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Abstract

We show that bounds for the probability of a union involving either lower order binomial moments or lower order

probabilities of events may be considerably improved in the presence of supplementary information such as a bound on the

number of events that can occur simultaneously or bounds on their probabilities. An example shows how such additional

information often may be provided naturally. We also prove the Fréchet optimality of these bounds using linear

programming.
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1. Introduction

Let fAi; i ¼ 1; . . . ; ng be a collection of events on some probability space and denote S1 ¼
Pn

i¼1 PðAiÞ.
The degree one lower probability bound

P
[n
i¼1

Ai

 !
X

S1

n
(1)

is optimal in the sense of Fréchet (1935), (see also Seneta, 1992, Section 7) meaning that it can be achieved on
some probability space. This paper considers bounds under restrictions on the number of events
n ¼ f#i : Ai occursg. In Proposition 1, assuming that PðnXk þ 1ÞpB for some 1pkpn, we prove

P
[n
i¼1

Ai

 !
X

S1

k
�

n

k
� 1

� �
min B;

S1

n

� �
,
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which, in the special case B ¼ 0; corresponding to PðnpkÞ ¼ 1 as in Example 1 below, reduces to the pleasant
form

P
[n
i¼1

Ai

 !
X

S1

k
(2)

paralleling (1). Then in Proposition 2, assuming Pð0onpk � 1ÞpC, we show that Boole’s degree one upper
bound

P
[n
i¼1

Ai

 !
pminf1;S1g (3)

can be improved to

P
[n
i¼1

Ai

 !
pmin 1;

S1

k
þ 1�

1

k

� �
minfC;S1g

� �
.

Finally, Proposition 3 considers improvements on bounds that involve the individual fPðAiÞ; 1pipng.
Situations where npk do occur naturally.

Example 1. Consider the rectangular array fAij ; i ¼ 1; . . . ;m; j ¼ 1; . . . ; kg of disjoint families of events
fAi1;Ai2; . . . ;Aikg; i ¼ 1; . . . ;m : ð

Sk
j¼1AijÞ \ ð

Sk
j¼1Ai0jÞ ¼ ;, whenever iai0. Then, clearly, npk and, moreover,

P
[
i;j

Aij

 !
¼
Xm

i¼1

P
[k
j¼1

Aij

 !
X

Xm

i¼1

1

k

Xk

j¼1

PðAijÞ from ð1Þ

¼
1

k

Xm

i¼1

Xk

j¼1

PðAijÞ �
S1

k
,

an improvement over (1). Of course, this example is trivial since it involves the disjoint families of events.
However, it does give insight into how the denominator can be improved in (1) from n to k.

Example 2. Consider a finite sample space on N outcomes each having equal probability. Let fAi; i ¼ 1; . . . ng
be a collection of distinct two-point events, call them edges. Events intersect at a point and there are at most
N � 1 events (edges) that can intersect at any point (vertex). Therefore, npN � 1; while n can be as large as
NðN � 1Þ=2.

2. Improvements to bounds of degree one

The notion of optimality adopted is from Fréchet (1935) (see Chen, 1998; Seneta and Chen, 1996, 2002):

Definition 1. Let LðS1; nÞ be the class of functions gðsÞ such that for any probability space and any collection
of events fA1; . . . ;Ang

P
[n
i¼1

Ai

 !
XgðS1Þ.

Suppose that ḡ 2LðS1; nÞ is such that for any collection fA1; . . . ;Ang; there exists a collection fA�1; . . . ;A
�
ng;

possibly on another probability space, for which the value S�1 �
Pn

i¼1 PðA�i Þ is the same as S1 �
Pn

i¼1 PðAiÞ,
and such that the following equality holds:

P
[n
i¼1

A�i

 !
¼ ḡðS�1Þ, (4)

then ḡ is said to be a Fréchet optimal lower bound of degree one.
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We will also use the term Fréchet optimal to refer to any bound that can be achieved subject to additional
restrictions on the probabilities.

