
Chapter 1

Introduction

1.1. Overview of the subject

It is the irony of taking university courses that one doesn’t understand the
real reason for studying a subject until one knows it already and has been
steeped in its culture. With this paradox in mind, I will attempt to give an
introduction that will motivate the material we are going to address in this
course, so we can at least start with a sense of its content.

The first questions are possibly ‘Where do PDEs arise, and why are
they useful?’. In fact, the language of the sciences is mathematics (the joke
has it that the language of the sciences is English with an accent). Many
if not most statements in the physical sciences are in the form of mathe-
matical equations, and the vast majority of these are differential equations,
quantifying the change of one quantity in terms of others. Indeed, equations
physical, chemical and sometimes biological phenomena are for the majority
PDEs, and the same statement holds for the engineering sciences.

Secondly, disciplines of mathematics such as geometry and dynamical
systems also give rise to PDEs. Conditions such as (i) a surface is of min-
imal area, (ii) a submanifold is invariant under a flow, (iii) a mapping is
conformal, or (iv) the curvature tensor satisfies a particular property, are
very often PDEs. For example, the statement that “the tensor (gµν) is an
Einstein metric for a manifold M” is a system of PDEs.

The course material will discuss the most commonly occurring PDEs,
and the implications that it has for a function u to be a solution. We are
particularly interested in knowing whether solutions exist, whether thay are
unique, and what their properties are of smoothness, positivity, etc.
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Figure 1. A conformal mapping between R
n and its image as a sub-

manifold of RN

1.2. Examples

Some common situations where mathematical properties of an object are
described by PDEs.

Conformal mappings. A mapping between two Euclidian spaces x ∈
R
n 7→ u(x) ∈ R

N can be explicitely locally represented as

x = (x1, . . . , xn) ∈ R
n 7→ u(x) = (u1(x), . . . , uN (x)) ∈ R

N

u : x 7→ u(x) .

A conformal mapping is one that preserves angles. Set n = N = 2 for
our example. In the x-variables, write ∂x := (∂x1

, ∂x2
). The vector fields

∂x1
= (1, 0) ·∂x and ∂x2

= (0, 1) ·∂x are orthogonal and have the same length
in the domain R

2, and a conformal mapping must preserve this property for
the two tangent vectors ∂x1

u and ∂x2
u in the image;

(1.1) ∂x1
u · ∂x2

u = 0 , |∂x1
u|2 = |∂x2

u|2 .

The equations (1.1) are equivalent to the Cauchy – Riemann equations for
either u = (u1(x1, x2), u2(x1, x2)) or for u = (u1(x1, x2),−u2(x1, x2)). That
is, either u is holomorphic (analytic) in x1 + ix2

(1.2) ∂x1
u1 = ∂x2

u2 , ∂x2
u1 = −∂x1

u2

or else u is anti-holomorphic

(1.3) ∂x1
u1 = −∂x2

u2 , ∂x2
u1 = ∂x1

u2 .

The study of such mapping is thus a central topic of complex analysis.
Problem 1.2 of this chapter is to show that (1.1) implies either (1.2) or
(1.3).

Laplace’s equation. Starting with the Cauchy Riemann equations (1.2)
and differentiating again, we have

∂2x1
u1 = ∂x1

(∂x2
u2) = ∂x2

(∂x1
u2) = −∂2x2

u1 ,

thus

(1.4) (∂2x1
+ ∂2x2

)u1 = 0 ,
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which is that u1 is harmonic. The same goes for u2 of course. The operator
∆ = ∂2x1

+ ∂2x2
is called the Laplacian; its higher dimensional version is

(1.5) ∆u := (∂2x1
+ · · ·+ ∂2xn

)u(x) = (

n
∑

j=1

∂2xj
)u(x) .

Laplace’s equations is

(1.6) ∆u = 0 ,

and in general solutions of (1.6) are called harmonic as well. It is a principal
example of an elliptic equation. The Laplacian operator appears very often
in mathematics, partially because it is the only second order linear differ-
ential operator which is invariant under the symmetries of Euclidian space,
that is translations and rotations;

x 7→ y = x+ c , x 7→ y = Rx ,(1.7)

with the rotation R represented by an orthogonal matrix RT = R−1. This
is one elementary manifestation of the principle of relativity, which is that
equations which describe physical phenomena should be invariant under
symmetries of the underlying space.

