
Chapter 5

Properties of the

Fourier transform

The purpose of this section is to raise our level of sophistication of the
analysis of the Fourier transform, and to make up our backlog of analytic
justification of our work in the previous several sections. The Fourier trans-
form plays a very important role in analysis, and for this reason it has been
thoroughly analyzed from many points of view, by many people in many
different settings. We will work through the bodies of two of the principal
settings in this subsection, the ones most important to analysis and PDE.
The cases are

(1) Hilbert spaces: covered in Section 5.1.

(2) Schwartz class: covered in Section 5.2.

5.1. Hilbert spaces

Definition 5.1. The usual Hilbert space for us is L2(Rn), which consists of
the square-integrable measurabe functions on Rn;

L2(Rn) = {f(x) Lebesgue measurable in Rn,

∫

Rn

|f(x)|2dx < +∞}.

Proposition 5.2 (Elementary properties of L2(Rn)). (1) The space of func-
tions L2(Rn) is a linear space, namely if f, g ∈ L2, then this implies that
αf + βg ∈ L2.
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56 5. Properties of the Fourier transform

(2) The topology on L2(Rn) is given by a norm, which is homogenous of
degree 1.

‖f‖L2 =
(∫

Rn

|f(x)|2 dx
)1/2

‖αf‖L2 = |α|‖f‖L2 , ‖f‖L2 = 0 ⇔ f = 0 .

(3) The norm satisfies the triangle (or Minkowski) inequality:

‖f + g‖L2 ≤ ‖f‖L2 + ‖g‖L2 .

(4) The linear space L2(Rn) is complete with respect to the norm

‖f‖L2 = (

∫

Rn

|f(x)|2dx|) 1

2 .

That is, if {fn}∞n=1 ⊆ L2(Rn) is a Cauchy sequence of functions, then there
exists a limit function f(x) ∈ L2(Rn) such that fn(x) →L2 f(x) (meaning
‖fn(x)− f(x)‖L2 → 0).

(5) Furthermore, the norm on L2(Rn) is given by an inner product:

〈f, g〉 =
∫
f(x)g(x) dx , 〈f, f〉 = ‖f‖2L2 .(5.1)

The inner product satisfies the Schwartz inequality:

|〈f, g〉| ≤ ‖f‖L2‖g‖L2 .

(6) The “dual space”, or space of bounded linear functionals on L2(Rn), is
L2(Rn) itself.

Definition 5.3 (Banach and Hilbert spaces). A linear space with a norm,
which is complete, is a Banach space. A Banach space whose norm is given
by an inner product is a Hilbert space.

Our favourite Hilbert space L2(Rn) has its inner product defined in
(5.1). One reason that L2(Rn) is a natural setting for the Fourier transform
is that it is preserved under the transform. In Rn, we define the transform
as follows:

f̂(ξ) =
1√
2π

n

∫

Rn

e−iξ·xf(x)dx = (Ff)(ξ) .

Theorem 5.4. The Fourier transform is an isometry of L2(Rn). That is,

‖f‖L2(Rn
x)

= ‖f̂‖L2(Rn
ξ
), or stated in other words,

∫

Rn
x

|f(x)|2 dx =

∫

Rn
ξ

|f̂(ξ)|2 dξ .
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This equality between the L2 norms of a function and its Fourier transform
is known as the Plancherel identity; it is a general fact about the Fourier
transform that holds in many settings. The proof of Theorem 5.4 is deferred
until the end of our discussion of Schwartz class.

Other examples of Hilbert spaces and Banach spaces as tools of analysis
include the following:

(1) Sobolev spaces Hs(Rn) (Hilbert spaces based on L2 norms):

Hs(Rn) = {f(x) :
∑

0≤|α|≤s

(∫
|∂αx f(x)|2 dx

) 1

2

< +∞} .

This is a scale of spaces, which are nested in terms of decreasing index s:
Hs ⊆ Hs−1 ⊆ · · · ⊆ L2(Rn).

