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Abstract The initial exponential growth rate of an epidemic is an important measure
of disease spread, and is commonly used to infer the basic reproduction number R0.
While modern techniques (e.g., MCMC and particle filtering) for parameter estima-
tion of mechanistic models have gained popularity, maximum likelihood fitting of
phenomenological models remains important due to its simplicity, to the difficulty of
using modern methods in the context of limited data, and to the fact that there is not
always enough information available to choose an appropriate mechanistic model.
However, it is often not clear which phenomenological model is appropriate for a
given dataset. We compare the performance of four commonly used phenomeno-
logical models (exponential, Richards, logistic, and delayed logistic) in estimating
initial epidemic growth rates by maximum likelihood, by fitting them to simulated
epidemics with known parameters. For incidence data, both the logistic model and
the Richards model yield accurate point estimates for fitting windows up to the epi-
demic peak. When observation errors are small, the Richards model yields confidence
intervals with better coverage. For mortality data, the Richards model and the delayed
logistic model yield the best growth rate estimates. We also investigate the width and
coverage of the confidence intervals corresponding to these fits.
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1 Introduction

The early phase of an epidemic of an infectious disease is usually characterized by
exponential growth in the number of cases or deaths. The rate of this exponential
growth, r , determines baseline projections of epidemic growth, and thus changes
in r can be used as a robust measure of the effectiveness of control measures (or
increases in pathogen transmissibility). Additionally, r can be used to estimate the
basic reproduction number R0 (the average number of secondary infections caused
by a typical infectious individual in a fully susceptible population). R0 is determined
by r and the distribution of the generation interval (the time between a case and the
secondary cases resulting from it) (Lipsitch et al. 2003), a fact that has been used in
many applications (e.g., Chowell et al. 2003; Mills et al. 2004; Wearing et al. 2005;
Wallinga and Lipsitch 2007; Roberts and Heesterbeek 2007; Nishiura et al. 2009b,
2010).

Despite the fact that discussion of R0 dominates both the theoretical and ap-
plied epidemiology literature, knowing r has many advantages compared with re-
lying solely on the information contained in R0. Firstly, r is a measure of the speed
of epidemic growth, conveying information about the time scale of disease spread. In
contrast, R0 is a pure number with no associated time scale; epidemics with the same
R0 can occur over vastly different time periods, ranging from days to years. Know-
ing the epidemic time frame can be critical for selection of disease control strategies.
Secondly, r itself is independent of potentially uncertain knowledge about the genera-
tion interval distribution, and thus may be useful in comparing the severity of disease
epidemics.

The growth rate r is most commonly estimated by fitting an exponential curve to
the initial growth phase. The methods used can be as simple as least-squares fitting
of an exponential curve to incidence (or cumulative incidence), or of a straight line to
the logarithm of incidence (or of cumulative incidence) (e.g., Chowell et al. 2003;
Mills et al. 2004; Vynnycky et al. 2007). Formal statistical inference from least-
squares fitting is based on assuming independent, normally distributed errors with
constant variance, assumptions that can easily be improved upon for this application.
Consequently, over the years, more sophisticated methods have been applied, includ-
ing Poisson regression (e.g., de Silva et al. 2009) and methods based on branching
processes (Roberts and Heesterbeek 2007; Nishiura et al. 2009a, 2009b).

All of these methods, however, rely on fitting to an approximately exponential
growth phase, which is usually short (due to depletion of susceptibles) and selection
of a temporal fitting window requires an independent procedure. The fitting window
is typically chosen by a reasonable heuristic (e.g., Chowell et al. 2007) use a goodness
of fit method), but such methods are based on ad hoc decision rules; moreover, they
do not alleviate the problem that there are usually very few data points during the
exponential growth phase.

To use a longer sequence of data points, growth rate estimation methods must di-
rectly or indirectly take account of the depletion of susceptibles. This can sometimes
be achieved with a mechanistic approach by fitting a transmission model to the epi-
demic curve, and estimating r simultaneously with other disease parameters (e.g.,
Pourabbas 2001; Chowell et al. 2006a, 2006b). This approach has the advantage of
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facilitating estimation of the effects of external factors such as seasonality and con-
trol measures (Bootsma and Ferguson 2007; He et al. 2011), but it unavoidably relies
on the appropriateness of the assumed transmission model. For example, most com-
monly used transmission models (unrealistically) assume a homogeneously mixed
population, yet different underlying contact networks can result in very different pa-
rameter estimates that yield similar epidemic growth rates (e.g., Ma et al. 2013). In
fact, different mechanistic models may fit equally well but give different answers
(Wearing et al. 2005). Appropriate transmission models often require a relatively
large number of parameters, making fits less stable, particularly if data are limited.

