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This paper presents a best estimate plus uncertainty
(BEPU) methodology applied to dryout, or critical chan-
nel power (CCP), modeling based on a Monte Carlo
approach. This method involves the identification of the
sources of uncertainty and the development of error mod-
els for the characterization and separation of epistemic
and aleatory uncertainties associated with the CCP pa-

rameter. Furthermore, the proposed method facilitates
the use of actual operational data leading to improve-
ments over traditional methods, such as sensitivity analy-
sis, which assume parametric models that may not
accurately capture the possible complex statistical struc-
tures in the system input and responses.

I. INTRODUCTION

Best estimate ~BE! plus uncertainty ~BEPU! meth-
ods are widely used for nuclear safety analyses.1– 6 These
methods use realistic codes to represent the physical phe-
nomena that underlie the safety analyses. The use of BE
codes within the reactor technology, either for design or
safety analysis, requires an understanding of the limita-
tions and deficiencies associated with these codes.

It has been shown in Refs. 7 through 10 that a meth-
odology utilizing properties of extreme value statistics
~EVS! ~the so-called EVS methodology! can lead to sig-
nificant improvements in probabilistic safety analyses
~PSAs!. A critical component of the EVS methodology
utilizes the distinction between aleatory and epistemic
uncertainties in the evaluation of the safety margins. In
the nuclear risk analysis, aleatory uncertainty reflects the
many hypothetical accident scenarios that are considered
in the respective risk analysis. “Aleatory” is often used
synonymously with “random” and in the EVS method-
ology refers to variations in underlying conditions whose
effects cannot be predicted in advance and that result

from a variety of operating conditions or states. These
arise because the reactor core is subject to continuous
change, such as refueling, operation of the reactor regu-
lating system, changes in thermal-hydraulic conditions,
inter alia. The timing and interaction of these changes
cannot be predicted in advance, and this results in the
state of the core being subject to random variations. The
term “epistemic” refers to the state of, or lack of, knowl-
edge of the underlying physical phenomena, and an epi-
stemic error refers to the difference between what a BE
code or measurement is attempting to measure and the
value actually obtained. Epistemic uncertainties arise be-
cause of the many uncertain parameters that underlie
the estimation of the probabilities and consequences of
the respective hypothetical accident scenarios, includ-
ing, for example, the inaccuracy of computer codes as
well as the inaccuracy of both the variables that are input
into these codes and the inaccuracy of measurements that
characterize different aspects of station operation. Epi-
stemic error results in a perception of the reactor state
differing from the true reactor state.

It is well recognized that a clear discrimination be-
tween these uncertainties is a requisite for decision mak-
ing in the environmental risk and safety assessment*E-mail: hoppe@mcmaster.ca
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industry.11,12 For example, Apostolakis12 shows how sep-
arating aleatory and epistemic uncertainties can make a
difference in PSA using an example involving the mod-
eling of pipe failures under plant aging effects. In a sim-
ilar fashion, separation of epistemic and aleatory errors
arises naturally in the EVS methodology. Aleatory error
determines a ~lower! percentile of an unknown distribu-
tion of trip setpoints. The estimate of this percentile must
be based on variables that are observable0computable,
and these are based on variables that are subject either to
have measurement error or to be BEs obtained using
imperfect computer codes, hence subject, in each case, to
epistemic error. In the simplest context, we would have
Yi � Xi � Ei , 1 � i � n, where Xi are aleatory random
variables each representing a realization of a quantity of
interest, a percentile of whose distribution is to be esti-
mated; Yi are the corresponding observed0computed val-
ues ~either measured or code computed!, and Ei are the
epistemic errors. The Yi are then used to draw an infer-
ence on the specified percentile of the X distribution.
Thus, it is natural to separate out the two types of uncer-
tainty, and despite different origins, both epistemic and
aleatory variations can be analyzed within the same prob-
abilistic framework to derive a 95095 tolerance interval.

These results presented have led to significant im-
provements in the evaluation of the safety margins when
applied to the neutron overpower protection ~NOP! trip
setpoint analysis7,8,10 for demonstrating shutdown sys-
tem effectiveness. An important input in the NOP analy-
sis is the calculation of the critical channel powers ~CCPs!
and uncertainties associated with the CCP parameter. The
calculations of the CCPs rely on BE thermal-hydraulic
codes to model the response of the heat transport ~HT!
system ~HTS! under a postulated slow loss of regulation
~LOR! event considered in the NOP analysis.

The objective of this paper is to describe a BEPU
analysis using a Monte Carlo approach. The paper de-
scribes the methodology for the mathematical modeling
of the input and response variables of CCPs that reflect
the different sources of code-related uncertainties and
distinguishes between epistemic and aleatory errors. A
statistical framework that provides the integration of the
mathematical error models for the evaluation of the 95095
tolerance interval based on the EVS methodology is also
given in this paper. The statistical framework is utilized
in demonstrating the required nuclear safety margins as-
sociated with the accident analysis.7

II. BACKGROUND

II.A. NOP Trip Coverage Analysis and the Underlying

Statistical Framework

During a postulated power excursion, such as a LOR
event, the reactor power may increase sufficiently to in-
duce an unstable dry patch on the fuel sheath in a high-

power channel. This condition is commonly known as
dryout.a Although the onset of intermittent dryout of the
fuel sheath does not necessarily lead to fuel or fuel chan-
nel failures, elevated fuel temperatures can result in fuel
element deformations and, possibly, fuel centerline melt-
ing and eventually pressure tube ~PT! failure. Thus, the
prevention of the onset of intermittent dryout has been
used in the Canadian safety analysis industry as a con-
servative criterion for preventing fuel failures leading to
radiological releases.

