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Problem 1. Show that the convergence properties of the Fourier transform are local,
despite the fact that the Fourier transform of a function f(x) takes into account global
information about f . Namely, show that if f(x) is differentable at a point x0 ∈ T1, then
the partial sums Sn(f)(x0) converge to f(x0) as n → +∞. In particular this shows that
the function g(x) that was constructed in class as a lacunary series is not differentiable at
a dense set of points.

Problem 2. The set of continuous periodic functions C(T1) is a subset of the space of
bounded (and Lebesgue measurable) periodic functions L∞(T1). They share the topology
of uniform convergence, expressed by the norm

‖f‖∞ = (ess) supx∈T1 |f(x)| .

(i) Is translation continuous on C(T1)? That is, is it true for all f ∈ C(T1) that

lim
y→0
‖f(· − y)− f(·)‖∞ = 0 .

(i) Is translation continuous on L∞(T1)? That is, is it true for all f ∈ L∞(T1) that

lim
y→0
‖f(· − y)− f(·)‖∞ = 0 .

Problem 3. The Sobolev space Hs(T1) consists of those periodic functions f(x) such that
f ∈ L2, ∂xf ∈ L2, . . . ∂sxf ∈ L2. The Sobolev norm of f is given by the expression

‖f‖2s :=

∫
T1

|f(x)|2 + |∂sxf(x)|2 dx .

(i) Use the Plancherel identity to show that

‖f‖2s =
∑
k∈Z1

(1 + |k|2s)|f̂k|2 .

(ii) Prove the Sobolev inequality, that for all x ∈ T1

|f(x)| ≤ Cs‖f‖s ,

for any s ≥ 1. The conclusion is that L∞(T1) ⊆ H1(T1) for s ≥ 1. Is L∞ ⊆ L2(T1)?

Problem 4. The space of integrable functions L1(T1) is an algebra under the operations
of addition and convolution product

f ∗ g(x) =
1√
2π

∫ 2π

0
f(x− y)g(y) dy .



(i) Show that
‖f ∗ g‖1 ≤ ‖f‖1‖g‖1 .

(ii) Show that L2 ⊆ L1 is an ideal of L1, meaning that f ∗ g ∈ L2 as long as one of the two
factors f or g ∈ L2.

(iii) Show that L1 does not have a multiplicative identity element, namely that there is no
function e(x) ∈ L1 such that for all f ∈ L1 then

f ∗ e(x) = f(x) .
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