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Abstract. We introduce and analyse the effect of parlaying bets in lotteries. This
occurs when a ticket purchased for one lottery game wins either a ticket for a suc-
ceeding game or a small dollar prize that is then used to purchase tickets for future
games. It is shown that this behaviour can be modeled as a branching process, and a
result of Dwass on the total progeny is used to show that the probability of winning
some large prize can be increased by as much as 40% as a result of parlaying in
Lotto Super 7 and by as much as 100% in the instant scratch game Crossword.

1 Introduction

It is commonly accepted that a simple combinatorial argument based on the
hypergeometric distribution will yield the probability that a single ticket will
win a prize in the various flavours of Lotto-type games. These probabilities
are commonly quoted in the media, especially when there is a particularly
large jackpot. What has been overlooked, however, is that there are lesser
prizes, including free tickets, that may then be played in future drawings. For
instance, in the Canadian Lotto Super 7 the fifth and sixth prizes each pay
$10 and the seventh prize is a free ticket. Each ticket costs $2 and allows three
plays of seven numbers. Presumably, regular players who win $10 will purchase
five additional tickets giving them 15 more chances for the next game. As a
result, a single $2 ticket may lead to a win in succeeding games beyond the
game for which it was originally purchased. This is called parlaying2 and its
effect is to increase the overall probability that a single ticket will win a prize
in some future lottery, in fact by as much as 100% in some lotteries.

Recently the Canadian Broadcasting Corporation claimed on its program
The Fifth Estate (CBC 2006) that an unusually large number of lottery-ticket

∗ Supported by an NSERC Discovery Grant.
2 From the American Heritage College Dictionary, third edition: “parlay. tr. v. 1. Games.

To bet (an original wager and its winnings) on a subsequent event. —n. 1. Games. A
bet comprising a sum of a prior wager plus its winnings or a series of such bets.”
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retailers had won major prizes in Ontario lotteries. This resulted in an an-
nouncement the following day of an investigation by the provincial ombuds-
man (Ontario Ombudsmans Office 2006). The CBC’s story centered on an
elderly man, his $250,000 lottery ticket, and the clerk at a convenience store
where he had gone to check whether his ticket had won. It was noted that
the ticket the man submitted had resulted from a free ticket won two weeks
previously. In other words, the winning ticket arose from a parlay.3

The purpose of this paper is then threefold: to introduce parlaying and
point out the need to take it into account in computing the probabilities
of winning different prizes; to discuss a model, called a Bienaymé–Galton–
Watson branching process, that can be used to carry out the analysis; and to
calculate the probabilities of relevant events and the distributions of interest-
ing random variables.

2 Structure as a single-type branching process

Branching processes are used as models to describe the growth of populations
of individuals over time (Harris 1963, Athreya and Ney 1972) and have found
numerous applications in physics, biology, and genetics since their original
introduction (Watson 1873) to describe the loss of surnames in England. The
branching processes considered here arise in discrete time and are known as
Bienaymé–Galton–Watson processes. They may be described as follows.

Consider a population of individuals whose size {Xn, n = 0, 1, . . .} changes
at each unit of discrete time. Each individual lives one unit of time after which
he disappears and is replaced with a random number of offspring ξ according
to a probability distribution P[ξ = i] = pi for i = 0, 1, . . .. All individuals
reproduce independently of each other and the random variable Xn counts
the population size at the end of generation n.

For concreteness we present the model and results as applied to the Lotto
Super 7, although a similar analysis will apply to other lotteries (as discussed
in Section 6). A ticket costs $2 and allows a player to select seven numbers
from 1 to 47 or to have these selected by a ticket machine (called a “quick-
pick”). The machine then selects two additional sets each of seven numbers.
Thus, a $2 ticket gives the player three sets of seven numbers each. Every
Friday, lottery officials randomly draw seven regular numbers and one bonus
number, for a total of eight numbers drawn from {1, 2, . . . , 47}. A win occurs
whenever at least three of the numbers in any of the sets of the player’s ticket
match some of the numbers drawn by the lottery, although the major prizes
require either six or seven numbers matched. An initial $2.5 million jackpot
grows until it is won. The prize structure is given in Table 1. For instance,
the second prize requires matching of six of the seven regular numbers plus
the bonus number.
3 From CBC (2006): “July 27, 2001: Bob Edmonds goes to the Coby Milk & Variety to

check the free Super 7 ticket with Encore he bought on July 13.”
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Table 1. Prizes and winning probabilities of a single set of seven numbers in Lotto
Super 7.