Remark 1. The reason for the terminology ‘‘optimal’’ in Definition 1 is derived from the fact that ḡ satisfies
ḡXg for all g 2LðS1; nÞ, so that ḡ is the best of all such lower bounds. This follows from

ḡðS1Þ ¼ ḡðS�1Þ ¼ P
[n
i¼1

A�i

 !
XgðS�1Þ ¼ gðS1Þ

for any g 2LðS1; nÞ: One way to show Fréchet optimality of a bound is to describe the n events fA�1; . . . ;A
�
ng in

(4). When B ¼ 0, if the fA�i g are such that the only non-zero probabilities are given by

PðA�1A�2 . . .A
�
kĀ�kþ1 . . . Ā

�
nÞ ¼

S1

k
,

PðĀ�1Ā�2 . . . Ā
�
nÞ ¼ 1�

S1

k
,

then PðA�i Þ ¼ S1=k; 1pipk; PðA�i Þ ¼ 0; k þ 1pipn, so that
Pn

i¼1 PðA�i Þ ¼ kS1=k ¼ S1 and Pð
Sn

i¼1 A�i Þ ¼

PðA�1A�2 . . .A
�
kĀ�kþ1 . . . Ā

�
nÞ ¼ S1=k, satisfying (4). In fact the original derivation was a completely probabilistic

proof of (2) followed by this argument. However, Ba0 does not seem amenable to this technique and instead
we will approach the general problem through the theory of linear programming (see, e.g., Schrijver, 1986),
which is a very well-studied class of optimization problems. Linear programming has been used to obtain
optimal bounds on various probabilities since the pioneering paper of Hailperin (1965). Its successful
applications to probability bounding problems include, among others, work by Dawson and Sankoff (1967),
Kounias and Marin (1976), Kwerel (1975), and Prékopa (1988).

An outline of the LP technique in probability bounding is as follows:
1.
 All given information about the probability measure is described by linear constraints. A bound on the
probability of an event is represented as a linear (objective) function.
2.
 The linear programming dual of the resulting optimization problem is obtained, for which any feasible
solution, expressed as a function of the given information, is a probability bound (not necessarily optimal).
3.
 The linear programming optimality conditions are used to arrive at the optimal solution. The primal and
dual solutions will have equal value due to the strong duality theorem of linear programming.
4.
 Finally, the primal optimal solution represents a measure whose existence is required in the definition of
Fréchet optimality.

While it is sometimes possible to skip step 3 in the presentation, it is often essential in arriving at the proof of
optimality.

The linear programming formulation begins with the occurrence or non-occurrence of events fAig, the
elementary conjunctions. These may be represented by n-dimensional f0; 1g-vectors (denoted by y 2 f0; 1gn);
for instance, for n ¼ 4, the event A1 \ Ā2 \ A3 \ A4 is given by the point y ¼ ð1; 0; 1; 1Þ. Let pðyÞ be the
corresponding probability induced on f0; 1gn by a probability P. This measure pð�Þ will determine the
probability space needed to establish Fréchet optimality of a bound. In accordance with our definition of
random n; nðyÞ denotes f#i : yi ¼ 1g. Then

S1 ¼
X

y2f0;1gn
nðyÞpðyÞ, (5)

since

PðAiÞ ¼
X
y:yi¼1

pðyÞ, (6)
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and each pðyÞ will be counted in S1 exactly nðyÞ times (by the number of 1’s in y). Any probability measure has
to satisfy a normalization conditionX

y2f0;1gn
pðyÞ ¼ 1. (7)

The probability of more than k events occurring simultaneously not exceeding B can be written as

PðnXk þ 1Þ ¼
X

y:nðyÞ4k

pðyÞpB, (8)

and the probability of the union of all n events as

P
[n
i¼1

Ai

 !
¼

X
y:nðyÞ40

pðyÞ. (9)

The problem of finding the optimal lower bound then reduces to minimizing (9) over all possible non-negative
measures pð�Þ on f0; 1gn subject to constraints (5), (7), and (8). This is a linear programming problem.
Constraint (7) is redundant, since it simply forces objective (9) not to exceed 1: Because we are minimizing in
Proposition 1, the optimal value of (9) must not exceed 1 as long as the problem data are consistent. We can
simplify our problem further if we make the following observation:

Observation 1. Linear expressions in the constraints and the objective can be rewritten in terms of

pi ¼
X

y:nðyÞ¼i

pðyÞ

(the probability that exactly i events occur), i ¼ 0; . . . ; n. Any assignment of values to pðyÞ; y 2 f0; 1gn

corresponding to the same feasible assignment of pi, i ¼ 0; . . . ; n will result in the same value of the objective.

