surface water
waves over variable depth. J. Fluid Mech. 363, pp. 333-347.

[W] G.B. Whitham. 1974 Linear and nonlinear waves. Wiley-Interscience, New
York.

[YL] S.B. Yoon and P.L.-F. Liu. 1994 A note on Hamiltonian for long water waves
in varying depth. Wave Motion 20, pp. 359-370.

[Z] V. E. Zakharov. 1968 Stability of periodic waves of finite amplitude on the
surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, pp. 1990-1994.

31


