Call for transparency of COVID-19 models

A hallmark of science is the open exchange of knowledge. At this time of crisis, it is more important than ever for scientists around the world to openly share their knowledge, expertise, tools, and technology. Scientific models are critical tools for anticipating, predicting, and responding to complex biological, social, and environmental crises, including pandemics. They are essential for guiding regional and national governments in designing health, social, and economic policies to manage the spread of disease and lessen its impacts. However, presenting modeling results alone is not enough. Scientists must also openly share their model code so that the results can be replicated and evaluated.

Given the necessity for rapid response to the coronavirus pandemic, we need many eyes to review and collectively vet model assumptions, parameterizations, and algorithms to ensure the most accurate modeling possible. Transparency engenders public trust and is the best defense against misunderstanding, misuse, and deliberate misinformation about models and their results. We need to engage as many experts as possible for improving the ability of models to represent epidemiological, social, and economic dynamics so that we can best respond to the crisis and plan effectively to mitigate its wider impacts.

We strongly urge all scientists modeling the coronavirus disease 2019 (COVID-19) pandemic and its consequences for health and society to rapidly and openly publish their code (along with specifying the type of data required, model parameterizations, and any available documentation) so that it is accessible to all scientists around the world. We offer sincere thanks to the many teams that are already sharing their models openly. Proprietary black boxes and code withheld for competitive...
motivations have no place in the global crisis we face today. As soon as possible, please place your code in a trusted digital repository (1) so that it is findable, accessible, interoperable, and reusable (2).

C. Michael Barton1*, Marina Alberti2, Daniel Ames3, Jo-An Atkinson4, Jerad Bales5, Edmund Burke6, Min Chen7, Saikou Y Diallo8, David J. D. Earn9, Brian Fath10, Zhilan Feng9, Christopher Gibbons11, Ross Hammond12, Jane Heffernan9, Heather Houser13, Peter S. Hovmand14, Birgit Kopainsky15, Patricia L. Mabry16, Christina Mair17, Petra Meier18, Rebecca Niles19, Brian Nosek20, Nathaniel Osgood21,22, Suzanne Pierce23, J. Gareth Polhill24, Lisa Prosser25, Erin Robinson26, Cynthia Rosenzweig27, Shankar Sankaran28, Kurt Stange29, Gregory Tucker30
1Director, Network for Computational Modeling in Social and Ecological Sciences, Tempe, AZ, USA. 2Director, Urban Eco-Evolutionary Research Network, Seattle, WA, USA. 3President, International Environmental Modelling and Software Society, Manno, Ticino, Switzerland. 4Managing Director, Computer Simulation and Advanced Research Technologies, Sidney, NSW, Australia. 5Executive Director, Consortium of Universities for the Advancement of Hydrologic Science Inc., Cambridge, MA, USA. 6President, Operational Research Society, Birmingham, West Midlands, UK. 7Director, Open Geographic Modeling and Simulation at Nanjing Normal University, Nanjing, Jiangsu, China. 8President, Society for Modeling and Simulation International, Suffolk, VA, USA. 9Governing Committee, Mathematical Epidemiology Subgroup of the Society for Mathematical Biology, West Lafayette, IN, USA. 10Secretary-General, International Society for Ecological Modeling, Severna Park, MD, USA. 11Director, Business Intelligence Team of the City of Sheffield, Sheffield, South Yorkshire, UK. 12Director, Center on Social Dynamics and Policy at the Brookings Institution, Washington, DC, USA. 13Chair, Planet Texas 2050 Bridging Barriers Program at the University of Texas, Austin, TX, USA. 14Director, Social System Design Lab of Washington University, St. Louis, MO, USA. 15Director, System Dynamics Group at the University of Bergen, Bergen, Norway. 16Research Investigator, HealthPartners Institute, Minneapolis, MN, USA. 17Director, Center for Social Dynamics and Community Health of the University of Pittsburgh, Pittsburgh, PA, USA. 18Director, Systems Science in Public Health and Health Economics Research Consortium, Sheffield, South Yorkshire, UK. 19Executive Director, System Dynamics Society, Albany, NY, USA. 20Director, Center for Open Science, Charlottesville, VA, USA. 21Director, Computational Epidemiology and Public Health Informatics at the University of Saskatchewan, Saskatoon, SK, Canada. 22Founder, System Science in Health, Saskatoon, SK, Canada. 23Executive Director, Intelligent Systems and Geosciences Research Coordination Network, Austin, TX, USA. 24President, European Social Simulation Association, Zürich, Zürich, Switzerland. 25President, Society for Medical Decision Making, Bridgewater, NJ, USA. 26Executive Director, Earth Science Information Partners, Boulder, CO, USA. 27Co-Leader, Agricultural Model Intercomparison and Improvement Project, New York, NY, USA. 28President, International Society for the Systems Sciences, Ashland, KY, USA. 29Director, Center for Community Health Integration at Case Western Reserve University, Cleveland, OH, USA. 30Executive Director, Community Surface Dynamics Modeling System, Boulder, CO, USA.

*Corresponding author.
Email: michael.barton@asu.edu

REFERENCES AND NOTES

COMPETING INTERESTS
All authors have signed on behalf of the listed organizations only. J.-A.A. is the head of the Systems Modeling and Simulation, Brain and Mind Centre at the University of Sydney in Australia but does not represent that institution here. B.F. is affiliated with the Advanced Systems Analysis Program at the International Institute for Applied Systems Analysis in Austria but does not represent that organization.

10.1126/science.abb8637
Call for transparency of COVID-19 models

C. Michael Barton, Marina Alberti, Daniel Ames, Jo-An Atkinson, Jerad Bales, Edmund Burke, Min Chen, Saikou Y Diallo, David J. D. Earn, Brian Fath, Zhilan Feng, Christopher Gibbons, Ross Hammond, Jane Heffernan, Heather Houser, Peter S. Hovmand, Birgit Kopainsky, Patricia L. Mabry, Christina Mair, Petra Meier, Rebecca Niles, Brian Nosek, Nathaniel Osgood, Suzanne Pierce, J. Gareth Polhill, Lisa Prosser, Erin Robinson, Cynthia Rosenzweig, Shankar Sankaran, Kurt Stange and Gregory Tucker

Science 368 (6490), 482-483.
DOI: 10.1126/science.abb8637