The formulation becomes

min
Xn

i¼1

pi ð10Þ

s:t:
Xn

i¼1

ipi ¼ S1, ð11Þ

Xn

i¼kþ1

pipB, ð12Þ

piX0; i ¼ 0; . . . ; n. ð13Þ

Remark 2. A probability measure pðyÞ; y 2 f0; 1gn, satisfying constraints (5) and (8) exists if and only if there
exists an assignment of pi, i ¼ 0; . . . ; n, such that (11)–(13) and

Pn
i¼0 pi ¼ 1 hold. Such a measure can be

obtained by arbitrarily splitting a value of pi among y’s such that nðyÞ ¼ i; i ¼ 0; . . . ; n. Therefore, an optimal
solution to (10)–(13) immediately provides a Fréchet optimal bound. We now obtain the following.

Proposition 1. For any probability measure on the space of possible outcomes satisfying (5) and (8) for some

1pkpn

P
[n
i¼1

Ai

 !
X

S1

k
�

n

k
� 1

� �
min B;

S1

n

� �
. (14)

The bound can be achieved.

Proof. When k ¼ n, condition (8) does not provide additional information since it is automatically satisfied
for any BX0 and (14) reduces to (1), its Fréchet optimality as a special case.
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When 1pkon, we employ the duality theory of linear programming. Introduce dual variables l and m for
constraints (11) and (12), respectively. The problem dual to (10)–(13) is

max S1lþ Bm ð15Þ

s:t: ilp1; i ¼ 1; . . . ; k, ð16Þ

ilþ mp1; i ¼ k þ 1; . . . ; n, ð17Þ

mp0. ð18Þ

Any dual-feasible solution (to the maximization problem (15)–(18)) provides a lower bound on the probability
of the union. Consider, for example, a solution such that l� ¼ 1=n, m� ¼ 0 when BXS1=n, and l� ¼ 1=k,
m� ¼ 1� n=k when BoS1=n. The solution is feasible. Indeed, in the first case, il� ¼ i=np1, i ¼ 1; . . . ; n. In the
second case, the solution is also feasible since il� ¼ i=kp1, i ¼ 1; . . . ; k, and il� þ m� ¼ 1� ðn� iÞ=kp1,
i ¼ k þ 1; . . . ; n. Immediately, S1l

�
þ Bm� ¼ S1=k � ðn=k � 1ÞminfB;S1=ng.

We now verify optimality using linear programming. This involves the construction of an optimal
probability distribution p� (whose existence, by Remark 2, immediately implies the existence of an optimal
probability measure p�ð�Þ required in the definition of Fréchet optimality). The optimality of p� will follow
from the strong duality theorem of linear programming as long as p� is (primal) feasible and has the same
value as a dual feasible ðl�;m�Þ.

Consider first the case BXS1=n. Let p�i ¼ 0; i ¼ 1; . . . ; n� 1; p�n ¼ S1=n. Primal feasibility holds since
np�n ¼ S1 and p�npB: The values of p� and ðl�;m�Þ are both equal to S1=n. Next, suppose BoS1=n and let
p�i ¼ 0, iak; n, p�n ¼ B; p�k ¼ ð1=kÞðS1 � np�nÞ ¼ ð1=kÞðS1 � nBÞ. Primal feasibility clearly holds. Also, the
values of p� and ðl�; m�Þ are both equal to S1=k � ðn=k � 1ÞB. &

Example 3. Bound (2) can be used in a very natural way. Let O ¼ f1; . . . ;Ng be a finite sample space on N

outcomes and let P ¼ ffi; jg : 1piojpNg be a set of all undirected pairs from O. Let the event collection be a
subset of n distinct members of P : E ¼ fA1; . . . ;Ang � P. Observe that the pair ðO;EÞ forms an undirected
graph with N vertices and n edges. Suppose that each outcome from O occurs with the same probability 1=N.
Then PðAiÞ ¼ 2=N, i ¼ 1; . . . ; n and S1 ¼ 2n=N. The event A ¼

Sn
i¼1Ai can be interpreted as ‘‘a randomly

selected vertex not being isolated’’. Using (1), its probability can be bounded from below by

PðAÞX
1

n

2n

N
¼

2

N
.