The NOP system is based on a margin-to-trip ap-
proach that is a function of the NOP trip setpoint and
calibration-related factor. A challenging aspect associ-
ated with the determination of the NOP safety margins is
that the input variables required in the NOP analysis may
not be directly measurable quantities but are computed
using complex BE codes, including determination of the
dryout power or CCP that is used in assessing the margin
to dryout. The CCP calculations rely on a thermal-
hydraulic code that is a function of input variables that
define the initial boundary conditions ~e.g., reactor header
conditions, etc.! and those that define the properties and
phenomena of the system and code ~e.g., flow area of the
channel, etc.!.

A statistical framework to evaluate the operational
margins based on a 95095 tolerance interval has been
proposed in Ref. 7 and utilizes the EVS methodology.
The results of the EVS methodology have demonstrated
improvements in the operational safety margins associ-
ated with the NOP trip setpoint analysis. As discussed in
Ref. 7, the statistical framework for computing an NOP
trip setpoint is based on a mathematical model that leads
to Eqs. ~1! and ~2!:

t � t 0 � Q ~1!

and

T � t 0 � t , ~2!

where t describes a “true” trip setpoint, which in the
NOP analysis refers to the trip setpoint at the precise
moment that the NOP system initiates a reactor shut-
down to prevent ~intermittent! dryout in any one of the
reactor fuel channels. The reactor state at such future
time will not be known and is modeled as an aleatory
variable. The variable t 0 in Eq. ~1! corresponds to a
reference trip setpoint at a specified set of thermal-
hydraulic conditions of interest in the NOP analysis.
However, t 0 can still depend on non-thermal-hydraulic
variables. Different reference conditions are considered
in the evaluation of the NOP trip margins to reflect the
changes in the thermal-hydraulic characteristics of the
HTS as the reactor core ages. These aging effects in-
clude steam generator tube fouling, changes in feeder

a The channel power at which dryout occurs in a channel is
known as the CCP.
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roughness due to flow-accelerated corrosion, and non-
uniform physical changes in the fuel channels due to
irradiation-enhanced creep and hoop stress. These aging
effects lead to changes in the reactor header conditions,
core flow, thermal-hydraulic properties of the fluid, and
HT capabilities leading to potential degradation in the
available margins. The variations in these thermal-
hydraulic conditions are reflected in the quantity Q. At
the given reference conditions, the BE codes are used
to compute T, an estimate of t 0 with an error denoted
by t in Eq. ~2!.

The quantity t is an epistemic error based on our
earlier definition. As a result, the BE value T is consid-
ered a random variable. This may require clarification
since the BE codes used are deterministic ~i.e., running a
code produces a single output and will always produce
the same value under the same conditions!. We are as-
suming that such a single output is only a random real-
ization of a multitude of values that could be obtained
under different realizations of the errors that are inherent
in the code or the input variables that are themselves
measurements or computed by some other codes.

The variable Q in Eq. ~2! is also considered a random
variable and is considered aleatory insofar as it reflects
random variations in true variables. The concept “true”
may sometimes represent only our mathematical percep-
tion of truth to the extent that we are able to model the
true nature of the underlying physical process. This “gen-
eralization” of “truth” allows us to characterize the errors
rigorously ~we will see an example in this paper!. Ran-
dom variations in t in Eq. ~1! are reflected in Q. However,
these are not the only possible aleatory variations in t. As
pointed out above, the reference variable t 0 may also
depend on other variables that may be considered ran-
dom insofar as they happen in the future under postulated
LOR events at initial conditions that cannot be known a
priori. An example would be the channel powers under
normal operating conditions that vary due to on-line fuel-
ing and the reactor regulating system that ensures that the
operations are within the safe operating envelope.

We note that Eqs. ~1! and ~2! describe a rather gen-
eral mathematical model that can be applied to other
safety or compliance problems. Equations ~1! and ~2!
represent a model that explicitly differentiates between
epistemic and aleatory variations. This distinction leads
to a statistical decision problem in BEPU-type analyses,
which allows us to generalize a notion of a tolerance limit
to epistemic uncertainty. For instance, we may define
such a lower tolerance limit W by

P @W � t1�g# � b , ~3!

where P is the probability defined over the space of data
that define the problem given by Eqs. ~1! and ~2!. The
novelty is that t1�g is a parameter determined by aleatory
conditions, while P is evaluated with respect to the epi-
stemic uncertainty since the random W arises from a

code and measurements. Note that g and b define the
level of safety for the decision-making problem where
t1�g is the lower 100~1 � g! percentage point of the
probability distribution for t and 1 � g typically repre-
sents the risk that the regulator and utilities agree is tol-
erable.13 Furthermore, b is the confidence level ~typically
taken to be 0.95!, and W results from the presence of
epistemic error in Eq. ~2! together with the aleatory vari-
ation in Eq. ~1! resulting from a finite data set. Without
the epistemic component, W would reduce to the usual
tolerance interval as in Ref. 14. The solution to Eq. ~3!
requires the construction of a random variable W that is
the result of code and measurement and whose probabil-
ity distribution provides a one-sided lower confidence
interval for the aleatory parameter t1�g. To our knowl-
edge, this is the first instance of a frequentist tolerance
interval involving epistemic error.

