
Chapter 3

The heat equation

The Fourier transform was originally introduced by Joseph Fourier in an
1807 paper in order to construct a solution of the heat equation on an
interval 0 < x < 2π, and we will also use it to do something similar for the
equation

∂tu = 1
2∂

2
xu , t ∈ R1

+ , x ∈ R1(3.1)

u(0, x) = f(x) ,

The first thing to notice is that the equation (3.1) is invariant under Brow-
nian scaling, which is the change of variables

t′ = εt , x′ =
√
εx .

This rescaling transformation is closely related to certain principles of prob-
ability and the properties of Brownian motion. To see how the equation
behaves, the change of variables gives that

∂t = ε∂t′ , ∂x =
√
ε∂x′ ,

and therefore if u(t, x) solves the heat equation (3.1) then so does u′ :=
u′(t′, x′) = u(εt,

√
εx);

ε
(
∂t′u

′ − 1
2∂

2
x′

)
u′(t′, x′) =

(
∂t − 1

2∂
2
x

)
u(εt,

√
εx) = 0 .

We will see that the ratio x/
√
t, which is invariant under Brownian scaling,

appears in a central way in expressions for the solution, and indeed it plays
an related role in probability.
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20 3. The heat equation

3.1. The heat kernel

A derivation of the solution of (3.1) by Fourier synthesis starts with the
assumption that the solution u(t, x) is sufficiently well behaved that is sat-
isfies the hypotheses of the Fourier inversaion formula. This will be verified
a postiori. Writing

u(t, x) =
1

2π

∫ +∞

−∞
eiξxû(t, ξ) dξ ,

then solutions of (3.1) must satisfy

0 =
(
∂t − 1

2∂
2
x

)
u(t, x) =

1

2π

∫ +∞

−∞
eiξx

(
∂t − 1

2(iξ)
2
)
û(t, ξ) dξ .

We have used Proposition 2.3 to express the spatial derivatives in terms of
the Fourier transform. Reasoning as before, the Fourier transform of the
solution must satisfy the family of ODEs

d

dt
û+ 1

2ξ
2û = 0 ,

parametrized by ξ. The solution is

û(t, ξ) = e−
1
2 ξ

2tû(0, ξ) = e−
1
2 ξ

2tf̂(ξ) ,

where f̂(ξ) is the Fourier transform of the initial data. With this we can
express the solution in integral operator form;

u(t, x) =
1

2π

∫ +∞

−∞
eiξx

(
e−

1
2 ξ

2tf̂(ξ)
)
dξ(3.2)

=
1

2π

∫∫
eiξ(x−y)e−

1
2 ξ

2tf(y) dydξ(3.3)

∫ ( 1

2π

∫
eiξ(x−y)e−

1
2 ξ

2t dξ
)
f(y) dy :=

∫
H(t, x− y)f(y) dy .(3.4)

Justification of the exchanges of the order of integration comes from the
Fubini theorem, as long as the initial data satisfies f ∈ L1(R1). The function
H(t, x − y) is the heat kernel, the integral kernel for the solution operator
H(t) for the heat equation with the initial data f(x);

u(t, x) =
(
H(t)f

)
(x) .
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Figure 1. Superposition of the graph of the heat kernel at several times.

Complete the square to evaluate this Fourier integral definition of the heat
kernel;

H(t, x) =
1

2π

∫ +∞

−∞
eiξxe−

1
2 ξ

2t dξ

=
1

2π
e−

1
2x

2/t 1

2π

∫ +∞

−∞
e
1
2x

2/t+iξx−1
2 ξ

2t dξ

=
1

2π
e−

1
2x

2/t
∫ +∞

−∞
e−

1
2 (ξ

√
t−ix/

√
t)2 dξ .

Substitute ξ′ = ξ
√
t − ix/

√
t (which is actually an application of Cauchy’s

theorem of complex analysis), we find the expression

(3.5) H(t, x) =
1

2π
e−

1
2x

2/t
∫

e−
1
2 (ξ

′)2 dξ′√
t
dξ′ =

1√
2πt

e−
1
2x

2/t .

Theorem 3.1. The solution of the heat equation for initial data f ∈ L1(R1)
is given by the convolution of the initial data with the heat kernel;

u(t, x) =

∫ +∞

−∞
H(t, x− y)f(y) dy =

∫ +∞

−∞

1√
2πt

e−
1
2 (x−y)2/tf(y) dy .

Take note of the invariance under Brownian scaling of the quantity

1√
2πt

e−
1
2x

2/t dx ,

which is the Gaussian measure that is relevant to the heat equation.