The heat equation. Given coordinates of time and space as (t, x) =
(t, x1, . . . xn) ∈ R

1+n, the heat equation for a function u(t, x) is

(1.8) ∂tu = ∆u ;

it is the principal example of a parabolic equation, and it occurs very often
in probability and in problems of gradient flow, among other places.

The wave equation. Again in coordinates (t, x) ∈ R
1+n, the wave equa-

tion for a function u(t, x) is

(1.9) ∂2t u = ∆u .

It is a principal example of a hyperbolic equation, we will study a number
of related equations in the next chapter, including the case of the wave
equation in one space dimension.

Maxwell’s equations. The propagation of electromagnetic radiation is
governed by Maxwell’s equations, the derivation of which is a towering
achievement of 19th century science. This is a system of equations coupling
two vector quantities in R

3, the electric and the magnetic vector fields;

E(t, x) = (E1(t, x), E2(t, x), E3(t, x))(1.10)

B(t, x) = (B1(t, x), B2(t, x), B3(t, x)) .
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These six functions satisfy the coupled system of equations

∂tE = ∇×B − 4πj ,

∂tB = −∇× E ,(1.11)

∇ · E = 4πρ ,

∇ ·B = 0 .

This is a system of 8 equations for the six components of (E,B). The vector
calculus notation is that the divergence operator ∇ · E is

∇ · E := ∂x1
E1 + ∂x2

E2 + ∂x3
E3 =

3
∑

j=1

∂xj
Ej

and the curl is given by

∇×B := (∂x2
B3 − ∂x3

B2, ∂x3
B1 − ∂x1

B3, ∂x1
B2 − ∂x2

B1) .

The function ρ(t, x) of the third line of system (1.11) represents the electric
charge density and vector function j(t, x) = (j1(t, x), j2(t, x), j3(t, x)) of the
first line is the electric current density. If there were magnetic monopoles, as
there are electrons, protons and other electrically charged particles, then the
other two equation components would have the analogous magnetic charge
and current densities.

Proposition 1.1. In the case that ρ = 0 and j = 0 (the conditions for
electromagnetic wave propagation in a vacuum) Maxwell’s equations (1.11)
are equivalent to wave equations for components of the electric and the
magnetic fields.

Proof. In the case ρ = 0 and j = 0, one differentiates the equations (1.11)
to find;

∂2tE = ∂t(∇×B) = ∇× (∂tB)

= −∇× (∇× E) = −(−∆E +∇(∇ · E))

= ∆E .

This is to say that each component of the electric field Ej , j = 1, 2, 3 satisfies
individually the wave equation (1.9). The second line of this calculation uses
a vector calculus identity and the fact that in a vacuum ∇ ·E = 0. There is
a similar calculation for the components of the magnetic field. �

The standard three equations above, namely the wave equation, the
heat equation and Laplace’s equation are linear constant coefficient and of
second order, however this short list of equations of interest is far from being
exhaustive. Many other forms of equations, both linear and nonlinear, occur
frequently.
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Monge – Ampère equations. This equation arises when a mapping f(x) :
R
n 7→ R

n is constructed as the gradient of a potential function f(x) =
∇u(x). If the mapping is required to be volume preserving, then u(x) sat-
isfies the Monge – Ampère equation

(1.12) det(∂xj
∂xℓ

u(x)) = 1 .

Similar equations play a role in the construction of Calabi – Yau metrics
on manifolds. The matrix of second partial derivatives of a function u(x) is
known as the Hessian of u. We note in this context that the Laplacian is
the trace of the Hessian

∆u = tr(∂xj
∂xℓ

u) .

Schrödinger’s equation. The complex valued function ψ(t, x) = X(t, x)+
iY (t, x) is called the wave function of quantum mechanics when it solves the
equation

(1.13) i∂tψ = −1

2
∆ψ + V (x)ψ .