match prize probability

7 numbers share 73% of pool p1 =
`
7
7

´`
40
0

´
/

`
47
7

´

6 numbers + bonus number share 5% of pool p2 =
`
7
6

´`
39
0

´`
1
1

´
/

`
47
7

´

6 numbers share 5% of pool p3 =
`
7
6

´`
39
1

´`
1
0

´
/

`
47
7

´

5 numbers share 17% of pool p4 =
`
7
5

´`
40
2

´
/

`
47
7

´

4 numbers $10 p5 =
`
7
4

´`
40
3

´
/

`
47
7

´

3 numbers + bonus number $10 p6 =
`
7
3

´`
39
3

´`
1
1

´
/

`
47
7

´

3 numbers free play ($2 value) p7 =
`
7
3

´`
39
4

´`
1
0

´
/

`
47
7

´

If a player parlays winnings by purchasing additional tickets, then the
number of tickets produced by parlaying may be viewed as a branching process
{Xn} with X0 = 3 corresponding to one initial ticket with three selections.
For instance, consider the three lesser prizes, having fixed values. A selection
of seven numbers that wins the free play, which is a $2 ticket, may be said
to give birth to three more individuals by spawning a single ticket with three
selections. A $10 win can be used to buy five more tickets (15 new individuals)
and we will assume that players who win $10 reinvest all their winnings into
new tickets. This assumption is appropriate for players who play regularly
for whom small prizes are not their ultimate goal. (For infrequent players,
probability calculations are meaningless.)

The remaining prizes have variable payouts depending on the size of the
pool and the number of individuals who share the pool. For instance a fourth-
place prize typically pays on the order of $100. Presumably, someone who wins
one of the top four prizes may also parlay some of his winnings. For the pur-
poses of explaining the methodology and presenting a numerical example, we
will in fact make this assumption that such a person will parlay his winnings
into five more tickets ($10), that is 15 selections of seven numbers. However,
the methodology does not depend on which prizes the player parlays and the
results vary little if the top four prizes are parlayed or not (see Section 6).

With this assumption, P[ξ = 3] = p7, P[ξ = 15] = p1+p2+p3+p4+p5+p6,
and P[ξ = 0] = 1 − (p1 + p2 + p3 + p4 + p5 + p6 + p7). The distribution of
the random variable ξ is therefore given by Table 2.4 This results in a sub-
critical branching process with mean m ≡ E[X1 | X0 = 1] = 0.30006 < 1. The
probability generating function (p.g.f.) of ξ is

F (x) ≡ E[xξ] = 0.94338 + 0.045774x3 + 0.010849x15, 0 ≤ x ≤ 1. (1)

4 The decimal expansions of the actual probabilities have been rounded to five significant
digits.
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Table 2. Lotto Super 7 offspring distribution.

i fi = P[ξ = i]

0 0.94338
3 0.045774

15 0.010849

Classical branching processes require that the individuals behave indepen-
dently. If the selections are quick-picked then the offspring numbers will also
be independent, as the following argument shows. Suppose that E and F are
two sets of seven numbers with offspring numbers ξ and η. Let A be the lot-
tery’s selection of seven numbers. The values of ξ and η depend only on E,
F , and A. Then, conditioning on A, P[ξ = i, η = j] = E[P[ξ = i, η = j | A]].
But P[ξ = i, η = j | A] = P[ξ = i]P[η = j] because the quick-pick selections
are independent and identically distributed, and independent of the lottery’s
picks. Therefore ξ and η are independent5 and this argument extends to inde-
pendence of the numbers of offspring of all individuals in a given generation
based on quick-picks.

