Math 4FT: Problem Set 1.

January 29, 2013 W. Craig

Due Monday February 11, 2013.

Problem 1. Prove the convolution theorem for Fourier series. Namely, show that if two 2π -periodic functions f(x) and g(x) are $C^2(\mathbb{S}^1)$ with Fourier coefficients $\{\hat{f}_k\}_{-\infty < k < +\infty}$ and $\{\hat{g}_k\}_{-\infty < k < +\infty}$ respectively, then the product fg(x) is also $C^2(\mathbb{S}^1)$ and 2π -periodic, with Fourier coefficients given by the convolution product

$$\widehat{(fg)}_k = \frac{1}{\sqrt{2\pi}} \sum_{-\infty < \ell < +\infty} \widehat{f}_{k-\ell} \widehat{g}_\ell := \widehat{f} * \widehat{g}_k \ .$$

Show that the convolution product $\hat{f} * \hat{g}$ is commutative and associative.

Problem 2. Derive an expression for the heat kernel with Neumann boundary conditions on the interval $x \in [0, \pi]$. That is, the kernel of the solution operator for heat flow of the following problem:

$$\partial_t u = \frac{1}{2} \partial_x^2 u$$

- $\partial_x u(0,t) = 0 = \partial_x u(\pi,t)$
 $u(x,0) = f(x)$.

That is, find the kernel $h_N(x, y, t)$ such that the solution of this problem is given by

$$u(x,t) = \int_0^\pi f(y) h_N(x,y,t) \, dy \; .$$

Show that for t > 0, for all $x, y \in [0, \pi]$ then $h(x - y, t) < h_N(x, y, t)$, and thus the maximum principle holds.

Problem 3. Use the heat kernel h_D to prove an identity similar to the Jacobi identity for the ϑ -function;

$$\frac{2}{\pi} \sum_{k=1}^{+\infty} e^{-\frac{k^2 t}{2}} \sin(kx) \sin(ky) = \frac{1}{\sqrt{2\pi t}} \sum_{-\infty m < +\infty} e^{-(x-y-2\pi m)^2/2t} - e^{-(x+y-2\pi m)^2/2t}$$

What is the analog identity for the Neumann heat kernel $h_N(x, y, t)$?

Problem 4. The time-periodically forced heat equation.

Let u(x, t) be the temperature in a body represented as $0 < x < +\infty$ (modeling, for example, the earth, for which x represents depth) which is being heated, 2π periodically in time, on the boundary x = 0 (for example, by the seasonal variations of heat flux from the sun. That is, suppose that the solution u to the heat equation

$$\partial_t u = \frac{1}{2} \partial_x^2 u$$
, $u(0,t) = f(t) = f(t+2\pi)$,

satisfies $u(x,t) = u(x,t+2\pi)$ and furthermore $u(x,t) \to 0$ as $x \to +\infty$. Find the solution by Fourier series, writing

$$u(x,t) = \frac{1}{\sqrt{2\pi}} \sum_{-\infty < k < +\infty} c_k(x) e^{ikt} ,$$

and solving for $c_k(x)$. Describe the damping factor and the phase shift of each Fourier coefficient $c_k(x)$. If $f(t) = \sin(t)$, what are the depths at which the phase shift is precisely π , namely depths at which the temperature is maximally cooler in summer and warmer in winter.