(2) Lp spaces (Banach spaces):

Lp(Rn) = {f(x) :
(∫

Rn

|f(x)|p dx
) 1

p
< +∞} .

For p = ∞ the space of bounded measurable functions on Rn is denoted by
L∞(Rn), and has a norm given by

‖f‖L∞ := sup
x∈Rn

|f(x)| .

(3) Sobolev spaces W s,p(Rn) (Banach spaces modeled on Lp norms):

W s,p(Rn) = {f(x) :
∑

0≤|α|≤s

(∫
|∂αx f(x)|p dx

) 1

p
< +∞} .

(4) Schauder spaces Cs,γ(Ω) (Banach spaces modeled on C0 norms):

Cs,γ(Ω) = {f(x) : sup
x∈Ω

|∂αx f(x)| < +∞ ∀|α| ≤ s

and ∀|α| = s, sup
x,y∈Ω,x 6=y

|∂αx f(x)− ∂αx f(y)|
|x− y|γ } < +∞} .

The many relationships of inclusion among these spaces, and their as-
sociated inequalities of norms, are important information for the analysis
of PDE. A principal one that is very often used in PDEs is the Sobolev
Embedding Theorem. A version of this result is as follows:

Theorem 5.5 (Sobolev embedding). If f(x) ∈ Hs(Rn) for a Sobolev index

s > n
2 then

|f(x)|L∞ ≤ Cn‖f‖Hs .

In other words Hs ⊆ L∞ for s > n
2 , and there is a bound on the inclusion

operator ι : Hs → L∞ given by the constant Cn.
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Proof. Consider the value of f(x) at an arbitrary point of Rn,

|f(x)| =
∣∣ 1√

2π
n

∫

Rn

eiξ·xf̂(ξ) dξ
∣∣

=
∣∣ 1√

2π
n

∫

Rn

eiξ·x
1

(1 + |ξ|2) s
2

(1 + |ξ|2) s
2 f̂(ξ) dξ

∣∣ .

Using the Cauchy – Schwarz inequality on this last expression

|f(x)| ≤ 1√
2π

n

(∫ 1

(1 + |ξ|2)s dξ
) 1

2

(∫
(1 + |ξ|2)s|f̂(ξ)|2 dξ

) 1

2

.(5.2)

By the binomial theorem

(∫
(1 + |ξ|2)s|f̂(ξ)|2 dξ

) 1

2

=
( s∑

j=0

∫ (
s

j

)
|ξ|2j |f̂(ξ)|2 dξ

) 1

2

=
( s∑

j=0

∫ (
s

j

)
|∇jf(x)|2 dx

) 1

2 ≤ C‖f‖Hs ,

where we have used the Plancherel identity for f(x) and its derivatives in
the last line. This holds of course for any integer s. It remins to bound the
RHS of (5.2);

(∫ 1

(1 + |ξ|2)s dξ
) 1

2

=

∫

Sn−1

∫ +∞

0

1

(1 + r2)s
rn−1dr dSϕ ,

and if s > n
2 then this quantity is finite, which finishes the proof. �

5.2. Schwartz class

This linear space of functions was introduced by Laurent Schwartz (Ecole
Polytechnique - Paris) in order to embody a very convenient class of func-
tions with which to work; for which one can interchange integrations with
differentiations and integrate by parts with impunity. Colloquially, f(x) is a
Schwartz class function if it is infinitely differentiable, and if it decays along
with all of its derivatives as |x| → ∞ faster than any polynomial.

Definition 5.6 (Schwartz class). Consider the functions f(x) defined over
Rn such that for all α, β,

sup
x∈Rn

|xα∂βxf(x)| < +∞.

The linear space of such functions is called Schwartz class.

Recall our previously introduced notation that is a convenient notational
device for multivariable processes:; the quantities α, β are multi-indices, α =
(α1, α2, ..., αn), β = (β1, β2, ..., βn), with each αi, βj ∈ N. Thus, we have
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|α| = |α1|+ · · ·+ |αn| so that xα = xα1

1 xα2

2 . . . xαn
n a monomial of degree |α|

and ∂βx = ∂β1

x1
∂β2

x2
. . . ∂βn

xn = Π∂
βj
xj a differential operator of order |β|.