Phenomenological models (e.g., Hsieh et al. 2010) dispense with mechanistic as-
sumptions. Instead, they make general assumptions about the shape of the incidence
curve. In general, such simple phenomenological models use fewer parameters, make
more straightforward assumptions, and are likely to give more robust estimates when
applied in contexts with very limited data (a common situation for historical epi-
demics or near the start of an epidemic of an emerging or reemerging disease).

An important complication is that the best data for historical epidemics are of-
ten based on mortality records rather than disease incidence (e.g., Mills et al. 2004;
Goldstein et al. 2009; He et al. 2011). From a deterministic perspective, this makes
little difference: a disease spreading exponentially will have, on average, mortality
rates that increase at the same exponential rate as incidence. When estimating pa-
rameters from noisy data, however, both the “sampling process” (only a fraction of
infected individuals die), and the potentially broad distribution of times between in-
fection and death, can substantially complicate the estimation process. Methods of
accounting for mortality include sensitivity analyses, where artificial data are gen-
erated using a realistic death process and used to validate simple models (e.g., Mills
et al. 2004); mechanistic models in which the death process is simulated as part of the
fitting procedure (e.g., He et al. 2011); and deconvolution methods, which attempt to
estimate the incidence time series implied by mortality data, case fatality proportions,
and generation time distributions, as a separate first step in analysis (e.g., Goldstein
et al. 2009).

Phenomenological models that are fit to a given dataset are currently chosen
in an ad hoc manner. There is a lack of information on the performance of com-
monly used models. In this paper, we provide a guide for choosing the appro-
priate phenomenological model. We compare the performance of the exponen-
tial, the logistic, the Richards, and the delayed logistic models applied to simu-
lated stochastic epidemics (for which the correct answer is known). The logistic
model is used as a starting point for emulating the characteristic shape of cumu-
lative incidence curves, which first grow exponentially, and then begin to level
off. The logistic model can be generalized to the Richards model (Richards 1959;
Hsieh et al. 2010), which has a parameter determining how fast the switch from
an accelerating to decelerating cumulative epidemic curve occurs. For mortality
data, we also consider the “delayed logistic model,” which generalizes the logistic
model to include an explicit delay from infection to death (Bootsma and Ferguson
2007). These phenomenological models are closely related to epidemic dynamics. In
fact, the exponential model and the logistic model are the first- and second-order
approximations to the growth phase of an epidemic curve produced by the stan-
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dard Kermack–McKendrick SIR model (see, e.g., Kermack and McKendrick 1927;
Kendall 1956).

Because observations drawn from the same cumulative curve are correlated, we
base all of our fits on “interval incidences” (daily or weekly incidence). We fit max-
imum likelihood parameters for each of the four phenomenological models we con-
sider, assuming that observation errors follow a Poisson distribution (see Sect. 2). We
also investigate sensitivity to the choice of the fitting window, and the effect of the
reporting ratio and time-to-death distribution.

2 Methods

2.1 Models Describing the Epidemic

Some of the phenomenological models that we consider in this paper use simple
closed-form expressions to describe the cumulative growth of the epidemic. Most of
our fitting, however, will be based on “interval” incidences, obtained by differencing
cumulative expressions where necessary, e.g., x(t) = c(t + �t) − c(t), where c(t) is
cumulative incidence, and x(t) is interval incidence (typically daily or weekly).

2.1.1 Exponential

The simplest model of exponential growth is

x(t) = x0e
rt . (1)

This model has two parameters that need to be estimated: the initial value x0 and the
growth rate r .