The solution of the problem defined by Eqs. ~1!, ~2!,
and ~3!, the computed tolerance limit W, will serve as the
required trip setpoint. The reason for taking the lower
tolerance limit is the result of the NOP system require-
ment of tripping the reactor before the onset of dryout
with a high level of assurance.

On the other hand, for a different problem, such as
loss-of-coolant accident, where the decision-making prob-
lem is dependent on fuel temperature, the appropriate
limit to compute is the upper tolerance limit given by
P @tg � W # � b. Construction of the random variable W
is beyond the scope of the present paper and can be found
in Ref. 15. What is important, for the purpose of this
paper, is that the error distributions that are needed for W
are obtained by the methodology described here. How-
ever, for the interested reader, the ideas behind the con-
struction of W are as follows. For a lower limit, we apply
the Central Limit Theorem to the multiple observations
$T1, . . . , Tn% described by Eq. ~2! to obtain a random vari-
able PV � lSV where PV is a centered average of the Ti , SV

is the sample standard deviation of the Vi , and the con-
stant l is to be determined in order to achieve the spec-
ified confidence b. For large sample size, we can obtain
a relationship between percentiles of the two random
variables on the left sides of Eqs. ~1! and ~2! and then
estimate l. The random variable W is then given as W �
PV � lSV . In these forms, W resembles the form of the

usual tolerance interval but now in a context involving
epistemic error.

II.B. CANDU Reactor Design

The error analysis methodology discussed in this paper
was implemented for an actual nuclear power plant, briefly
described here because it differs from the more com-
monly used pressurized water reactor. The plant of inter-
est, Bruce Power’s nuclear generation station ~NGS!, is
based on a CANada Deuterium Uranium ~CANDU! re-
actor design, which is a pressurized heavy water reactor.
Heat removal from the fission process is accomplished in
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a CANDU reactor through a HTS as given in Fig. 1. The
HTS accomplishes the safety-related goal of cooling the
fuel. The complete flow pattern of the HTS resembles
that of a figure eight.

A particularly unique HTS is that of the Bruce NGS’s
design where the HTS is a single closed loop but the core
is physically divided into two separate hydraulic flow
zones, referred to as the outer zone ~OZ! and the inner
zone ~IZ! ~see Fig. 1!. Hot coolant flow in the loop passes
through the boilers, removing heat and reducing the cool-
ant temperature, and then passes through the HT pumps,
adding pump head to the pressure. After the HT pumps,
the flow splits into the two flow zones. The fuel channels
in the OZ are connected to a single reactor inlet header
~RIH! on each side of the loop ~one east and one west!
only. The portion of the coolant flow that goes to the OZ
goes directly to the OZ RIH at the boiler outlet temper-
ature and pressure after the HT pumps and is completely
separate from the IZ. There is a total of 480 fuel channels
at Bruce NGS.

The fuel channels in the IZ are connected to a single
RIH on each side of the loop ~one east and one west! only,
separate from the OZ RIH. The portion of the coolant flow
that goes to the IZ does not go directly to the IZ RIH but
first flows through a preheater heat exchanger that re-
moves more heat from this portion of the coolant, further
reducing the IZ coolant temperature. The flow goes from
the preheater to the IZ RIH and is completely separate from
the OZ. The fuel channels in the IZ therefore experience
flow conditions coming into the channels that are lower
in temperature due to heat removal by the preheater and

also at a lower pressure as some pressure is lost as coolant
passes through the preheater, relative to the fuel channels
in the OZ. The two zones join together downstream of
the fuel channels and before the boilers, via a reactor out-
let header on each side of the loop.

III. THE BEPU CCP UNCERTAINTY ANALYSIS

III.A. Overall Approach

Estimates of dryout power for each fuel channel in a
reactor core are computed using the TUF thermal-
hydraulic code,17 through a series of iterative steady-
state thermal-hydraulic calculations. The initial boundary
conditions and bundle power distributions corresponding
to the LOR event are used to calculate the channel flow
and thermal-hydraulic conditions along the channel. Based
on the local thermal-hydraulic conditions, the critical heat
flux ~CHF! at each axial node is determined and com-
pared against the axial heat flux. The computed channel
power is increased until the CHF profile becomes tan-
gential to the axial heat flux profile, which occurs at the
CCP ~i.e., the channel power required to induce intermit-
tent dryout!.

A significant component of the application of a
BEPU method for the purpose of nuclear safety analy-
sis is the identification and characterization of uncer-
tainties related to the BE codes. Several international
activities exist that summarize the current state-of-the-
art methods for evaluating the uncertainties associated

Fig. 1. Bruce NGS CANDU reactor with inner and outer thermal-hydraulic flow zones ~images taken from Ref. 16!.
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with the prediction of computer codes in nuclear safety
technology.2,18–20 Efforts to characterize the different
“sources of uncertainty” that affect the predictions of
the BE codes have been completed in Ref. 20. In a
broad sense, these sources of uncertainty are catego-
rized as follows:

1. code or model related uncertainty

2. representation uncertainties

3. scaling related issues

4. uncertainties in the measurements

5. user effects.