We can improve on this bound if we observe that the elements of E intersect if and only if they have a vertex in
common, and there are at most k ¼ N � 1 distinct edges that can be incident to a given vertex. Thus, if nXk,
bound (2) provides an immediate improvement by the factor n=k:

PðAÞX
1

k

2n

N
¼

2

N

n

k
.

If, for instance, nXðN � 1Þðlog2 N þ 1Þ, then n=kXlog2 N þ 1.

Similarly, Boole’s inequality (3) can be improved in the presence of

Pð0onpk � 1Þ ¼
X

y:0onðyÞok

pðyÞpC. (19)

Due to Observation 1, the corresponding linear program has the form

max
Xn

i¼1

pi ð20Þ

s:t:
Xn

i¼1

ipi ¼ S1, ð21Þ
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Xk�1
i¼1

pipC, ð22Þ

piX0; i ¼ 1 . . . n. ð23Þ

To be absolutely precise, the formulation needs to include a normalization condition (7), which, when
expressed in terms of the pi’s, assumes the form

Pn
i¼0pi ¼ 1. Because of the non-negativity of p0; which does

not participate in other constraints or the objective, we can also write this as

Xn

i¼1

pip1. (24)

Constraint (24) has a simple effect of forcing (20) not to exceed 1. Thus, we should analyze (20)–(23) with
understanding that the true Fréchet optimal bound is a minimum of its optimal value and 1.

Proposition 2. For any probability measure on the space of possible outcomes satisfying (5) and (19) for

some 2pkpn

P
[n
i¼1

Ai

 !
pmin 1;

S1

k
þ 1�

1

k

� �
minfC;S1g

� �
. (25)

The bound is Fréchet optimal.

Proof. It is straightforward to verify by using the dual of (20)–(23) that the optimal measure is given by

p�1 ¼
S1 if CXS1;

C if CoS1;

(

p�k ¼ ðS1 � p�1Þ=k, and p�i ¼ 0, ia1; k. The optimal value p�1 þ p�k is then equal to S1=k þ ð1� 1=kÞminfC;S1g.
The statement of the proposition follows. &

Observation 2. Substitution of k ¼ 1 in the right-hand side of (25) gives Boole’s inequality (3). Likewise, C ¼ 1
always gives a valid bound in (19) and also leads to Boole’s inequality because if S141 then (25) becomes

P
[n
i¼1

Ai

 !
pmin 1;

S1

k
þ 1�

1

k

� �
¼ 1,

while if S1o1 then (14) becomes

P
[n
i¼1

Ai

 !
pmin 1;

S1

k
þ S1 �

S1

k

� �
¼ S1

again resulting in (3).
3. Lower bound in the case of known PðAiÞ

Let us suppose now that we know the individual probabilities fPðAiÞ; i ¼ 1; . . . ; ng, ordered, without loss of
generality, so that PðAiÞXPðAjÞ; ioj. Knowledge of these values generally leads to better bounds. Actually, as
our proof below shows, the individual probabilities need not be known, only their maximum. A well-known
(optimal) lower bound is (Boole, 1854, pp. 297–300)

P
[n
i¼1

Ai

 !
X max

i¼1;...;n
PðAiÞ ¼ PðA1Þ. (26)
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In Section 2, we obtained the lower bound (2) when B ¼ 0. Combining (2) with (26), we immediately obtain

P
[n
i¼1

Ai

 !
Xmax PðA1Þ;

S1

k

� �
(27)

which reduces to (26) with k ¼ n. It is a surprising fact that, given maxi PðAiÞ, a number kpn, and the
information that B ¼ 0; this bound is Fréchet optimal.