With this notation, many combinatorially complex objects can be writ-
ten very conveniently. For example, Taylor series in n dimensions can be
stated

f(x) ∼
∑

α

1

α!
∂αx f(y)(x− y)α

with α! = α1!α2! . . . αn!.

Here are several examples of particular functions, where we can compare
their properties of smoothness and decay in x ∈ Rn to those of Schwartz
class:

f(x) = e−
x2

2 ∈ S ,

f(x) = (1 + |x|2)− b
2 /∈ S but f(x) ∈ L2(Rn) for b > n/2 ,

f(x) = e−|x| /∈ S for a different reason .

The space C∞
0 of infinitely differentiable functions with compact support

is a subset of S as a subspace, C∞
0 ⊆ S, and the space C∞ of bounded

infinitely differentiable functions contains Schwartz class; S ⊆ C∞. The
space Cω(Rn) of bounded real analytic function on Rn (the restriction to
x ∈ Rn of functions that are analytic in a neighborhood of Rn ⊆ Cn) is a
subset of C∞, but not every C∞ function is analytic.

The topology of S is defined using a countable family of seminorms

‖f‖α,β = sup
x∈Rn

|xα∂βxf(x)| .

That is to say, a sequence {fn(x)}∞n=1 converges to f(x) if and only if for all
multi-indices α, β the seminorms

‖fn − f‖α,β = sup
x

|xα∂βx (fn(x)− f(x))| → 0

with n → ∞. No uniformity in α, β is implied, however. Some functional
analytic remarks are in order at this point. The space S is a linear space, but
not a Banach space, and there is no way to describe this sense of convergence
by using a norm. It is, however, a metric space, with the distance between
two points given by

ρ(f, g) =
∑

α,β

1

2n(|α|+|β|)
‖f − g‖α,β

1 + ‖f − g‖α,β
,

and it is complete with respect to this metric. Clearly {fn(x)}∞n=1 converges
in S to f(x) if and only if ρ(fn, f) → 0 if and only if all ‖fn − f‖α,β → 0 as
n → ∞. The notation for limits of sequences of functions in this Schwartz
class sense is to write S − lim fn = f . Metric spaces such as this one whose
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topology is given by a countable number of semi-norms are called Fréchet

spaces.

Lemma 5.7 (technical lemma). This result quantifies the propertes of scal-
ing limits of two quantities, giving rise to well defined functionals on S:
(i) Let g ∈ S with g(0) = 1. Then for all f ∈ S,

S − lim
ε→0

(g(εx)f(x)) = f(x) .

(ii) Let h(x) ∈ L1(Rn), with
∫
h(x)dx = 1, and suppose that f(x) is

bounded, and continuous at x = 0. Then

lim
ε→0

∫
f(x)

1

ε
h(
x

ε
)dx = f(0) .

For h(x) ∈ L1Rn, with
∫
h(x) dx = 1, the limit operation in (5.7) describes

the approximation of the Dirac δ-function by rescaling a L1 function h(x).

Proof of Lemma 5.7(ii). By change of variables,
∫

1

εn
g(
x

ε
) dx =

∫
g(x′) dx′ = 1 ,

with x′ = x
ε . Given δ > 0, choose r > 0 such that |f(x) − f(0)| < δ for all

|x| < r. Then write
∫
f(x)

1

ε
h(
x

ε
) dx =

∫
f(0)

1

εn
h(
x

ε
) dx+

∫
(f(x)− f(0))

1

εn
h(
x

ε
) dx .