The CCP BEPU analysis discussed in this paper ex-
plicitly considers these different sources of uncertainty
and is implemented using a Monte Carlo method for the
purpose of error propagation of the input variables. In
addition, the methods based on data assimilation consis-
tent with that in Refs. 21, 22, and 23 are utilized to reflect
code-related uncertainties in items 1 and 2 above. This
method utilizes results and data from experimental, com-
missioning, and actual operating station data. The results
of the data assimilation methods and statistics used in
this BEPU analysis ensure that the parameters and the
predicted responses minimize the representation uncer-
tainties of the system under study.

The uncertainty in the code or model exists since the
system thermal-hydraulic code is a computational tool
that typically includes three different sets of balance equa-
tions ~i.e., energy, mass, and momentum!, closure or con-
stitutive equations, material and state properties, and a
numerical solution method. In addition, parameters that
define the boundary initial conditions may rely on mea-
surements from plant instrument data or other BE codes.
Empirical models are widely used to “substitute” the bal-
ance or governing equations to describe these physical
phenomena implemented within the computational code.
The empirical models being based on experimental or
measured data are subject to error. The scope of this
paper focuses on presenting a methodology for math-
ematically modeling the epistemic and aleatory errors in
both the inputs and response variable of a BEPU Monte
Carlo analysis. The BEPU Monte Carlo approach used in
evaluating and modeling the CCP error is discussed in
Secs. III.B and III.D, respectively. The error modeling
method for the input variables of the CCP BEPU analysis
is described in Sec. III.C. The data assimilation method-
ology implemented as part of the BEPU analysis is not
discussed in detail in this paper, but it will be examined
in future papers.

III.B. A Monte Carlo Method for the CCP Error Models

The Monte Carlo methodology for evaluating the
uncertainties in CCPs can be described as follows. Let

x � ~x1, x2, . . . , xp !T ~4!

be a vector representing the important random process
and modeling variables that determine the CCPs, ccp �
~ccp1, ccp2, . . . , ccpN !, where N is the total number of
fuel channels ~such as 480 in Bruce Power NGS reac-
tors!. The superscript T means transpose and anticipates
the algebra used in the Appendix, where x will be repre-
sented as a column vector. Both x and ccp are understood
to be the actual, or true, variables related by

ccp � g~x! . ~5!

The function g represents the perfect understanding of
the system ~i.e., prediction of power required to induce
intermittent dryout! and is merely introduced as a con-
venient way to show the variables that ccp depends on.
The input ~vector-valued! variable x in Eq. ~4! is as-
sumed to be a random variable that is centered about
some reference value x 0. Thus, we may write

x � x 0 � q , ~6!

where q is an aleatory variable ~sometimes referred to as
“error”! that reflects the variations in x; x 0 may depend
on other variables that also may be random providing
additional aleatory variation from a different source.

Components of x represent true input values and are
therefore unknown. These variables are estimated either
by measurements or by available physics or thermal-
hydraulic codes. These estimates will be denoted by X �
~X1, X2, . . . , Xp!T and are assumed to approximate x 0

with an error denoted by « as shown by

X � x 0 � « . ~7!

Recall that x 0 also contains modeling parameters and the
corresponding components in « reflect code errors. Meth-
ods based on data assimilation21–23 are utilized to capture
the station-specific phenomena and properties such as
those described in Fig. 1. Since the code errors are pre-
sumed to be part of the input errors ~the so-called back-
ward error analysis24!, we will use g in Eq. ~5! to denote
the thermal-hydraulic code ~described in Sec. III.A!, and
the computation of CCP can be described as

CCP � g~X ! , ~8!

which are referred to as the BE values of ccp at the
reference conditions. We note that the input error model
Eqs. ~6! and ~7! follows the same structure as the one
provided by Eqs. ~1! and ~2!. The equation CCP � g~X !
should, more strictly, be written as CCP � g*~X !; how-
ever, any differences between the hypothetical function g
and the actual g* that utilizes code and measurements are
absorbed in the epistemic error term «ccp in Eq. ~10!. As
pointed out earlier, in this paragraph this substitution is
part of the backward error analysis where differences
between g and g* are absorbed in «ccp.

As described earlier, the errors « in Eq. ~7! are epi-
stemic in nature. We assume that the distribution of « is
known or could be evaluated based on the available
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validation data. Similarly, the distribution of the error q
in Eq. ~6! is assumed known or estimable based on reac-
tor operation data.

With the above definitions, we are now in a position
to derive an error model for the CCP variable. Naturally,
we will seek such a model in the form as given by Eqs. ~1!
and ~2! or Eqs. ~6! and ~7!. That is,

ccp � ccp0 � qccp ~9!

and

CCP � ccp0 � «ccp , ~10!

where

ccp0 � g~x 0 ! .

The errors qccp and «ccp can be obtained from

qccp � ccp � ccp0 � g~x! � g~x 0 !