This procedure via the heat kernel gives a unique solution among the
class of bounded solutions, or among solutions which are in L1(R1

x), or simply
among solutions which do not grow too rapidly as |x| → +∞. It is a
surprising fact, which will come up in a later discussion, that solutions of
the heat equation are not unique if we admit ones that are badly unbounded
[A. N. Tykonov (1977)].

The heat kernel H(t, x− y) for t > 0 has its maximum at x = y, where
the maximim value is 1√

2πt
, and width

√
t (defined as the distance between

its center and inflection point). A graph of the heat kernel, taken at several
snapshots in time, is given in Figure 1.
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It is reasonable to expect that we will obtain the same solution u(t, x) at
time t > 0 starting with data f(x) at time t = 0, if we alternatively solved
the heat equations up to time 0 < s < t, and then starting again at s with
data u(s, x), continued the solution for time t − s. That, is, in operator
notation

(3.6) H(t)f = H(t− s)H(s) , 0 < s < t .

This is the semigroup property, and it is related to the question of uniqueness.

3.2. Convolution operators

The evolution operator for the heat equation is an example of a convolution
operator, with convolution kernel the heat kernel H(t, x).

Definition 3.2. Let h(x) ∈ L1(R1), and define the convolution product with
f(x) ∈ L1(R1) to be

(
h ∗ f

)
(x) =

∫ +∞

−∞
h(x− x′)f(x′) dx′ .

In these terms the evolution operator for the heat equation can be writ-
ten as

u(t, x) = H(t)f(x) =
(
H(t, ·) ∗ f

)
(x) =

∫ +∞

−∞
H(t, x− x′)f(x′) dx′ .

Convolution operators with kernels h ∈ L1(R1) have a number of conve-
nient features, the most elementary ones are covered in the following propo-
sition.

Proposition 3.3. Let h(x), f(x), g(x) ∈ L1(R1). Then

(i) The convolution product is commutative and associative;
(
h ∗ f

)
(x) =

(
f ∗ h

)
(x)

h ∗
(
g ∗ f

)
=

(
h ∗ g

)
∗ f(x) .

(ii) If in addition ∂xf ∈ L1(R1) then differentiation commutes with the
operation of convolution;

∂x
(
h ∗ f

)
(x) = h ∗

(
∂xf

)
(x) .

(iii) Under Fourier transform, convolution with h(x) becomes a multiplica-
tion operator

ĥ ∗ f(ξ) =
√
2πĥ(ξ)f̂(ξ) .



3.3. The maximum principle 23

Proof. Address the statement (iii) first of all;

1√
2π

∫ +∞

−∞
e−iξx

(∫ +∞

−∞
h(x− x′)f(x′) dx′

)
dx

=
1√
2π

∫∫
e−iξ(x−x′)h(x− x′)e−iξx′

f(x′) dx′dx ,

by using Fubini’s Theorem. Then this quantity can be rewritten as

=
√
2π

( 1√
2π

∫
e−iξx′

f(x′)
( 1√

2π

∫
e−iξ(x−x′)h(x− x′) dx

)
dx′

)

=
√
2πf̂(ξ)ĥ(ξ) ,

which is the statement of (iii). This can now be used to prove (i) and (ii).
Indeed, since

ĥ ∗ f(ξ) =
√
2πĥ(ξ)f̂(ξ)

the order of multiplication does not play a role, and therefore the properties
of commutativity and associativity clearly hold. Furthermore,

̂∂x(h ∗ f)(ξ) = iξĥ ∗ f(ξ) =
√
2π(iξ)ĥ(ξ)f̂(ξ) ,

and the derivative can be seen either to be acting on the convolution product
or on f alone. The fact is that the Fourier transform has simultaneously
diagonalized the operations of convolution with h(x) and differentiation,
from which the results of the proposition are correlaries. �

3.3. The maximum principle

This fundamental principle is a feature of solutions of parabolic equations
such as the heat equation; we will encounter it as well when we take up the
topic of elliptic equations such as Lapace’s equation.

Theorem 3.4 (maximum principle). Suppose that the initial data satisfies

f(x) ≥ 0 for all x ∈ R1. Then either u(t, x) > 0 for all t > 0, or else both

u(t, x) ≡ 0 and f(x) ≡ 0.

The conclusion is powerful because of the fact that the existence of one
zero of the solution implies that both the whole solution and the initial data
mush vanish identically.

Proof. Observe that the heat kernelH(t, x) = 1√
2πt

e−
1
2x

2/t > 0 for all t > 0.