2.1.2 Logistic

In an epidemic, cumulative incidence initially grows exponentially, but eventually
slows and approaches a limit. This behavior is qualitatively similar to that of a logistic
curve. Thus, a logistic model may allow us to use longer sequences of data from the
beginning of an epidemic, by accounting for the epidemic slowing as it proceeds. In
this model, the expected cumulative number of cases c(t) is assumed to satisfy the
following equation:

c′(t) = rc(t)

[
1 − c(t)

K

]
, (2)

where K is the final size of the epidemic, which c(t) approaches. This equation has
an explicit solution:

c(t) = K

1 + [(K/c0) − 1]e−rt
, (3)

where c0 is the total number of cases observed at time t = 0. We obtain x(t) by
differencing as explained above.
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2.1.3 Richards

In the Richards model (Richards 1959; Banks 1993; Hsieh et al. 2010), the cumulative
epidemic curve c(t) satisfies

c′(t) = rc(t)

[
1 −

(
c(t)

K

)a]
. (4)

This model is also called the power law logistic model, and the logistic model is
a special case with a = 1. When a � 1, [c(t)]a ≈ 1. Consequently, for sufficiently
small a there is effectively no density dependence in the growth rate in this model:
c′(t) ≈ r(1−1/Ka)c(t). The contribution of K to the exponential growth rate makes
it difficult to estimate r precisely. We therefore reparameterize the model, and use
r0 = r[1 − (c0/K)a] (the exponential growth rate when t = 0) instead of r as our
estimate of the exponential growth rate.

Equation (4) is also solvable and, in terms of the identifiable parameter r0, c(t)

has the explicit form

c(t) = K

(1 + [(K/c0)a − 1] exp{−r0t/[1 − (c0/K)a]})1/a
. (5)

This model has three parameters: c0, K , and the initial growth rate r0.

2.1.4 Delayed Logistic (Mortality)

Our final model makes a small step away from phenomenological models to incorpo-
rate some of the mechanisms that may determine the shape of epidemic curves in the
particular case of mortality (as opposed to case reporting) data. If the logistic model
can be used to describe the cumulative incidence, then cumulative deaths can be ex-
plicitly modeled as a delay to the incidence curve x(t). If we assume that the delay is
exponentially distributed with rate m, the cumulative deaths d(t) can be modeled as

d(t) =
∫ t

0
cLog(s)e

−m(t−s) ds, (6)

where cLog(t) is the solution to the logistic model (3).
We consider only the delayed logistic, and not the delayed Richards model, for

mortality data because fitting either a or m, together with c0 and r , early in the epi-
demic raises issues with statistical identifiability: A delayed Richards model appears
to be impractical for our purposes.

2.2 Maximum Likelihood Estimation

We estimate parameters using maximum likelihood, assuming that the underlying
process is deterministic, and that incidence during each reporting period follows a
Poisson distribution. Here we are interested in the likelihood of our model, given
an observed epidemic curve. We assume that the ith observation Yi is a Poisson-
distributed random variable, with mean equal to the model prediction y(t). It is then
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straightforward to calculate the likelihood. We then numerically search for the model
parameters that maximize the likelihood function L (Bolker 2008, p. 170).

In addition to the maximum likelihood point estimate (MLE) of the parameters
(we are particularly interested in r , the estimated growth rate), the likelihood ap-
proach also provides a framework for estimating confidence intervals. If the data set
is sufficiently large, the confidence intervals of a focal parameter can be found by
constructing the likelihood profile, the curve of maximum likelihood achievable by
optimizing over all of the non-focal parameters when the focal parameter is held fixed
at specific values away from its MLE, and finding the points on the profile where the
difference in log-likelihood from the maximum is equal to half of the upper critical
tail value (e.g., the 95th percentile) of the χ2 distribution with one degree of freedom
(Bolker 2008, p. 192).

2.3 Interval vs. Cumulative Epidemic Curves

The procedure we have described can be used to fit models to cumulative incidence
(or mortality) rather than the corresponding interval incidence. Mathematically, cu-
mulative and interval curves carry the same information, but statistically speaking, we
expect different results from the two approaches. Likelihood calculations (including
the special case of least-squares fitting) assume that the errors in individual obser-
vations are statistically independent. This assumption is particularly inappropriate
for cumulative curves, where each observation contains all of the cases from prior
observations. Some researchers use techniques such as parametric bootstrapping to
address this issue (Chowell et al. 2006a, 2007), while others are apparently unaware
of the problem (Roberts and Heesterbeek 2007). To assess the potential importance
of correlated errors in fits to cumulative data, we compare results from fits to both
cumulative and interval epidemic curves.

