Math 4FT: Final exam.

April 8, 2013 W. Craig

Due Friday April 26

Problem 1. Show that the convergence properties of the Fourier transform are local, despite the fact that the Fourier transform of a function f(x) takes into account global information about f. Namely, show that if f(x) is differentiable at a point $x_0 \in \mathbb{T}^1$, then the partial sums $S_n(f)(x_0)$ converge to $f(x_0)$ as $n \to +\infty$. In particular this shows that the function g(x) that was constructed in class as a lacunary series is not differentiable at a dense set of points.

Problem 2. The set of continuous periodic functions $C(\mathbb{T}^1)$ is a subset of the space of bounded (and Lebesgue measurable) periodic functions $L^{\infty}(\mathbb{T}^1)$. They share the topology of uniform convergence, expressed by the norm

$$||f||_{\infty} = (\operatorname{ess}) \sup_{x \in \mathbb{T}^1} |f(x)| .$$

(i) Is translation continuous on $C(\mathbb{T}^1)$? That is, is it true for all $f \in C(\mathbb{T}^1)$ that

$$\lim_{y \to 0} \|f(\cdot - y) - f(\cdot)\|_{\infty} = 0$$

(i) Is translation continuous on $L^{\infty}(\mathbb{T}^1)$? That is, is it true for all $f \in L^{\infty}(\mathbb{T}^1)$ that

$$\lim_{y \to 0} \|f(\cdot - y) - f(\cdot)\|_{\infty} = 0 .$$

Problem 3. The Sobolev space $H^s(\mathbb{T}^1)$ consists of those periodic functions f(x) such that $f \in L^2$, $\partial_x f \in L^2$, $\ldots \partial_x^s f \in L^2$. The Sobolev norm of f is given by the expression

$$||f||_s^2 := \int_{\mathbb{T}^1} |f(x)|^2 + |\partial_x^s f(x)|^2 dx .$$

(i) Use the Plancherel identity to show that

$$||f||_s^2 = \sum_{k \in \mathbb{Z}^1} (1+|k|^{2s}) |\hat{f}_k|^2$$

(ii) Prove the Sobolev inequality, that for all $x \in \mathbb{T}^1$

$$|f(x)| \le C_s ||f||_s ,$$

for any $s \ge 1$. The conclusion is that $L^{\infty}(\mathbb{T}^1) \subseteq H^1(\mathbb{T}^1)$ for $s \ge 1$. Is $L^{\infty} \subseteq L^2(\mathbb{T}^1)$?

Problem 4. The space of integrable functions $L^1(\mathbb{T}^1)$ is an algebra under the operations of addition and convolution product

$$f * g(x) = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(x - y)g(y) \, dy \; .$$

(i) Show that

$$||f * g||_1 \le ||f||_1 ||g||_1$$
.

(ii) Show that $L^2 \subseteq L^1$ is an *ideal* of L^1 , meaning that $f * g \in L^2$ as long as one of the two factors f or $g \in L^2$.

(iii) Show that L^1 does not have a multiplicative identity element, namely that there is no function $e(x) \in L^1$ such that for all $f \in L^1$ then

$$f * e(x) = f(x) \; .$$