Math 4FT: Problem Set 2.

February 26, 2013 W. Craig

Due Monday March 11, 2013.

Problem 1. Derive expressions in the sine (and respectively, the cosine) series for the Schrödinger kernel with Dirichlet (respectively Neumann) boundary conditions on the interval $[0, 2\pi]$.

Problem 2. Consider a sequence of functions $\{f_j(x)\}_{j=1}^{\infty}$ for $x \in [0, 2\pi]$. There are many different ways in which the sequence could converge to a limit f(x).

- (a.) Pointwise, when $\lim_{j\to\infty} f_j(x) = f(x)$ for each $x \in [0, 2\pi]$.
- (b.) Uniform, when for all $\varepsilon > 0$ there is a cutoff $J = J(\varepsilon)$ such that for all $j \ge J$ and all $x \in [0, 2\pi]$ then $|f_j(x) = f(x)| < \varepsilon$.
- (c.) L^2 convergence, when $\lim_{j\to\infty} ||f_j(x) f(x)||_{L^2} = 0.$
- (d.) L^1 convergence, when $\lim_{j\to\infty} ||f_j(x) f(x)||_{L^1} = 0.$

Show the following relationships between these different modes of convergence.

- (i) If $\{f_j(x)\}_{j=1}^{\infty}$ converges to f(x) in L^2 then $\{f_j(x)\}_{j=1}^{\infty}$ also converges to f(x) in L^1 .
- (ii) If $\{f_j(x)\}_{j=1}^{\infty}$ converges uniformly to f(x), then $\{f_j(x)\}_{j=1}^{\infty}$ converges to f(x) in L^2 (and hence also in L^1 by Question (i)).
- (iii) If $\{f_j(x)\}_{j=1}^{\infty}$ converges to f(x) in L^1 and $\{f_j(x)\}_{j=1}^{\infty}$ converges pointwise to g(x) (or converges pointwise *a.e.* to g(x)), then f(x) = g(x) *a.e.*
- (iv) Show by counterexample that it is possible for $\{f_j(x)\}_{j=1}^{\infty}$ to converge to f(x) pointwise, but not uniformly.
- (v) Show by counterexample that it is possible for $\{f_j(x)\}_{j=1}^{\infty}$ to converge to f(x) in L^1 but not in L^2 .

Problem 3. The functions $f_n(x) = x^n$, $n \ge 0$ span the Hilbert space $L^2[-1, +1]$. Using the Gram – Schmidt orthonormalization procedure, compute the first five orthogonal polynomials, those spanning the subspace generated by $\{x^n : 0 \le n \le 4\}$. These are the first five Legendre polynomials.

Problem 4. Show that any (complex) linear functional $\ell : L^2 \to \mathbb{C}$ can be written as an inner product. That is,

$$\ell(f) = (f,g)$$

for some $g = g_{\ell}$. This is the content of the Riesz representation theorem.