2.4 Process Error vs. Observation Error

Fitting epidemic data with a deterministic underlying curve makes an additional
strong assumption: that the variation around the observed epidemic curve is due
entirely to observation error with no contribution from process error (Bolker 2008,
p. 344). In the presence of process error—stochastic variation in the underlying epi-
demic curve, not just in the observed curve—the observations will again be corre-
lated, because random events will carry over across multiple time steps (because they
affect the underlying epidemic process). Some epidemic modelers have used sophis-
ticated methods to disentangle process from observation error (Bjørnstad et al. 2002;
Ionides et al. 2006). However, such methods are extremely data-hungry, and are usu-
ally used only for diseases that persist over multiple years or decades. Consequently,
they are unlikely to be applicable to outbreak prediction or retrospective analysis of
individual epidemics.

2.5 The Simulated Epidemic Curves

We fit the phenomenological models to simulated epidemics for which the true val-
ues of the parameters are known. To begin with, we study the performance of these
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Fig. 1 Schematic representation of the SEIR model. The population is classified into 4 compartments: the
susceptible (S), exposed (or latent, E), infectious (I), and recovered (R)

models in the absence of any noise in the data (i.e., we fit to a deterministic epidemic
simulation). If a model does not perform well in this case, it should certainly not be
applied to real data. We then fit the phenomenological models to epidemic curves
generated by stochastic simulations. We first simulate without observation error, in
order to test the performance of the phenomenological models on epidemic data for
which noise is dominated by process errors. Binomial observation errors are then
added to simulate either incidence data with a small reporting ratio or mortality data.

We use a standard compartmental Susceptible-Exposed-Infectious-Recovered
(SEIR) model. All individuals are susceptible at the start of the epidemic except
for the infected index case. Upon contact with an infectious individual, susceptible
individuals become exposed (infected but not yet infectious). They leave the exposed
state at constant rate σ and become infectious. They leave the infectious state at a
constant rate γ , recovering to a state of permanent immunity. We assume that ef-
fective contacts (those that result in a new infection) occur at a rate β

N
SI , where N

is the population size, and S and I are respectively the numbers of susceptible and
infectious individuals (Fig. 1).

In the deterministic limit (population size N → ∞), the SEIR model can be ex-
pressed as a system of ordinary differential equations (Diekmann and Heesterbeek
2000),

dS

dt
= − β

N
SI, (7a)

dE

dt
= β

N
SI − σE, (7b)

dI

dt
= σE − γ I, (7c)

dR

dt
= γ I. (7d)

Linearizing this model about the disease-free equilibrium (S = N , E = I = R = 0),
and computing the dominant eigenvalue, we find the initial exponential growth rate
is

r = 1

2

[−(σ + γ ) +
√

(σ − γ )2 + 4βσ
]
. (8)

Our stochastic simulations are carried out with population size N = 106 and dis-
crete time steps of size h = 0.1 of a simulated day. At each time step, the number of
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new infections is drawn from a Poisson-distributed random number generator with
rate βSIh/N ; similarly, the number of individuals becoming infectious or recover-
ing are Poisson random variables with rates σEh and γ Ih, respectively. To simulate
mortality curves, we assume that a fixed fraction φ of infected individuals will even-
tually die from the disease, and we assume the time from infection to death is Gamma
distributed with shape parameter 3 and mean 30 days.

2.6 Protocol

We compare the performance of each of the phenomenological models described
in Sect. 2.1 as epidemic growth rate estimators by fitting to simulated incidence
and mortality curves generated with the stochastic transmission model described in
Sect. 2.5. We also examine how each growth rate estimate depends on the time win-
dow selected from the epidemic curve.

3 Results

3.1 Estimation of Initial Growth Rate r

Which model is best for estimating the initial growth rate of an epidemic depends on
our fitting window, i.e., precisely which observed data points we include in our anal-
ysis. In a real-time application, data accumulate over time and we have the potential
to keep increasing the length of our fitting window. In a retrospective study, we can
in principle use the entire epidemic curve, but doing so will not necessarily yield the
best estimate of the initial growth rate. In either case, we consider which model is
most appropriate as a function of the fitting window.