Hence if f(x) ≥ 0 then clearly

u(t, x) =
(
H(t, ·) ∗ f

)
(x) =

∫ +∞

−∞
H(t, x− x′)f(x′) dx′ ≥ 0 .

This non-strict inequality is called the weak maximum principle. By a fur-
ther argument we can prove that u(t, x) > 0 unless f ≡ 0. Suppose that
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f(x) ≥ 0 and define sets Bδ = {x : f(x) > δ}. If f is not identically zero
(excluding sets of zero Lebesgue measure) then Bδ is nonempty for some δ
and there is a bounded set A ⊆ Bδ with positive measure. Then

u(t, x) =

∫ +∞

−∞
H(t, x− x′)f(x′) dx′

≥
∫

A
H(t, x− x′)f(x′) dx′

≥
∫

A
H(t, x− x′)δ dx′ .

This last expression is surely positive, by the positive character of the heat
kernel H(t, x). There is more precise information available on a lower bound
for u(t, x) if we consider the Gaussian nature of the heat kernel;

u(t, x) ≥ δmeas(A) inf
x′∈A

( 1√
2πt

e−
(x−x

′)2

2t

)
.

�

3.4. Conservation laws and the evolution of moments

The heat equation is often called the diffusion equation, and indeed the
physical interpretation of a solution is of a heat distribution or a particle
density distribution that is evolving in time according to equation (3.1).
That is, in probabilistic terms, the quantity

Pt[a, b) =

∫ b

a
u(t, x) dx

represents the probability of the outcome of a random event taking its value
in the interval [a, b) at time t. For instance Pt[a, b) might represent the prob-
ability that a random particle lies in the interval at that time. For this inter-
pretation we should normalize the initial data f(x) so that

∫
R1 f(x) dx = 1,

and in particular we should require that f ∈ L1(R1). We can derive the heat
equation itself from this interpretation, given one more piece of information,
namely Fourier’s law of heat conservation and flux. Take [a, b) to be an
arbitrary interval, the change in heat over this interval in time is given by

∂tPt[a, b) = ∂t

∫ b

a
u(t, x) dx = F (a)− F (b) ,

where Fourier’s law of heat conservation posits that this change is given by
the flux of heat across the boundary. Namely, F (a) is interpreted to be
the flux of heat across the boundary point a into the interval, and F (b) is
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interpreted to be the flux of hear out of the interval across the boundary
point b. Fourier’s law for the heat flux gives the form as

F (a) := −1
2∂xu(t, a) ,

and similarly for b, so that

∂tPt[a, b) =

∫ b

a
∂tu(t, x) dx = F (a)− F (b)

= 1
2∂xu(t, b)− 1

2∂xu(t, a) =

∫ b

a

1
2∂

2
xu(t, x) dx .

Since the interval [a, b) is arbitrary, the heat density u(t, x) must satisfy the
heat equation ∂tu = 1

2∂
2
xu.

This interpretation must satisfy two conditions in order to be consis-
tent; (i) the total amount of heat must be conserved, and (ii) if the initial
heat distribution f(x) ≥ 0 then for all t ≥ 0 we should have u(t, x) ≥ 0.
The second condition is already satisfied for us by the maximum principle.
Regarding the first, there is the following result.

Theorem 3.5. If u(t, x) ∈ L1(R1) is a solution of (3.1) then for all t ≥ 0
∫ +∞

−∞
u(t, x) dx =

∫ +∞

−∞
f(x) dx .

Proof.

∂t

∫ +∞

−∞
u(t, x) dx =

∫ +∞

−∞
∂tu(t, x) dx

=

∫ +∞

−∞

1
2∂

2
xu(t, x) dx = 1

2 lim
R→+∞

(
∂xu(t, R)− ∂xu(t,−R)

)
= 0 .

�

In fact the proof is incomplete for we should also have shown that when
f(x) ∈ L1(R1) then for t > 0 we have ∂2

xu(t, x) ∈ L1(R1), and then jus-
tify the exchanges of differentiation and integration and the integrations by
parts. These facts will be addressed in the later Chapter on the properties
of the Fourier transform.

The interpretation of a solution u(t, x) of (3.1) as the density of a prob-
ability measure motivates a discussion of the time evolution of its moments.
For a given distribution f(x) dx define the kth moment to be the quantity

(3.7) mk(f) =

∫ +∞

−∞
xkf(x) dx .

