
Math 4FT /Math 6 FT
Final Exam

Walter Craig
Fall term 2015-2016

Math 4FT students: Do at least four of the six problems below.
Math 6FT students: Do all six problems below.
Due date: Tuesday December 15, 2015.

Problem 1. Equations with variable dispersion

Consider the linear evolution equation

∂tu+ x∂3xu = 0 ,

u(0, x) = h(x) ∈ L2(R1) ,

which is related to the KdV equation.

(a) Give an explicit expression for the solution, using the Fourier transform and the method
of characteristics.

(b) For initial data h(x) such that supp(ĥ(ξ)) ⊆ BR(0), what is the (future) lifespan [0, T ∗)
of the solution? What happens to the solution as t→ T ∗?

(c) Is the solution unique?

(d) For t < 0 what is the lifespan of the solution?

Problem 2. Convolutions and the central limit theorem

Consider a function h(x) ∈ L1(R1) which satisfies∫
h(x) dx = 1 ,

∫
xh(x) dx = 0 ,

∫
x2h(x) dx = σ2 < +∞ .

(a) Show that Show that ĥ(0) = 1√
2π

. Furthermore show that the multiple convolutions

h(n)(x) := h ∗ h . . . (n×) . . . h(x) also satisfy∫
h(n) dx = 1 ,

and therefore ĥ(n)(0) = 1√
2π

.

(b) Explain why ĥ is twice continuously differentiable at ξ = 0. It follows that in a neigh-
borhood of ξ = 0 we have

ĥ(ξ) =
1√
2π

(
1 + iξĥ′(0)− ξ2

2
ĥ′′(0) +O(ξ3)

)
.
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Furthermore ĥ′(0) = 0.

(c) Rescaling by
√
n and taking the Fourier transform, show that

F(h(n))(
ξ√
n

) = (ĥ(
ξ√
n

))n =
1√
2π

(
1− ξ2

2n
ĥ′′(0)

)n
+ o(

1

n
) .

In the limit n→ +∞ this quantity converges to

1√
2π
e−(ξ

2/2)σ2

.

This shows that repeated convolution, in the (appropriately rescaled) limit converges to the
Gaussian

lim
n→+∞

h(n)(
√
n) =

1√
2πσ

e−x
2/(2σ2) ,

which is one way to state the central limit theorem.

Problem 3. Laplace’s equation with a reentrant corner. Consider domains Ω in R2 consisting
of a disk B1(0) intersect the conic neighborhood {(r, θ) : 0 < θ < π/α}, where 1/2 < α is a
constant. When 1/2 < α < 1 this is a domain with a corner removed.

(a) Show that u(x, y) = im(zα) is a harmonic function on Ω (where we are using complex
notation). Show that u satisfies Dirichlet boundary conditions on the two boundary com-
ponents {θ = 0, 0 < r < 1} and {θ = π/α, 0 < r < 1}, and that u is bounded on the third
boundary component consisting of the arc {r = 1, 0 < θ < π/α}.
(b) Show that the gradient ∇u(x, y) is not in Lp(Ω) for some range of 2 < p ≤ +∞.

Problem 4. The Cauchy problem for the wave equation, and Duhamel’s principle
Consider the wave equation on R1

t × Rn
x,

�u = ∂2t u−∆u = 0 ,

with the special initial data

u(0, x) = 0 , ∂tu(0, x) = g(x) .

Define the solution operator for this problem to be

W(g)(t, x) = u(t, x) ,

so that
W(g)(0, x) = 0 , ∂tW(g)(0, x) = g(x) .
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(a) Show that the solution with general initial data u(0, x) = f(x) and ∂tu(0, x) = g(x) can
be expressed in terms of the superposition

u(t, x) = ∂tW(f)(t, x) + W(g)(t, x) .

(b) In the case n = 1 give an expression for the operator W(g) in terms of the d’Alembert
formula.

In the case n = 3 give an expression for the operator W(g) in terms of the Kirchhoff formula
and spherical means.

(c) Consider the inhomogeneous problem for the wave equation

�u = h(t, x) ,

where without loss of generality we may set f = g = 0. Show that the solution can be
expressed in terms of W(g)(t, x) as follows:

u(t, x) =

∫ t

0

W(h(s, ·))(t− s, x) ds . (1)

This is the content of the Duhamel principle in the case of the wave equation. Give an
explicit expression for (1) in the case that n = 1.

Problem 5. Gaussian wave packets
(a) Express the solutions of the free Schrödinger equation

1

i
∂tψ = −1

2
∂2xψ , x ∈ R1 ,

with the initial data
ψ0(x) = e−Ax

2/2eikx .

(b) Calculate the first several moments of the solution

m0(ψ(t, ·) , m1(ψ(t, ·) , m̂1(ψ(t, ·) , m2(ψ(t, ·)

Describe the trajectory of the solution.
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Problem 6. Soliton solutions of the KdV
The KdV equation is

∂tq = −1

6
∂3xq + 2q∂xq .

Soliton solutions (in the case of single solitons) are traveling waves, taking the form q(t, x) =
q(x− ct) for some velocity c.

(a) Show that such solutions satisfy

1

6

d2

dx2
q − q2 = cq + Const.

(b) The energy of KdV solutions is defined as

E(q) =

∫ +∞

−∞

1

12
(∂xq)

2 +
1

3
q3 dx

and the momentum is

I(q) =

∫ +∞

−∞

1
2
q2 dx .

Show that single soliton solutions of the KdV are critical points of the energy E(q) for fixed
momentun I(q). What is the associated Lagrange multiplier?

(c) Solve the equations to find the one parameter family of single soliton solutions.
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