Independence persists if one of the selections is not a quick-pick but is
chosen by the player (a self-pick) by a nonrandom mechanism. Thus, let E
and F be two quick-picks and G a self-pick, corresponding to a $3 ticket where
the players selects his own numbers for the first selection of seven numbers. G
is therefore deterministic, although, since A is random, the offspring numbers
are still random. Let ξ, η, ζ denote the corresponding offspring numbers. As
before P[ξ = i, η = j, ζ = k] = E[P[ξ = i, η = j, ζ = k | A]]. Since A is
fixed in the conditional expectation, and ζ is completely determined by the
overlap between G (deterministic) and A (fixed), it must be that ζ = k if
and only if G lies in a collection of selections S(A,G, k) and the conditional
distribution of ζ = k given A is either 1 or 0 depending on whether A lies in
this set or not. Moreover, the conditional distribution of ζ is also independent
of the conditional distribution of ξ and η because the latter are obtained by
a mechanism independent of A and the choice of G. Hence

P[ξ = i, η = j, ζ = k | A] = 1S(A,G,k)P[ξ = i, η = j | A]
= 1S(A,G,k)P[ξ = i]P[η = j]

where 1S(A,G,k) is the indicator of the event S(A,G, k). Therefore

P[ξ = i, η = j, ζ = k] = E[P[ξ = i, η = j, ζ = k | A]]
= E[1S(A,G,k)P[ξ = i]P[η = j]]
= E[1S(A,G,k)]P[ξ = i]P[η = j]
= P[ζ = k]P[ξ = i]P[η = j]

5 Independence of the choices E and F is inherited by the offspring numbers ξ and η as
long as shared pools always pay out at least $10 to each winner, a virtual certainty.
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since E[1S(A,G,k)] = P[ζ = k] because A is randomly generated by the lottery
and so the chance of any specified match is the same for either a self-pick or
quick-pick. This proves independence when there is one self-pick.

What if a player makes two or more self-picks, say G and H? In this case,
there will be a correlation between the respective winnings ζ and τ which
depends on the size of the intersection G ∩H.6 Since the number of possible
selections is enormous in comparison to the number of tickets that might be
accumulated by parlaying, the correlation will be close to zero. While even
zero correlation is not the same as independence, the branching model should
still give very accurate numerical results even for self-picks.

Branching processes where the offspring numbers are not independent and
identically distributed have been considered, for instance in Quine (1994), but
our usage is simple enough not to need reliance on general theorems, and we
calculate probabilities assuming independence.

3 Maximum duration of a parlay

Subcritical branching processes have finite lifetime L, which is the first gener-
ation n such that Xn = 0, and die out with probability 1. The distribution of
L is obtained from the nth iterate or functional composition of F with itself,
that is,

Fn(x) = F (F (· · ·F︸ ︷︷ ︸
n times

(x) · · · )),

where we define F0(x) = x. Observe that

P[L ≤ n | X0 = 1] = P[Xn = 0 | X0 = 1] = Fn(0)

and therefore, if X0 = 1,

P[L = n] = P[L ≤ n]− P[L ≤ n− 1]
= P[Xn = 0]− P[Xn−1 = 0] = Fn(0)− Fn−1(0).

(2)

This gives the distribution of the duration of the process starting at X0 = 1.
We call L the length of the parlay. Thus if L = 3 then an initial ticket parlays
two generations forward and allows play in three lotteries, including the initial
game for which it was bought. A Super 7 ticket has three sets of numbers,
which means that X0 = 3 and hence

P[L = n | X0 = 3] = P[Xn = 0 | X0 = 3]− P[Xn−1 = 0 | X0 = 3]

= F 3
n(0)− F 3

n−1(0).
(3)

The values of P[L = n | X0 = 3] for 1 ≤ n ≤ 6, shown in Table 3, were
computed using Maple. The expected value of L is E[L] = 1.2154.

6 This relates to lottery wheels which are sets of tickets with the property that purchase
of the entire set will guarantee that at least one ticket will match at least a specified
number of the lottery’s selections.
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Table 3. Duration of the parlay (distribution of L).

n 1 2 3 4 5 6

P[L = n | X0 = 3] 0.83956 0.11999 0.02886 0.00815 0.00240 0.00072

4 Total progeny

In view of the distribution of L it is necessary to determine the distribution of
the total number of individuals resulting from a single $2 ticket, including the
initial three for the first game and those for subsequent games that are gen-
erated by parlaying. This corresponds to what is known as the total progeny
in a branching process (Dwass 1969) and is defined by

Y =
L−1∑

n=0

Xn =
∞∑

n=0

Xn. (4)