For an arbitrary f(x) ∈ L1(R1) this may be infinite or not well defined, but
for suficiently well localized functions it makes perfectly good sense. To give
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examples, take the case of the heat kernel itself, then

m0(H(t, ·)) =
∫ +∞

−∞

1√
2πt

e−
x
2

2t dx = 1

m1(H(t, ·)) =
∫ +∞

−∞

1√
2πt

xe−
x
2

2t dx = 0

m2(H(t, ·)) =
∫ +∞

−∞

1√
2πt

x2e−
x
2

2t dx = t .

Now consider the initial vaue problem for the heat equation, our solution
procedure yields u(t, x) = H(t, ·) ∗ f(x), and the resulting heat distribution
u(t, x) dx has moments which are given by

mk(u(t, ·)) =
∫ +∞

−∞
xku(t, x) dx =

∫∫
xk

1√
2πt

e−
(x−x

′)2

2t f(x′) dx′dx .

Proposition 3.6. The first two moments of the solution u(t, x) are con-
served;

m0(u(t, ·)) = m0(f) , m1(u(t, ·)) = m1(f) .

To deduce the evolution properties of the higher moments of u(t, x) dx
we will derive further elementary properties of the Fourier transform.

Proposition 3.7. For sufficiently well behaved functions g(x), the Fourier
transform has the property that

F(xkg(x)) = (iξ)kĝ(ξ) ,
∫ +∞

−∞
g(x) dx =

√
2πĝ(0) .

Proof. This first statement is essentially dual to that of Proposition 2.3.
Observe by integrations by parts that

∫
e−iξx

(
xkg(x)

)
dx =

∫ (
(i∂ξ)

ke−iξx
)
g(x) dx = (i∂ξ)

k

∫
e−iξxg(x) dx ,

which is the first statement of the proposition. To show the second state-
ment, ∫

g(x) dx =

∫
e−iξxg(x) dx

∣∣
ξ=0

=
√
2πĝ(0) .

Hypotheses on the function g(x) are necessary in order to justify the inte-
grations by parts and the limits. �

We use this information in order to compute moments; since

x̂ku(t, ξ) = (i∂ξ)
kû(t, ξ) =

√
2π(i∂ξ)

k
(
Ĥ(t, ξ)f̂(ξ)

)
,
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therefore

mk(u(t, ·)) =
∫

xku(t, x) dx =
√
2π

(
(i∂ξ)

kû(t, ξ)
)∣∣

ξ=0

= 2π
(
(i∂ξ)

kĤ(t, ξ)f̂(ξ)
)∣∣

ξ=0
.

In particular for k = 0,

m0(u(t, ·)) = 2πĤ(t, 0)f̂(0) =
√
2πf̂(0) = m0(f) ,

which gives the first statement of Proposition 3.6. For k = 1,

m1(u(t, ·)) = 2πi∂ξ
(
Ĥ(t, ξ)f̂(ξ)

)∣∣
ξ=0

= 2πi
(
∂ξĤ(t, ξ)f̂(ξ) + Ĥ(t, ξ)∂ξ f̂(ξ)

)∣∣
ξ=0

= 2πĤ(t, 0)∂ξ f̂(ξ)
∣∣
ξ=0

= m1(f) .

This proves the second statement of Proposition 3.6, for initial data with
finite zeroth and first moments, at least. The general case is now clear;

mk(u(t, ·)) = 2π(i∂ξ)
k
(
Ĥ(t, ξ)f̂(ξ)

)
|ξ=0

= 2πik
k∑

j=0

(
j
k

)(
∂j
ξĤ(t, ξ)∂k−j

ξ f̂(ξ)
)
|ξ=0

=
k∑

j=0
j even

mj(H(t, ·))mk−j(f) .

We used the Leibnitz product rule for for differentiation in the second line,
and in the third line we used that a odd moments of the heat kernel are
zero, as the kernel itself is an even function of x.

A property of solutions of the heat equation, related to that of conserva-
tion of heat as in Theorem 3.5, is that the evolution has a certain contraction
property on a number of common spaces of functions.

Proposition 3.8. Let u(t, x) solve the heat equation (3.1) with initial data
f ∈ L2(R1). Then the L2-norm of u(t, ·) is a decreasing function of t;

‖u(t, ·)‖L2 ≤ ‖f‖L2 .

Proof. Compute the time derivative of the norm;

∂t‖u(t, ·)‖2L2 = ∂t

∫
u2(t, x) dx

=

∫
2u(t, x)∂tu(t, x) dx =

∫
2u(t, x)12∂

2
xu(t, x) dx

= −
∫

|∇u(t, x)|2 dx ≤ 0 .
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Thus we find that

‖u(t, ·)‖2L2 − ‖f‖2L2 =

∫ t

0
∂t‖u(s, ·)‖2L2 ds ≤ 0 .