Real-Time Growth Rate Estimation With a real-time application in mind, we plot
(for each model) our point estimate for the initial exponential growth as a function of
the end point of the fitting window, fixing the starting point of the fitting window at
the time when the disease in question was first detected in the population.

The left column in Fig. 2 shows the results of fitting each model to the incidence
computed from a solution of the deterministic SEIR model. The plotted estimate at
each time is based on a fitting window from time t = 0 until that time. Because the
growth rate of the epidemic decreases as susceptibles are depleted, the point estimates
from the exponential model deviate most quickly from the true growth rate, while all
the other models stay close to the true value for all fitting windows up to (and even
beyond) the peak of the epidemic. The middle column in Fig. 2 shows that weekly
aggregation of the epidemic curve does not alter the results substantially. However,
when fitting to simulated mortality data (the right column in Fig. 2), the estimated
initial growth rate from the logistic model starts to deviate substantially from the true
value after the epidemic reaches its peak, while the estimates from the Richards and
delayed logistic models remain close to the true value over the whole period.

Figure 3 shows the results of fitting a single realization of the stochastic SEIR
model, with the same disease parameters as with the deterministic model analyzed in
Fig. 2. The estimates are similar, but stochasticity leads to wider confidence intervals.
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Fig. 2 Estimation of initial epidemic growth rates using each of the phenomenological models described
in Sect. 2.1, for simulated daily incidence, weekly incidence, and daily mortality, obtained using the de-
terministic SEIR model (Eq. (7a)–(7d)) with true growth rate r ≈ 0.121 (shown by dashed gray horizontal
line); basic reproduction number R0 = 2; mean latent period 1/σ = 2 days and mean infectious period
1/γ = 5 days. The time from incidence to death is gamma distributed with shape parameter 3 and 30-day
mean. The top panel shows the simulated epidemic curve on a logarithmic scale. The lower panel shows
the point estimates and 95 % confidence intervals at the end time of each fitting window (which always
start at time t = 0)

Retrospective Growth Rate Estimation In a retrospective context, we have the lux-
ury of being able to choose any fitting window we like, though we might be con-
strained by having missed the beginning of the epidemic or because reporting rates
increased dramatically part way through the epidemic. This raises the question of
how estimated initial growth rates depend on the start, as well as the end, of the fit-
ting window. To explore this question, we fix the end point of the fitting window at
the peak of the epidemic and consider starting points ranging from t = 0 to the time
corresponding to 4 data points before the epidemic peak.

Figure 4 shows results for fits to simulated daily and weekly incidence and daily
deaths. In all cases, the exponential model is sensitive to the starting time (the expo-
nential fits always underestimate the true exponential growth rate because they fail
to account for the slowing of exponential growth as the epidemic proceeds). For in-
cidence data, all other models are insensitive to the starting time. For death data, the
point estimates start to deviate from theoretical value as the starting time increases.
The delayed logistic model is the least sensitive model. Fits to stochastic realizations
(not shown) are similar.
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Fig. 3 Estimation of initial growth rates from stochastic epidemic simulations. Each phenomenological
model from Sect. 2.1 was fitted to an epidemic curve from a single realization of the stochastic SEIR model
with the same parameters as for the deterministic model used for Fig. 2 (the layout of the figure is also the
same as for Fig. 2)

3.2 Accuracy of Estimates of r : Coverage Probabilities

Process error (demographic noise) will lead to different initial growth rates for dif-
ferent stochastic realizations of any given epidemic model. Consequently, the initial
growth rate that we estimate for a specific realization will not necessarily be close to
the true growth rate of the model, even if it perfectly represents the initial growth of
the particular simulation in question. Similarly, since real epidemics represent single
realizations of a stochastic epidemic process, the initial growth rates we estimate from
observed epidemics may not reflect the true growth rate associated with the under-
lying transmission process. This is not a problem if our goals do not extend beyond
estimating the pattern of the specific epidemic in question, but if our ultimate goal—
as is often the case—is to estimate the underlying properties of the disease, such as
its basic reproduction number R0, then we are led to an important question. Does
our confidence interval for the initial growth rate of a given realization (or observed
epidemic) include the true growth rate of the underlying process?