Note that B ¼ 0 implies pðyÞ ¼ 0 for all y : nðyÞ4k. Using relations (6) and (9), we can formulate the
problem as

min
X

y:0onðyÞpk

pðyÞ ð28Þ

s:t:
X

y:yi¼1; nðyÞpk

pðyÞ ¼ PðAiÞ, ð29Þ

pðyÞX0; y 2 f0; 1gn; nðyÞpk. ð30Þ

Here, the fPðAiÞg are any collection of probabilities whose maximum is the given PðA1Þ: Their actual
individual values will not be relevant. Let li; i ¼ 1; . . . ; n, be the dual variables. A linear program, dual to
(28)–(30), has the form

max
Xn

i¼1

liPðAiÞ ð31Þ

s:t:
X

i:yi¼1

lip1; y : nðyÞpk. ð32Þ

When k ¼ n, a primal–dual pair of optimal solutions is given by

p�ð1; 0; 0; . . . ; 0Þ ¼ PðA1Þ � PðA2Þ,

p�ð1; 1; 0; . . . ; 0Þ ¼ PðA2Þ � PðA3Þ,

..

.

p�ð1; 1; 1; . . . ; 1Þ ¼ PðAnÞ,

with p�ðyÞ ¼ 0 for all other y, and

l�1 ¼ 1; l�i ¼ 0; i ¼ 2; . . . ; n.

According to the theory of linear programming, a primal–dual pair of feasible solutions is optimal if and only
if it satisfies a complementary slackness condition (which is equivalent to the condition that both the solutions
have equal value). Note that p�ð�Þ is primal feasible since the only non-zero terms in expression (29) for each
of PðAiÞ’s are

p�ð1; . . . ; 1;|fflfflfflffl{zfflfflfflffl}
i elements

0; . . . ; 0Þ ¼ PðAiÞ � PðAiþ1Þ; . . . ; p
�ð1; . . . ; 1Þ ¼ PðAnÞ.

Note also that k� is trivially dual feasible. The complementary slackness conditions

p�ðyÞ
X

i:yi¼1

l�i � 1

 !
¼ 0; y 2 f0; 1gn; nðyÞpk (33)

hold, since k� satisfies as equality those and only those constraints in (32), corresponding to y : y1 ¼ 1, and
p�ðyÞ may be non-zero only for y : y1 ¼ 1. Thus, the pair is optimal with corresponding value of PðA1Þ.

The probability measure which has just been described corresponds to a situation when A1 � A2 � � � � �

An: Clearly, when kon; this is impossible. It is not obvious how to construct a probability measure for
which (27) holds as an equality (which would imply optimality). Before proving the optimality result, we need
to establish the following lemma:
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Lemma 1. A polyhedral cone Q ¼ fq : qipð1=kÞ
Pn

j¼1 qj ; qX0g is the conic hull of the vectors in the set

Y k ¼ fy 2 f0; 1g
n : nðyÞ ¼ kg.

Proof. Observe that Q is the set of all vectors in Rn satisfying the system of linear inequalities

Aq ¼
I �

1

k
E

�I

2
4

3
5qp0,

where E is an n� n matrix of 1’s. The extremal rays of Q are contained in the (one-dimensional) linear
subspaces of the form A0q ¼ 0; where A0 is a rank n� 1 submatrix of A. Thus, up to a permutation of indices,
any q on the extremal ray must satisfy a system of equations

qi ¼
1

k

Xn

j¼1

qj ; i ¼ 1; . . . ; l � 1,

qi ¼ 0; i ¼ l þ 1; . . . ; n,

for some l ¼ 1; . . . ; n� 1: Denote a common value of q1; . . . ; ql�1; and ð1=kÞ
Pn

j¼1 qj as r. Then, it follows that,
r ¼ ð1=kÞ½ðl � 1Þrþ ql 	 and, expressing ql via r, we get ql ¼ ðk � l þ 1Þr. However, for q to belong to Q, we
must have 0pqlpr ¼ ð1=kÞ

Pn
j¼1 qj . It follows, that 0pk � l þ 1p1 or, equivalently, kplpk þ 1. If l ¼ k,

then ql ¼ r, and, if l ¼ k þ 1, then ql ¼ 0, thus, both values of l correspond to the same ray of the form

ðr; . . . ;r;|fflfflfflfflffl{zfflfflfflfflffl}
k

0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
n�k

Þ.