One needs to revisit this calculation in order to justify the integration by
parts. �

We have already seen that the setting of L1(R1) functions is sometimes
more natural for the heat equation than that of L1(R1). It turns out that
time evolution by heat flow is also a contraction in L1(R1).

Proposition 3.9. Let f ∈ L1(R1) and let u(t, x) solve the heat equation
with initial data f . Then ‖u(t, ·)‖L1 is a nonincreasing function of t;

‖u(t, ·)‖L1 ≤ ‖f‖L1 .

Proof. The easy case is for f ∈ L1 to be of one sign; say for convenience
that f(x) ≥ 0. The the maximum principle implies that u(t, x) ≥ 0 as well,
so that

∂t

∫
|u(t, x)| dx = ∂t

∫
u(t, x) dx

=

∫
∂t u(t, x) dx =

∫
1
2∂

2
xu(t, x) dx = 0 ,

and the L1-norm is unchanged by the flow. However when the initial data
f(x) changes sign, the L1-norm will in fact be decreasing in time. To show
this, decompose the initial data f(x) = f+(x)− f−(x), respectively its posi-
tive and negative parts. Both f±(x) ≥ 0, and furthermore they have essen-
tially disjoint support; {f+ 6= 0} ∩ {f− 6= 0} = ∅. The L1-norm of f is then
the sum of the L1-norms; indeed
∫

|f(x)| dx =

∫
(f+(x) + f−(x)) dx =

∫

supp(f+)
f+ dx+

∫

supp(f−)
f− dx .

The previous result can now be applied to the two initial data, respectively
f+ and f−,

‖u+(t, ·)‖L1 = ‖f+‖L1 , ‖u−(t, ·)‖L1 = ‖f−‖L1 .

The solution is obtained from the sum, u(t, x) = u+(t, x)−u−(t, x), however
the maximum principle applies, so that as long as neither of f± is zero
almost everywhere, then supp(u+) = supp(u−) = R1. We therefore have
the estimate

‖u(t, ·)‖L1 = ‖u+ − u−‖L1

≤ ‖u+‖L1 + ‖u−‖L1 = ‖f+‖L1 + ‖f−‖L1 = ‖f‖L1 .
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Since we are assuming that both u+ and u− are not zero, then there must
be some cancellation in the inequality of the second line, and hence the
inequality is in fact strict. �

Most of the results of this chapter hold in general for the heat equation
posed in higher dimensional space Rn, for any dimension n.

3.5. Gradient flow

The last section of the chater has to do with an interpretation of the heat
equations as a gradient flow for the energy functional

(3.8) E(u) =
1

4

∫
|∇u|2 dx .

To illustrate gradient flow with a finite dimensional example, let

e(v) : Rd → R

be a C1 function of v ∈ Rd. Its gradient ∇e(v) (defined in terms of the
Euclidian inner product on Rd) is given by the formula

d

dσ

∣∣∣
σ=0

e(v + σV ) = 〈∇e(v), V 〉 .

The (negative) gradient flow of e is the solution map of the ordinary differ-
ential equation

v̇ = −∇e(v) .

The function e(v) is decreasing along trajectories of this equation, indeed

d

dt
e(v(t)) = 〈∇e(v), v̇(t)〉 = −〈∇e(v),∇e(v)〉 ≤ 0 .

Such flows play a role in Morse theory, among many other things.

The heat equation defines a flow in space of functions. Using a similar
calculation, we can identify this as a gradient flow for the energy functional
E(u).

d

dσ

∣∣∣
σ=0

E(u+ σw)

=
d

dσ

∣∣∣
σ=0

1

4

∫
|∇u+ σw|2 dx

=
d

dσ

∣∣∣
σ=0

1

4

∫
|∇u|2 + 2σ∇u · ∇w + σ2|∇w|2 dx

= 1
2

∫
σ∇u · ∇w dx .
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In order to describe this quantity in terms of the L2 inner product one
integrates by parts;

d

dσ

∣∣∣
σ=0

E(u+ σw) = −
∫

1
2∆uw dx ,

which identifies gradE(u) = −∆u. The (negative) gradient flow is therefore

∂tu = −gradE(u) = 1
2∆u ,

which is precisely the heat equation (1.8).

Exercises: Chapter 3

Exercise 3.1. Show that the heat kernel satisfies the identity

H(t, x) =

∫ +∞

−∞
H(t− s, x− x′)H(x′, s) dx′ , 0 < s < t ,

which is a key step of a proof of the semigroup property (3.6) for the solution
operator H(t) of the heat equation.