� g~x 0 � q! � g~x 0 ! ~11!

and

«ccp � CCP � ccp0 � g~X ! � g~x 0 !

� g~x 0 � «! � g~x 0 ! . ~12!

Equations ~11! and ~12! show how Eqs. ~1! and ~2! arise.
Estimates of «ccp and qccp are required inputs into the

NOP trip setpoint calculations. Equations ~11! and ~12!
lend themselves to computing the probability distribu-
tions for «ccp and qccp using a Monte Carlo numerical
simulation by sampling from the known distributions for
« and q. The difficulty is that x 0, being a true quantity, is
unavailable. Following the prescription in Ref. 25, we
apply a surrogate approach in which we substitute the
unknown x 0 with the BE value X. This is a reasonable
approach provided that X is a sufficiently close estimate
of x 0. In other words,13 it is required that the code being
used in the Monte Carlo simulation needs to be phenom-
enologically correct. Thus, we obtain

qccp
s � g~X � q! � g~X ! ~13!

and

«ccp
s � g~X � «! � g~X ! ~14!

as approximations to qccp and «ccp, respectively; that is,
the estimated distribution for qccp

s is used in Eq. ~1! to
estimate the distribution for Q, and the estimated distri-
bution for «ccp

s is used in Eq. ~2! to compute the distri-
bution for t. These errors qccp

s and «ccp
s are used in a

Monte Carlo simulation to obtain the tolerance limit W
required in Eq. ~3!. Therefore, any dependencies among
the errors need to be known to enable proper sampling in
the simulation, yet Eqs. ~13! and ~14! do not explicitly
reveal such dependencies. In Sec. III.D we show how to
derive the error structure for qccp

s and «ccp
s with the ex-

plicit error distributions.

III.C. Mathematical Modeling of the Epistemic and

Aleatory Errors in the CCP Input Variables

As discussed in Sec. III.A, the CCPs are calculated
using a BE thermal-hydraulic code. The reactor header
condition and bundle power distribution corresponding
to the LOR event are used to calculate the channel flow
and thermal-hydraulic conditions along each channel.
Based on these thermal-hydraulic conditions, the CHF
at each axial node is determined and compared against
the axial heat flux corresponding to the accident condi-
tions. The computed channel power is increased until
the CHF profile becomes tangential to the axial heat
flux profile. Empirical models are required to provide
the necessary inputs in calculating the CCPs. The em-
pirical models include those that are used to compute
the CHF, fuel channel geometry, and the calculation of
the pressure losses for each component of the flow path
from header-to-header along a fuel channel. Using a
regression analysis, these empirical models are devel-
oped and utilize full-scale experimental data and0or op-
erational station measurements. It is understood that there
exist a number of variables that must be considered as
inputs into the CCP BEPU analysis with varying levels
of complexity. However, this section provides an illus-
trative example that provides a means to demonstrate
how one distinguishes and characterizes the epistemic
and aleatory errors associated with the input variable of
interest. The results are expressed in the required form
as described by Eqs. ~6! and ~7!. The methodology can
easily be extended to other input variables.

The methodology presented here is for the develop-
ment of the BE prediction and error modeling of PT
diameters for each fuel channel. The nonuniform change
in PT dimensions is a principal aging mechanism gov-
erning the HT and hydraulic degradation of the HTS. For
the purpose of demonstration, the prediction of PT diam-
eters for bundle i , channel j can be developed using mea-
sured PT diameters ~or measured strainb! and a linear
functional model that expresses its dependency to flu-
ence c ~and integrated fuel irradiation over time! as well
as the ~lifetime-averaged! coolant temperature v.

The linear functional form of PT strain is given by

sij � aj � bi cij � ci vij � dj , ~15!

where

sij
o � aj � bi cij � ci vij , ~16!

and where

sij
o � functional form of the strain

dj � aleatory error.

b Note that measured strain Sij is defined as ~Dij � Do!0Do,
where Dij and Do are the measured and reference PT diam-
eters at bundle i , channel j, respectively.
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It is assumed that Eq. ~15! represents a true value of the
PT strain. This, of course, cannot be literally true. How-
ever, it is a reasonable model, and we assume that the
amount by which it is simplified is negligible with re-
spect to all other variables that may be present ~this as-
sumption is substantiated using existing measurement!.
In the absence of a physical model, we determine the
coefficients aj , bi , and ci , using regression, and the ex-
isting measurements Sij . The difficulty here is that the
measurements are available only on a sample of all PTs,
and therefore, aj cannot be determined for all the PTs.
Assuming that aj reflects differences among the PTs due
to manufacturing uncertainties or material properties, we
will model the strain as a random variable, and the chan-
nels that have measurements available will be considered
a random sample from the population of all PTs ~note that
in the statistical jargon, such models are described as
“random effects models”!. Equation ~16! can be written
compactly in matrix notation as

s 0 � Ab , ~17!

where

b � vector of the coefficients a, bi , and ci

A � data matrix consisting of ci, j and vi, j .

Likewise, in matrix notation, Eq. ~15! can be ex-
pressed as

s � s 0 � Bd . ~18!

Note that entries in matrix B are only zeros and ones to
preserve a proper ordering reflecting the arrangement in
Eqs. ~16! and ~17!. Observe that Eq. ~18! is exactly of the
same form as Eqs. ~1!, ~6!, or ~9! with the error structure
made explicit.