The first term is f(0). Split the second term in two:

∣∣
∫

|x|<r
(f(x)− f(0))

1

εn
h(
x

ε
) dx

∣∣ ≤ δ
∣∣
∫

|x|<r

1

εn
h(
x

ε
) dx

∣∣ ≤ δ‖h‖L1

∣∣
∫

|x|≥r
(f(x)− f(0))

1

εn
h(
x

ε
) dx

∣∣ ≤ 2 sup
x

|f(x)|
∣∣
∫

1

εn
|h(x

ε
)| dx

∣∣

= 2 sup
x

|f(x)|
∣∣
∫

|x′|≥ r
ε

1

εn
|h(x′)|dx′

∣∣

and the RHS of the last term with r fixed tends to zero with ε→ 0. �

The proof of Lemma 5.7(ii) appears in the exercises of this Chapter.

Corollary 5.8. The space C∞
0 ⊆ S is a dense subspace of S.

Proof. This uses 5.7: Take any g ∈ C∞
0 with g(0) = 1. Then for f ∈ S

arbitrary,

g(εx)f(x) ∈ C∞
0

and

S − lim
ε→0

(g(εx)f(x)) = f(x) .
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�

The space of distributions is the space of continuous linear functionals
on C∞

0 ; D′ = (C∞
0 )′, otherwise known as its dual space. The space of

tempered distributions is the dual space of S. Also, we write E ′ for the dual
space to C∞, the space of bounded infinitely differentiable functions. Since
C∞
0 ⊆ S ⊆ C∞, then E ⊆ S ′ ⊆ D′.

The Fourier transform acts nicely on S; for f(x) ∈ S define the Fourier
transform as usual

f̂(ξ) =
1√
2π

n

∫
e−iξ·yf(y) dy = F(f)(ξ) .

One checks that this integral converges absolutely because f(x) ∈ S; indeed

|e−iξ·xf(x)| ≤ ‖f‖N,0
1

(1 + |x|2)N
2

,

and N > n + 1 will do for this. For Schwartz class f(x) we may exchange
integrations and differentiations as much as we wish, therefore the following
list of properties holds for f̂(ξ).

Proposition 5.9 (Elementary properties of the Fourier transform on S).
(1) ∂̂xf(ξ) = (iξ)f̂(ξ).

(2) x̂f(ξ) = i∂ξ f̂(ξ).

Notice the vectorial notation; x and i∂ξ are vector operations.

Define two operations on functions: τhf(x) = f(x − h) (translations) and
(σλf)(x) = f(λx) (dilations).

(3) τ̂hf(ξ) = e−ihξ f̂(ξ) a position boost.

(4) êihxf(ξ) = f̂(ξ − h) a momentum boost.

(5) σ̂λf(ξ) =
1

|λ|nσ(1/λ)(f̂)(ξ) =
1

|λ|n f̂(ξ/λ).

The principal reason why Schwartz class is well-suited for Fourier anal-
ysis is that it is invariant under the Fourier transform.

Theorem 5.10. The Fourier transform maps S onto itself; that is, when-

ever f ∈ S, then f̂ = F(f) ∈ S.

Proof. For f(x) ∈ S, at the very least f̂(ξ) makes sense as a convergent

integral. In order to check that f̂(ξ) ∈ S, we have to check that all of
the seminorms are finite, which we do using the properties described in
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Proposition 5.9.

‖f̂‖α,β = sup
ξ

|ξα∂βξ f̂(ξ)|

= sup
ξ

∣∣∣ 1√
2π

n

∫
e−iξ·x((

1

i
∂x)

α(
1

i
x)βf(x)) dx

∣∣∣.

This integrand is still bounded by Cβ+N,α(1+ |x|2)−N
2 , and hence the supre-

mum over ξ ∈ Rn is finite. Furthermore, the Fourier transform is continuous
on S. Suppose that {fn(x)}∞n=1, and fn →

S
f . This implies that for each

α, β,

‖f̂n − f̂‖α,β = sup
ξ

∣∣∣ 1√
2π

n

∫
e−iξ·x((

1

i
∂x)

α(
1

i
x)β(fn(x)− f(x))) dx

∣∣∣ → 0

with n → ∞ as well. Hence f̂n(ξ) →
S
f̂(ξ), and therefore the mapping

f̂ : S → S is continuous. �

Finally we are prepared to prove the central theorem of Fourier inversion on
S.