The lower order coefficient V (x) is called the potential term; it serves to rep-
resent the environment in which the quantum particle evolves. A commonly
occurring nonlinear Schrödinger equations is

(1.14) i∂tΨ = −1

2
∆Ψ+ c|Ψ|2Ψ ,

where the local intensity |Ψ|2 of the wave function creates its own potential.
This nonlinearly self-interacting potential has the effect of focusing the wave
function when c = −1 and defocusing it when c = +1.

Einstein’s equations. In general relativity our space-time is a manifold
M4 with a metric tensor g = (gµν(x)). The Riemann curvature tensor
(Rijkℓ) is a certain nonlinear function of the metric coefficients and their
derivatives, Rijkℓ(g, ∂xj

g, ∂xjxℓ
g), as is the Ricci curvature tensor (Rµν).

Einstein’s equations in a vacuum consist of the system of partial differential
equations

Rµν −
1

2
Rgµν = 0 ,

where R = trRµν =
∑

µν Rµνg
µν is the scalar curvature tensor. The

Einstein summation convention allows us to omit the summation symbol
over repeated indices in the latter expression, so it can be represented as
R = Rµνg

µν . When energy and/or matter are present, Einstein’s equations
become

(1.15) Rµν −
1

2
Rgµν = Tµν ,

where T is the energy - momentum tensor.
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Figure 2. A minimal surface that is a graph in R
3 whose boundary lies

on a specified curve.

Minimal surfaces. Given a mapping u : D → R
N defined on a domain

D, the surface area of the image is

A(u) :=

∫

D

√

det(∂xj
u · ∂xℓ

u) dx .

In the case that the mapping u is given as a graph of a function f(x) over
D ⊆ R

n (where N = n+ 1), namely that u(x) = (x1, . . . , xn, f(x)), then

A(f) =

∫

D

√

1 + (∂xf)2 dx .

A minimal surface is the result of a mapping for which the area functional
A(u) is minimal (or at least a critical point), generally with given additional
constraints such as boundary conditions. That is to say, the variations of A
about u all vanish, namely

0 = δA(u) · v :=
d

dτ
|τ=0A(u+ τv)

for all variations v(x) such that u+ τv continues to satisfy the constraints.
For the case where n = 2, and for a graph, if f is such a critical point then
it must satisfy

(1.16) (1 + (∂x2
f)2)∂2x1

f + (1 + (∂x1
f)2)∂2x2

f − 2∂x1
f∂x2

f∂x1
∂x2

f = 0 .

The Navier – Stokes equations. In Eulerian coordinates on describes
a fluid in motion in a region D ⊆ R

n by its velocity vector field u(t, x) =
(uj(t, x))

n
j=1 at each point of D and at eact time t. An incompressible but

viscous fluid will satisfy the system of equations

∂tu+ (u · ∇)u+∇p = ν∆u ,(1.17)

∇ · u = 0 .

The pressure p(t, x) can be thought of as the extra degrees of freedom that
allow the flow determined by (1.17) to satisfy the constraint of incompress-
ibility ∇ · u = 0. The vorticity of the fluid is given by ω(t, x) := ∇× u. It is
an open question whether every solution of (1.17), even given smooth initial
data, will remain smooth at all future times.
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Exercises: Chapter 1

Exercise 1.2. Prove that statement (1.1) characterizing conformal map-
pings implies that either (1.2) or (1.3) holds.

Exercise 1.3 (∗). Determine the class of conformal mappings in the case
that n = N ≥ 3. The conditions (1.1) are much more rigid than in two
dimensions.

Exercise 1.4. Prove that the Laplacian (1.6) is invariant under Euclidian
symmetries (1.7).

Exercise 1.5. In dimension n = 2 some elementary harmonic functions are
polynomials, they include:

u(x) = xj , j = 1, 2 ,

u(x) = x21 − x22 , u(x) = x1x2 .

How many independent harmonic polynomials are there of general degree
ℓ?

When the dimension n ≥ 3 how many harmonic polynomials of degree ℓ are
there?

Exercise 1.6. Prove the vector calculus identity

∇× (∇× V ) = −∆V +∇(∇ · V ) ,

for a vector fields V (x), where in our notation the gradient of a function F
is

∇F = (∂x1
F, . . . , ∂xnF ) .