The epistemic part of the PT diameter model is de-
rived by fitting Eq. ~18! to the available measurements.
Let those measurements be denoted by Si, j , and corre-
spondingly, let the vector of all measurements @consis-
tent with the index arrangement in Eq. ~17!# be denoted
by S. If the measurement error ~epistemic by definition!
is denoted by jij , or, j in the vector notation, then

S � Ab � Bd � j ~19!

is the random effects regression model. We will assume
that the error components of d and j are normally and
independently distributed, such that

dj ; N ~0, sd
2!

and

jij ; N ~0, sj
2! .

We will show how to solve the above model in the Ap-
pendix @using maximum likelihood estimation ~MLE!# .
If the term Bd in Eq. ~19! were missing, then the resulting
regression model would be a standard regression that is

solvable by the usual techniques of least squares. How-
ever, the presence of Bd makes Eq. ~19! a problem with
a rather complex error structure, and special care is needed
to solve it. Since the variances sd

2 and sj
2 are unknown

parameters, the problem becomes nonlinear.
Let the MLE solution of the coefficients b in Eq. ~19!

be denoted by Zb. Thus, the BE strain ~or the “code”
prediction! is denoted by ZS and is given by

ZS � A Zb , ~20!

where the matrix A is evaluated at such data for which
the prediction of s 0 is required. The error h, between the
BE ZS and the true value s 0, is given by

h � ZS � s 0 � A~ Zb � b! .

Thus, the epistemic model for the BE value is

ZS � s 0 � h . ~21!

The properties of the error h are derived in the Appendix.
In particular, it is shown that h is unbiased and

Var~h! � AT ZA ,

Z � Var~ Zb � b! � ~AT V21A!21 ,

and

V � sd
2 BBT � sd

2 I ,

where I denotes the identity matrix. Thus, we have de-
rived the diametral strain model with both the aleatory
and epistemic components as required for the input into
the CCP uncertainty computation. This model is given by
Eqs. ~18! and ~21!; that is,

s � s 0 � Bd

and

ZS � s 0 � h .

These two equations are of the form Eqs. ~1! and ~2!.

III.D. Development of the CCP Statistical Error Model

Using the Monte Carlo method discussed in Sec. III.B
and the statistical error models of the input variables in
Sec. III.C, estimates of «ccp and qccp are readily obtained
for further statistical analysis. The development of em-
pirical models, which clearly distinguish between the
aleatory and epistemic variables and preserve the more
complex structures of the errors, are desirable for accu-
rate NOP trip setpoint solutions. Examining the results of
qccp, we observe a finer error structure between different
channels in the core for the aleatory errors.

These channels are IZ and OZ channels, as shown in
Fig. 1. For the aleatory variable qccp ~a similar argument
holds for «ccp!, let
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qccp � ~qp
IZ, qq

OZ! ,

where qp
IZ with p � 1, 2, . . . , P are all the channels in the

IZ region and qq
OZ with q � 1, 2, . . . ,Q are all the chan-

nels in the OZ region.
Afive-parameter CCP statistical error model has been

proposed that captures the observed phenomenon as
follows:

qp
IZ � Fo � Fo

IZ � Fp
IZ ~22!

and

qq
OZ � Fo � Fo

OZ � Fq
OZ , ~23!

where

Fo � variation common to both IZ- and OZ-region
channels

Fo
IZ � variation common to all IZ-region channels

Fo
OZ � variation common to all OZ-region channels

Fp
IZ � variation unique to IZ-region channel p

Fq
OZ � variation unique to OZ-region channel q.

Based on available data, the results indicate that the five
parameters Fo, Fo

IZ, Fo
OZ, Fp

IZ, and Fq
OZ are well repre-

sented as normal and independently distributed random

Fig. 2. Time series of raw operational data. ~a! through ~d! Reactor inlet header temperatures ~RIHT! ~IZ and OZ!. ~e! and ~f !
Reactor outlet header pressure ~ROHP!.
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variables each with zero mean and standard deviations
so

2, soIZ
2 , soOZ

2 , sIZ
2 , and sOZ

2 , respectively.
Thus, the variance of the CCP aleatory variable for

each IZ channel p is given as

Var~qp
IZ! � so

2 � soIZ
2 � sIZ

2 . ~24!

Similarly, for the OZ-region channel q,

Var~qq
OZ! � so

2 � soOZ
2 � sOZ

2 . ~25!

As indicated by Eq. ~23!, the aleatory error qccp for the IZ
channel can be described by a random variable that is
common to both IZ- and OZ-region channels, a random
variable common to all IZ channels, and a random vari-
able that is unique to the IZ channel p itself.

The covariance of the CCP aleatory variable for each
pair of IZ-region channels p1 and p2 is given by

Cov~qp1

IZ, qp2

IZ! � so
2 � soIZ

2 for p1 � p2 . ~26!

Likewise, a similar decomposition holds for the OZ chan-
nels from Eq. ~23! with

Cov~qq1

OZ, qq2

OZ! � so
2 � soOZ

2 , ~27!

where q1 � q2.