Thus, the directions of all extremal rays are given by the vectors in Y k. Since a pointed polyhedral cone is the
conic hull of its extremal rays, the statement of the lemma follows. For the relevant results on polyhedra, see
Chapter 8 of Schrijver (1986). Probabilistically, this lemma means that when the vector of probabilities PðAiÞ,
i ¼ 1; . . . ; n belongs to Q, there exists a probability measure such that exactly k events always occur
simultaneously.

Proposition 3. Given PðA1Þ � maxi PðAiÞ, a number kpn with B ¼ 0, then (27) holds and is Fréchet optimal.

Proof. We start by considering the case when PðA1ÞpS1=k. This condition implies that the value of the bound
is S1=k and that

PðAiÞp
1

k

Xn

j¼1

PðAjÞ; i ¼ 1; . . . ; n. (34)

A dual-feasible solution with the value of S1=k has the form

l�i ¼
1

k
; i ¼ 1; . . . ; n.

To prove optimality, we need to show that there exists a primal-feasible solution that satisfies the
complementary slackness conditions (33). Observe that all constraints in (32) corresponding to y with
0onðyÞok are satisfied by k� as strict inequalities. Thus, the corresponding primal solution must have p�ðyÞ ¼

0 for all y : 0onðyÞok: We must therefore show the existence of non-negative p�ð�Þ such that, from (29),X
y:yi¼1; nðyÞ¼k

p�ðyÞ ¼
X

y:nðyÞ¼k

yip
�ðyÞ ¼ PðAiÞ; i ¼ 1; . . . ; n.

In the above sum, p�ðyÞ’s are just the coefficients in the conic combination representation of the vector of all
PðAiÞ’s via vectors of Y k set of Lemma 1. However, from (34), it follows that the vector of PðAiÞ’s belongs to
the cone Q defined in the lemma and, consequently, such coefficients exist.

Now, let us suppose that the opposite case holds, i.e., PðA1Þ4S1=k. The value of the bound is PðA1Þ and a
corresponding dual-feasible solution has the form

l�1 ¼ 1; l�i ¼ 0; i ¼ 2; . . . ; n.
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To prove optimality, we again show the existence of p�ð�Þ satisfying (29) and (33). This time, constraints in (32)
satisfied as strict inequalities are exactly those corresponding to all y such that y1 ¼ 0, which forces p�ðyÞ ¼ 0
whenever y1 ¼ 0: In other words, we must construct a measure p�ð�Þ such that A1 contains all other events. Our
construction will use a circle in R2 with a circumference of PðA1Þ:We pick an arbitrary point on the circle and
start to tile it with consecutive arcs of lengths PðAiÞ, i ¼ 1; . . . ; n (we will denote their set as A). The endpoints
of arcs in A subdivide the circle into a set P of arcs of non-zero lengths. Assume that each arc in A and P
includes only one of its endpoints, say, in the counterclockwise direction. Then, with each arc r 2 P; we can
associate a f0; 1g vector y so that yi ¼ 1 if and only if r is contained in the arc ai 2A corresponding to Ai. For
this vector y; we set p�ðyÞ equal to the length of r. Clearly, for every y so obtained, we have y1 ¼ 1 since a1

covers the entire circle. Also, we know that nðyÞpk; since kPðA1Þ4
Pn

j¼1 PðAjÞ, the tiling is consecutive, and,
therefore, the circle is tiled at most k times. Finally, (29) holds since the length of ai, i ¼ 1; . . . ; n, is equal to the
total length of arcs of P contained in it. Thus, we have demonstrated the existence of p�ð�Þ forming a
primal–dual optimal pair with k�. &
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