Mathematics 748: Topics in Mathematical Physics

2012-2013: Hamiltonian partial differential equations



Instructor: W. Craig
Meeting times: Mon & Thurs 9:00 - 11:00 in HH 410
Office hours: Thurs 11:00 - 12:30 or by appointment, HH418





Syllabus:

1) Introduction: evolution equations and Hamiltonian systems

2) Hamiltonian systems and transformation theory

    i) definition and many examples
    ii) symplectic forms and symplectic transformations
    iii) generating functions and flows
    iv) Lagrangian systems and the Legendre transform
    v) Hamilton - Jacobi theory and local symplectic invariants
    vi) Poisson brackets

3) Existence theory for evolution equations

    i) symmetric hyperbolic systems
    ii) Cauchy - Kowalevsky and Nirenberg - Nishida theorems
    iii) application to the problem of water waves
    iv) global existence of NLS in energy space
    v) solitons and finite gap solutions of KdV

4) Water waves in Hamiltonian formulation

    i) Zakharov's Hamiltonian
    ii) Dirichlet - Neumann operator
    iii) derivation from first principles of mechanics
    iv) Existence theory for the initial value problem

5) Birkhoff normal forms

    i) NLS on the circle and the quantum harmonic oscillator
    ii) water waves
    iii) NLS on Euclidian space
    iv) scattering for the defocusing NLS

6) Stability and Nekhoroshev stability

    i) finite dimensional results
    ii) NLS: neighborhoods of finite dimensional invariant sets

7) KAM theory (optional)

8) Lower bounds on growth of Sobolev norms (optional)