Finally, the covariance of the CCP aleatory variable
for each IZ-region channel p with each OZ-region chan-
nel q is

Cov~qp
IZ, qq

OZ! � so
2 . ~28!

Using a method of moments, the five unknowns so
2,

soIZ
2 , soOZ

2 , sIZ
2 , and sOZ

2 are estimated using Eqs. ~24!
through ~28!. The solutions to the five-parameter CCP
error model have been shown to give nonnegative esti-
mates and model the data very well. This is discussed
further in Sec. IV.

IV. CCP UNCERTAINTY ANALYSIS RESULTS

Estimates of qccp and «ccp are readily available using
the Monte Carlo method and statistical error models as-
sociated with each input variable in the CCP BEPU analy-
sis. A unique feature of this approach is that the proposed
Monte Carlo method provides a means to accurately cap-
ture the statistical dependencies in the system inputs and
responses when actual operational data are available ~see
Fig. 2!. The operational data define the initial boundary
conditions in the calculation of CCPs and are used in
place of Monte Carlo simulations of these input vari-

Fig. 3. Monte Carlo analysis results. Histogram and qq-plots of the aleatory error for channels in the OZ ~i.e., channels M03
and Q01!.
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ables. This approach accurately reflects the intricate IZ
and OZ design of the HTS ~see Fig. 1!; that is, uncertain-
ties specific to each reactor header are reflected in the
response variable ~i.e., CCP!. This approach eliminates
the need to provide accurate estimates of the covariance
matrix to describe the multivariate joint probability dis-
tributions for these variables that define the initial bound-
ary conditions of the system.

Furthermore, an evaluation of the characteristics of
qccp and «ccp using tests for normality and independence
is possible using results from the Monte Carlo analysis.
As an example,c plots of histograms and qq-plots for qccp

associated with typical channels in the IZ and OZ are
provided in Figs. 3 and 4, respectively. The results of the
qq-plots indicate that qccp is well represented by normal
distributions and support a normal assumption for mod-
eling qccp for all channels in the core. Furthermore, sta-
tistics such as the mean error and standard deviations for
qccp are computable and illustrated in Fig. 5.

Plots of the correlation coefficients are provided in
Fig. 6 for the CCP aleatory variable. These plots are used
to evaluate the potential correlation structure in qccp. The
correlation results suggest that qccp cannot be assumed to

be independent but exhibit a correlation structure con-
sistent with the specific flow distribution in the core de-
sign ~i.e., OZ channels and IZ channels!. These results
indicate that a finer statistical error structure may exist in
qccp and warrant further investigation.

Using the error modeling methodology discussed in
Sec. III.C, we estimate the coefficients of the five-
parameter CCP error model and use them to describe
variations that are either common or unique to the IZ-
and OZ-region channels. The randomness in each chan-
nel is simulated ~i.e., using Monte Carlo! based on the
results of the five-parameter model. The correlation co-
efficients are then computed, and the results are com-
pared against the actual raw data to test the adequacy of
the five-parameter model. These results are shown in
Fig. 6 and demonstrate that the proposed five-parameter
model captures the complex error structure observed in
the data very well.

V. SUMMARY

This paper has presented a CCP BEPU analysis using
a Monte Carlo approach. The CCP parameter is used as
input into the NOP trip setpoint calculations. A key aspectc Note that the same arguments and results hold for «ccp.

Fig. 4. Monte Carlo analysis results. Histogram and qq-plots of the aleatory error for channels in the IZ ~i.e., channels K10
and L11!.
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of the error modeling is the separation of aleatory and
epistemic errors. A five-parameter CCP error model has
been proposed to describe variations that are either com-
mon or unique to the IZ- and OZ-region channels. This
proposed error model has been found to fit the data very
well and facilitates the input of what would otherwise be
a rather complex statistical structure into the NOP trip
setpoint computation.

The proposed Monte Carlo method for error analysis
provides improvements in the evaluation of the NOP trip
coverage over the traditional methods that assume para-
metric models that may not accurately represent the sta-
tistical error structure.

APPENDIX

SOLUTION TO THE PT STRAIN ERROR MODEL

As discussed in Sec. III.C, the functional form of the
PT strain error model is described as follows:

Sij � a � bi cij � ci vij � «ij , ~A.1!

where «ij � dj � jij . The MLE method is used to solve for
the model coefficients b � @a, bi , ci # T with the covari-
ance, V � IJ � ~sj

2 IM � sd
2 uM uM

T !, where uM is a vector
of ones of length M. As before, let S be the vector of
length N of all PT strain measurements and X� @uN , C, V# ,
where uN is a vector of ones of length N and C and V are
as defined before. The objective function for the solution
of the MLE utilizes the maximization of the likelihood
function:

L~b, sd
2, sj

2! � ~2p!�102N 6V 6�102e ~�102«TV �1«! .

~A.2!

The maximization of the likelihood function L is a non-
linear process given the presence of the nondiagonal co-
variance matrix V. Thus, the MLE estimates of b, sd

2,
and sj

2 from Eq. ~A.2! are obtained by solving the fol-
lowing set of ~nonlinear! equations:

tr$V �1 % � ~S � Xb!TV �1V �1~S � Xb! , ~A.3!

tr$V �1EN % � ~S � Xb!TV �1EN V �1~S � Xb! ,

~A.4!

and

~X TV �1X !b � X TV �1S , ~A.5!

where

EN � IJ � EM

EM � uM uM
T

tr$A% � trace of the matrix.