Theorem 5.11 (Fourier inversion theorem on S). Suppose that f ∈ S, then

f(x) =
1√
2π

n

∫
eiξ·xf̂(ξ) dξ = F−1(f̂)(x) .

Proof. Lets first note that this works if f(x) is a Gaussian. For G(x) =

1√
2π
e−

|x|2

2 then Ĝ(ξ) = 1√
2π
e−

|ξ|2

2 , by explicit calculation. One interpretation

of this fact is that G(x) is an eigenfunction of the Fourier transform, F(G) =
G, with eigenvalue 1. Now for the case of general f(x) ∈ S, use properties
given in (5.7),

f(0) = lim
ε→0

∫
f(x)

1

εn
G(
x

ε
) dx = lim

ε→0

∫
f(x)

1

εn
σx

ε
(G) dx

= lim
ε→0

∫
f(x)

1

εn
σx

ε
(Ĝ) dx = lim

ε→0

∫
f(x)σ̂ε(G) dx

= lim
ε→0

∫
f̂(ξ)σε(G)(ξ) dξ .

We have to verify the last step of this sequence of calculations.

Lemma 5.12. For f, g ∈ S, then
∫
f(x)ĝ(x)dx =

∫
f̂(ξ)g(ξ)dξ .
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Proof of Lemma 5.12.∫
f(x)

1√
2π

n

∫
e+iξ·x dx g(ξ) dξ =

1√
2π

n

∫
f(x)

∫
e+iξ·x dx g(ξ) dξ

=

∫
(f̂(ξ)g(ξ)) dx .

�

Now apply (5.7) to the result. Since G(ξ)
∣∣
ξ=0

= 1√
2π

n ;

f(0) = lim
ε→0

∫
f̂(ε)G(ε/ξ) dξ =

1√
2π

n

∫
f̂(ξ) dξ .

This recovers f(0) = 1√
2π

n

∫
f̂(ξ) dξ. To generalize this procedure to cover all

x ∈ Rn is in fact simple, again using the list of properties in Proposition 5.9:

f(x) = (τ−xf)(0) =
1√
2π

n

∫
F(τ−xf)(ξ) dξ =

1√
2π

n

∫
eiξ·xf̂(ξ) dξ .

�

We can finish this circle of ideas with a proof of the L2(Rn) Fourier
inversion theorem. We have shown that Schwartz class S ⊆ L2(Rn) is a
dense subspace. The Lemma 5.12 states that for f, g ∈ S, then

〈f,F−1g〉 = 〈Ff, g〉 ,
where we also note that

(F−1g)(x) = ĝ(−ξ) .
Therefore for every f ∈ S,

‖f‖L2 = 〈f,F−1(Ff)〉
= 〈F(f),F(f)〉
= ‖f̂‖2L2 .

so the Fourier transform acts on the the subspace S ⊆ L2(Rn) isometrically
(in the sense of the L2-norm). Since S is dense, given an arbitrary f ∈
L2(Rn), there is a sequence fn → f in the L2(Rn) sense of convergence,
with fn ∈ S. Then we define

F(f) = lim
n→∞

F(fn).

Theorem 5.13 (of functional analysis). : Suppose that an operator T is

defined on a dense subspace S ⊆ B a Banach space, and it is bounded;

‖Tf‖B ≤ C‖f‖B for all f ∈ S. Then there exists a unique extension T(1)

of T to all of B, which is bounded with the same bound.
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Proof. For arbitrary f ∈ B consider a sequence {fn}∞n=1 → f , with {fn}∞n=1 ⊆
S. Then {fn}∞n=1 is Cauchy, and so is the sequence {Tfn}∞n=1 because

‖Tfn −Tfm‖B ≤ C‖fn − fm‖B → 0 .

Thus {Tfn}∞n=1 has a limit g ∈ B, which we define to be T(1)f := g. The
extension is clearly linear. It is also well-defined, for if {hn}∞n=1 ⊆ S is
another sequence such that {hn}∞n=1 → f , but Thn → g1, then

‖g − g1‖B = lim
n→∞

‖Tfn −Thn‖B ≤ C lim
n→∞

‖fn − hn‖B = 0 .