The p.g.f. of Y , starting with X0 = 1, denoted by g(x), is given by the
solution to

g(x) = xF (g(x)). (5)

As long as F is analytic and nonvanishing at x = 0, which is the case here,
the implicit function theorem guarantees a unique solution in a neighborhood
of the origin. The appropriate tool for determining the distribution of Y is a

Table 4. Distribution of total number of parlayed tickets Y starting with X0 = 3.

n P[Y = n] n P[Y = n] n P[Y = n]

3 0.8395677097 21 0.0098741179 39 0.0012456088
6 0.1026041086 24 0.0050797802 42 0.0008024231
9 0.0167190852 27 0.0021253383 45 0.0004360456

12 0.0031216321 30 0.0007906917 48 0.0003104600
15 0.0006312035 33 0.0012004956 51 0.0003148655
18 0.0122173770 36 0.0014946270

result of Dwass (1969).

Theorem 1.

P[Y = n | X0 = k] =
k

n
P[X1 = n− k | X0 = n], k ≤ n. (6)
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A single ticket has three random selections so the associated branching
process starts at X0 = 3. By independence, the p.g.f. of the total progeny
starting with three individuals is G(x) = (g(x))3. Since one initial ticket is
equivalent to k = 3 in (6) we have

P[Y = n | X0 = 3] =
3
n

P[X1 = n− 3 | X0 = n] (7)

and the term on the right side of (7) can be obtained from the expansion of
(F (x))n which can be obtained with Maple. The distribution is not monotone
in the number of tickets, as might be expected. For instance, the probability of
accumulating 18 tickets is approximately four times as large as the probability
of accumulating 12 tickets, which seems counter-intuitive. Table 4 gives the
probability distribution of Y , shown more graphically in the serial plot of
P[Y = n] in Figure 1. In view of the scale, the point (3, P[Y = 3]) is not
plotted.

5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Fig. 1. Probability distribution of Y .

A referee has suggested that it might be of interest to explain the mul-
timodality of the distribution of Y . In accordance, we explain using sample
paths why P[Y = 18] is so much larger than P[Y = 12]. Table 5 shows, in the
first column, the possible sequences of generation sizes {X1, X2, . . .} for which
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Y = 12. There are four sequences that result in Y = 12. The column headed
“# of paths” counts how many such sample paths there are to obtain each
sequence. These are obtained by enumerating which offspring contribute to
successive generations. The column headed “P[1 path]” gives the probability
of each such sample path. It turns out that the individual sample path prob-
abilities are all the same, regardless of the sequence of generation sizes. By
multiplying these probabilities by the number of paths and then summing, we
arrive at P[Y = 12] = 0.003121632. Comparison with Table 4 shows that this
is the same value obtained by the result of Dwass by which the distribution
of Y is arrived at more simply without recourse to counting sample paths.
Table 6 shows the corresponding computations for P[Y = 18]. There are 14

Table 5. All sample paths that achieve Y = 12.

X0 X1 X2 X3 X4 # of paths P[1 path] P[Xn sequence]

3 9 0 0 0
`
3
3

´
= 1 f3

3 f9
0 0.000056757

3 6 3 0 0
`
3
2

´`
6
1

´
= 18 f3

3 f9
0 0.001021625

3 3 6 0 0
`
3
1

´`
3
2

´
= 9 f3

3 f9
0 0.000510812

3 3 3 3 0
`
3
1

´`
3
1

´`
3
1

´
= 27 f3

3 f9
0 0.001532437

totals 55 0.003121632

distinct sequences {X1, X2, . . .} that yield Y = 18. The major contributor
is the first sample path which dominates all others and whose probability is
different from the other sample paths.

5 The parlay factor

Let p denote the probability that a set of seven randomly selected numbers
wins the jackpot for a specific draw. The probability that a ticket with three
selections of seven numbers wins a jackpot for a specific draw is 1− (1−p)3 =
3p − 3p2 + p3 ≈ 3p for 0 < p << 1. Let J represent the event that a single
initial ticket wins at least one future jackpot taking into account parlaying.

P[J ] =
∑

i

P[J | Y = i]P[Y = i | X0 = 3]

=
∑

i

(1− P[J | Y = i])P[Y = i | X0 = 3]

=
∑

i

(1− (1− p)i)P[Y = i | X0 = 3]

= 1−G(1− p).