The formula for derivatives of a matrix A with respect to
a parameter f are

] ln6A6

]f
� tr �A�1

]A

]f
�

Fig. 5. ~a! Standard deviations of qccp
s for each channel j. ~b! Mean error of qccp

s for each channel j. Values are normalized by the
maximum variance of qccp

s .
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and

]A�1

]f
� �A�1

]A

]f
A�1 . ~A.6!

Utilizing the Sherman-Morrison formula for the covari-
ance matrix results in the following expression for its
inverse:

V �1 �
1

sj
2

IJ � �IM �
1

M � k
uM uM

T � , ~A.7!

where k � sj
20sd

2. Using the result from Eq. ~A.7! and
EN

2 � EN M gives

V �2 �
1

sj
4 �IN �

~�M � 2k!

~M � k!2
EN� . ~A.8!

The trace of the inverse matrix tr~V �1 ! can be evaluated
using the result from Eq. ~A.7!, and using the following

properties tr~IJ � uM uM
T ! � N and tr~IN ! � N. This gives

Eq. ~A.9!:

tr~V �1 ! �
N

sj
2 �1 �

1

M � k
� . ~A.9!

The expression for tr~V �1EN ! reduces to the following
form:

tr � 1

sj
2 �IJ � �IM �

uM uM
T

M � k
�� @IJ � ~uM uM

T !#� .

~A.10!

Realizing that tr~IJ � uM uM
T ! � N and tr~IN ! � N, we

simplify Eq. ~A.10! to

tr~V �1EN ! �
N

sd
2~M � k!

. ~A.11!

Fig. 6. ~a! and ~b! Plots of correlation coefficients based on the actual raw data for each channel. ~c! and ~d! Correlation
coefficients based on simulations from the results of the five-parameter CCP error model.
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The above system of nonlinear equations for Eq. ~A.3!
and for Eq. ~A.4! leads to Eqs. ~A.12! and ~A.13!,
respectively:

N

sj
2 �1 �

1

M � k
� � «T

1

sj
4 �IN �

~�M � 2k!

~M � k!2
EN�«

~A.12!

and

N

sd
2~M � k!

� «T� EN

sd
4~k � M !2 �« . ~A.13!

Thus, the ~biased! estimates of sd
2 and sj

2 and the esti-
mates of the model coefficients b are given as follows:

Zb � ~X TV �1X !�1X TV �1S , ~A.14!

[sd
2 �

1

N~M � 1!
[«T~EN � IN ! [« , ~A.15!

and

[sj
2 �

1

N~M � 1!
[«T~MIN � EN ! [« , ~A.16!

where [« � S � Xb.

A.I. UNBIASED ESTIMATES FOR THE RANDOM

EFFECTS MODEL

The estimated variances, being MLE, are typically
biased, and thus, the solution based on an unbiased esti-
mate can be found using expectation as follows:

E ~ [sj
2! �

1

N~M � 1!
E ~ [«T~MIN � EN ! [«!

�
1

N~M � 1!
tr @E ~ [«T~MIN � EN ! [«!# , ~A.17!

where [« � S � X Zb � ~IN � X~X TV �1X !�1X TV �1 !«.
Equation ~A.17! can be simplified using E ~ [« [«T ! �
~V � XZX T ! and Z � ~X TV �1X !�1 as follows:

E ~ [sj
2! �

1

N~M � 1!
tr @~MIN � EN !~V � XZX T !# ,

~A.18!

where

V � IJ � ~sj
2 IM � sd

2 uM uM
T ! ,

V �1 �
1

sj
2

IJ � �IM �
1

M � k
uM uM

T � ,

and

k � sj
20sd

2 .

Expanding the terms within the trace function gives

tr @~MIN � EN !~V � XZX T !# � sj
2�N~M � 1! � tr�~MIN � EN !X�X T�IN �

1

k � M
EN�X��1

X T�� .

Thus, the unbiased estimate of sj
2 is

[ [sj
2 �

N~M � 1! [sj
2

N~M � 1! � tr�~MIN � EN !X�X T�IN �
1

k � M
EN�X��1

X T� . ~A.19!

An unbiased estimate of the variance sd
2 can similarly be determined:

E ~ [sd
2! �

1

N~M � 1!
tr @~EN � IN !E ~ [« [«T !# . ~A.20!

Using V � IJ � ~sj
2 IM � sd

2 uM uM
T !, we can expand ~A.20! as follows:

E ~ [sd
2! �

1

N~M � 1!
tr�sj

2~EN � IN ! � ~M � 1!sd
2 EN � sj

2~EN � IN !X�X T�IN �
1

k � M
EN�X��1

X T� .

Using tr~EN ! � N and tr~IN ! � N, we derive the unbiased estimate of [sd
2 as follows:

[ [sd
2 �

N~M � 1! [sd
2

N~M � 1! � k�tr�~EN � IN !X�X T�IN �
1

k � M
EN�X��1

X T�� . ~A.21!

The unbiased estimates of sd
2 and sj

2 are used to evaluate the revised estimates of Zb given in Eq. ~A.14!.
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