�

The conclusion that is relevant to the Fourier transform is that F re-
stricted to S (such that it has norm ‖Ff‖L2 = ‖f‖L2 on S) extends uniquely
to F (1) defined on all of L2(Rn). Furthermore, this extension is an isometry
of L2(Rn), as for {fn}∞n=1 ⊆ S ⊆ L2(Rn), with fn → f ;

‖f‖2L2 = lim
n→∞

‖fn‖2L2 = lim
n→∞

‖f̂n‖2L2 = ‖F1(f)‖2L2 .

This completes the proof of 5.4. We will redefine the extension notation
F (1) := F at this time, dropping the extra superscript. The statement is
then that ‖f‖L2 = ‖Ff‖L2 for all f ∈ L2, which is the desired result.

To finish our remarks we should note that complex isometries U have
the property that U∗ = U−1; namely they are unitary operators. Lets verify
this with the Fourier transform.

Definition 5.14. The adjoint T∗ of an operator T on a Hilbert space H
satisfies 〈T∗f, g〉 = 〈f,Tg〉 for all f, g ∈ H.

Applying this definition of the adjoint to F , take any two f, g ∈ L2.
Then

∫

Rn

g(ξ)F(f)(ξ) dξ =

∫

Rn

g(ξ)
1√
2π

n

∫
e−iξ·xf(x) dxdξ

=

∫

Rn

(

∫

Rn

1√
2π

n e
iξ·xg(ξ) dξ)f(x) dx

=

∫

Rn

F−1(g)(x)(f(x)) dx ,

which states that F∗ = F−1, as desired.

Exercises: Chapter 5

Exercise 5.1. Show that the Fourier transform preserves angles between
vectors. For f, g ∈ L2 then,

Re〈f, g〉 = ‖f‖L2‖g‖L2 cos θ
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and
Re〈f̂ , ĝ〉 = ‖f̂‖L2‖ĝ‖L2 cosϕ .

Show that θ = ϕ.

Exercise 5.2. The Lp(Ω) norm for functions on a domain Ω ⊆ Rn is defined
as

‖f‖Lp =
(∫

Ω
|f(x)|p dx

)1/p
,

for 1 ≤ p < +∞. The Hölder inequality states that
∣∣
∫

Ω
f(x)g(x) dx

∣∣ ≤ ‖f‖Lp‖g‖Lp′

where 1
p + 1

p′ = 1 are dual indices. A special case for p = p′ = 2 is the

Cauchy – Schwarz inequality.

Give a proof of the Hölder inequality for the range of p, p′ given above.

Exercise 5.3. This problem concerns the case of domains Ω = Rn and of
bounded domains Ω ⊆ Rn.

(1) In the case of Ω = Rn, for which indices p and q does the following
hold:

Lp(Rn) ⊆ Lq(Rn) ?

(2) In the case of bounded Ω, use the Hölder inequality to show that

Lp(Ω) ⊆ Lq(Ω) .

for q ≤ p.

(3) In the case of bounded Ω, is it true that

L∞(Ω) =
⋂

1≤p<+∞
Lp(Ω) .

Exercise 5.4. Prove the part (i) of the technical lemma 5.7 on Schwartz
class functins. Namely show that for g ∈ S(Rn) such that g(0) = 1, then
for all f ∈ S(Rn)

S − lim
ε→0

(
g(εx)f(x)

)
= f(x) .

Exercise 5.5. Give examples of non-analytic, C∞ functions on Rn.

Exercise 5.6. We have described the Fourier transform F as a unitary op-
erator on L2(Rn). What are the eigenvalues and eigenfunctions (λk, ψk(x))
of this operator. For simplicity you may consider only the case n = 1.

Exercise 5.7. The Schrödinger operator that describes quantum harmonic
oscillator is given by

1
2∆ψ − 1

2 |x|
2ψ = λψ .

Show that it is invariant under the Fourier transform, and describe its eigen-
functions and eigenvalues.