The probability that a confidence interval contains the true value of a parameter is
called the coverage probability. If the confidence interval is computed by correctly ac-
counting for all sources of variation in the data, then the coverage probability should
equal the confidence level of the interval. In the present context, examining the cov-
erage probability is not simply a consistency check, because our confidence intervals
are computed by assuming that all stochastic variation arises from observation error,
with no contribution from process error.
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Fig. 4 Dependence of estimated initial epidemic growth rates on the start time of the fitting window. Each
of the models of Sect. 2.1 was fitted to a simulated deterministic epidemic curve (generated by the deter-
ministic SEIR model). The bottom panels show the estimated growth rate (and confidence intervals) versus
the start time of the fitting window (the end of the fitting window is fixed at the peak of the epidemic). The
disease parameters and figure layout are the same as in Fig. 2

We estimated coverage by fitting each model to 1,000 realizations of a stochastic
SEIR model, with N = 106 and parameters chosen to be similar to estimates for the
1918 influenza pandemic (Mills et al. 2004; He et al. 2011): transmission rate β = 0.4
per day, mean latent period 1/σ = 2 days, and mean infectious period 1/γ = 5 days.
The underlying deterministic model thus has a basic reproduction number R0 = 2
and initial growth rate r = 0.12.

The first three columns in the upper panel of Fig. 5 show the coverage probability
of the 95 % confidence interval of the growth rate as a function of the length of the
fitting window when fitted to daily incidence with perfect reporting, daily incidence
with a 2 % reporting ratio, and daily mortality with 2 % case fatality, respectively. If
the confidence intervals are correct, the coverage should be 95 %. The lower panel
shows the corresponding width of the confidence interval. Figure 6 shows the distri-
butions of the point estimates for fitting windows from t = 0 to 1/3 of the peak time,
2/3 of the peak time, the peak time, and 3/2 of the peak time.

For incidence without reporting error (the left column in Fig. 5), the coverages for
all models are poor. Since the point estimates are well centered about the true value,
as shown in the left column in Fig. 6 (i.e., the level of bias is low), the poor coverage
is attributable to estimated confidence intervals that are too narrow. For incidence
with a small reporting ratio (the second column in Fig. 5), the coverages are much
closer to the estimated confidence level than those without reporting error. In fact, the
coverage probability of the Richards model is very close to 95 % when the end of the
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Fig. 5 Statistical coverage of true underlying growth rates. The first three columns in the top panel show
the coverage probabilities of the confidence intervals of the growth rate, estimated by fitting each model
from Sect. 2.1 to 1000 realizations of the stochastic SEIR model, based on daily incidence, daily incidence
with a 2 % reporting ratio, and daily mortality with a 2 % case fatality, respectively. The last column shows
the coverage probability of the confidence intervals estimated from each phenomenological model based
on fits to cumulative daily deaths. The lower panel shows the corresponding widths of the confidence
intervals (averaged over the fits to the 1000 simulations). The horizontal axis is the length of the fitting
window (with the starting time always at t = 0). The dashed lines are the averages of the scaled stochastic
simulations (the grey shades), illustrating the fitting window position

fitting window is near the peak of the epidemic, while the coverages of the logistic and
delayed logistic models are approximately 90 % at the peak. For the daily mortality
curve with a small (2 %) case fatality proportion (the third column in Fig. 5), the
coverages are good, but not quite as good as for 2 % sampling of incidence. With
the fitting window ending near the epidemic peak, the growth rate coverages of the
Richards and delayed logistic models are 88 % and 84 %, respectively, while that
of the logistic model is much lower. However, the delayed logistic model achieves
comparable coverage to the Richards model with much narrower confidence intervals.

3.3 Fitting to Cumulative Epidemic Curves

As mentioned in the Introduction, cumulative epidemic curves are sometimes used to
fit epidemic growth rates. To show the effect of using cumulative curves, we fit the
observed cumulative daily mortality curve directly to models (1), (3), (5), and (6),
without taking differences and converting them into epidemic curves. The result is
shown in the last columns of Figs. 5 and 6. The coverage probabilities for all models
are much smaller than for models fitted to epidemic curves, presumably because of
the strong correlations between points on the same cumulative epidemic curve.
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Fig. 6 The distribution of the point estimates of initial growth rate for each phenomenological model
fitted to the 1000 realizations of stochastically simulated epidemics used for coverage estimates in Fig. 5.
The four rows correspond to fitting windows ending at 1/3 of the peak time, 2/3 of the peak time, the peak
time, and 3/2 of the peak time (all windows start at t = 0)

4 Discussion

Our goal in this paper has been to identify a reliable and practical method to obtain
both a point estimate and confidence interval for the initial epidemic growth rate r as-
sociated with an observed infectious disease outbreak. We simulated outbreaks with
specified growth rates and in each case compared the correct growth rate with the
estimated growth rates obtained by fitting four phenomenological deterministic pop-
ulation models (pure exponential growth, the logistic model, the Richards model, and
a “delayed logistic” model that includes a death process). We did not use mechanistic
disease transmission models to estimate r since it is important to be able to estimate
the growth rate without detailed knowledge of the process of disease transmission—
which is unknown in many historical contexts and is often unclear in the early phase
of an outbreak of an emerging disease.

The models we considered describe the growth phase of the theoretical cumula-
tive epidemic curve. We obtained the theoretical “interval” epidemic curve (cases or
deaths in each reporting interval) by differencing the theoretical cumulative curve
before fitting to our simulated outbreaks. Because our underlying phenomenological
models are deterministic, we are implicitly restricting attention to applications where
process error is negligible compared to observation error (e.g., if the population is
large and the disease is rarely reported, incidence rates will be affected less by demo-
graphic stochasticity than by sampling).
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Our principal conclusions are the following.

Avoid Using the Exponential Model. The pure exponential model should not be
used because (i) it produces exceedingly narrow confidence intervals that have poor
coverage probability, and (ii) the point estimates quickly deviate from the true value
and it is difficult to determine the optimal fitting window. The other three phenomeno-
logical models all produce stable point estimates using fitting windows up to the epi-
demic peak, and confidence intervals with better coverage probabilities.

Use the Logistic and Richards Models for Incidence Data. The logistic model gives
accurate point estimates for incidence data. It also gives a narrow confidence inter-
val with good coverage. With more data available, the Richards model also yields
accurate point estimates, with more reliable confidence intervals.

Use the Delayed Logistic and Richards Model for Mortality Data The Richards
model and the delayed logistic model yield reasonably accurate point estimates for
fitting windows up to the epidemic peak. For mortality data, it is important that the
fitting window end before the peak.

Growth rate estimates obtained using the recommended models are relatively in-
sensitive to the choice of the start of the fitting window as long as the starting point is
in the exponential growth phase. Weekly aggregation of the epidemic curve does not
appreciably alter the estimates for our parameters. This is potentially important be-
cause many infectious disease data (e.g., historical time series of notifiable infectious
diseases) have been reported weekly.

Beware of Confidence Intervals from Phenomenological Fits. Our method treats the
process errors from the stochastic epidemic process as observation errors. Since pro-
cess errors tend to propagate with time, they lead to biased estimates of the ensemble
mean, which is described by the deterministic limit of the stochastic model. Hence,
while the same disease parameters can generate different realized growth rates as a
result of process error, our approach implicitly assumes that differences in parame-
ter estimates are generated by actual differences in parameter values. This problem
is mitigated when the observation error is large compared to process error, as is ob-
served in fitting to stochastically simulated incidence data with large population sizes
and small reporting (or case fatality) ratio.

Our analysis shows that the exponential growth rate of an epidemic can generally
be estimated reasonably well using simple phenomenological models. This provides
an important tool for gaining valuable information before details about the properties
of the pathogen and the mechanisms of disease transmission are available. Fitting
with phenomenological models can be done simply and quickly, and can yield timely
estimates in the case of emerging infectious diseases.

When applying these phenomenological models to epidemic data, one has to be
aware that in an emerging epidemic, public health interventions may cause sudden
changes in the growth rate (see, e.g., Bootsma and Ferguson 2007), which requires
special consideration. Behavior changes may also change the growth rate (see, e.g.,
He et al. 2013); these might be more gradual, and could possibly be handled by the
Richards model with its shape parameter.
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