(8)
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Table 6. All sample paths that achieve Y = 18.

X0 X1 X2 X3 X4 X5 X6 # of paths P[1 path] P[Xn sequence]

3 15 0 0 0 0 0
`
3
1

´
= 3 f15f

17
0 0.01208287684

3 9 6 0 0 0 0
`
3
3

´`
9
2

´
= 36 f5

3 f13
0 0.00000339076

3 9 3 3 0 0 0
`
3
3

´`
9
1

´`
3
1

´
= 27 f5

3 f13
0 0.00000254307

3 6 9 0 0 0 0
`
3
2

´`
6
3

´
= 60 f5

3 f13
0 0.00000565127

3 6 6 3 0 0 0
`
3
2

´`
6
2

´`
6
1

´
= 270 f5

3 f13
0 0.00002543070

3 6 3 6 0 0 0
`
3
2

´`
6
1

´`
3
2

´
= 54 f5

3 f13
0 0.00000508614

3 6 3 3 3 0 0
`
3
2

´`
6
1

´`
3
1

´`
3
1

´
= 162 f5

3 f13
0 0.00001525842

3 3 9 3 0 0 0
`
3
1

´`
3
3

´`
9
1

´
= 27 f5

3 f13
0 0.00000254307

3 3 6 6 0 0 0
`
3
1

´`
3
2

´`
6
2

´
= 135 f5

3 f13
0 0.00001271535

3 3 6 3 3 0 0
`
3
1

´`
3
2

´`
6
1

´`
3
1

´
= 162 f5

3 f13
0 0.00001525842

3 3 3 9 0 0 0
`
3
1

´`
3
1

´`
3
3

´
= 9 f5

3 f13
0 0.00000084769

3 3 3 6 3 0 0
`
3
1

´`
3
1

´`
3
2

´`
6
1

´
= 162 f5

3 f13
0 0.00001525842

3 3 3 3 6 0 0
`
3
1

´`
3
1

´`
3
1

´`
3
2

´
= 81 f5

3 f13
0 0.00000762921

3 3 3 3 3 3 0
`
3
1

´`
3
1

´`
3
1

´`
3
1

´`
3
1

´
= 243 f5

3 f13
0 0.00002288763

totals 1431 0.01221737700

We call the ratio
Λ =

1−G(1− p)
1− (1− p)3

the parlay factor. For p in a neighbourhood of 0, since G(1) = 1 we may write

1−G(1− p)
1− (1− p)3

≈ 1−G(1− p)
3p

≈ G′(1)
3

≡ E[Y | X0 = 3]
3

= E[Y | X0 = 1] = g′(1).
(9)

Differentiate (5) to obtain g′(x) = F (g(x)) + xF ′(g(x))g′(x), set x = 1, and
solve g′(1) = F (g(1)) + F ′(g(1))g′(1) = 1 + mg′(1) to obtain

g′(1) =
1

1−m
= 1.4287.

This gives a nice interpretation of Λ as 7

Λ =
1

1−m
,

7 More precisely Λ ≈ 1/(1 − m), as in (9), but because the approximation is so good,
we have replaced the approximate equal sign with a true equal sign, here and elsewhere
below where Λ is given.
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and as a result
E[Y | X0 = 3] =

3
1−m

= 4.286.

For Super 7, therefore, Λ = 1.4287 and the effect of parlaying increases the
probability that a single ticket will ultimately win a jackpot by slightly over
40% and

P[J ] = 1−G(1− p) = 3pΛ =
3p

1−m
= 4.286p.

We see that the effect of parlaying can be obtained very simply, without
computing the distribution of L, using only the mean of X1, not the entire
distribution of L. This makes it very easy to examine the effect of parlaying
on other games. By examining the distribution of Y one also finds that the
contribution to E[Y ] with the first three terms is only 3.285 which indicates
that many events with low probabilities contribute to the mean.

Although this analysis has concentrated on the parlay effect on the jackpot,
it clearly applies to any of the top four prizes, in particular to the first or
second prizes combined, whose probability is also very small, and which are
considered the major prizes, being the only ones typically in excess of $50,000.
For instance, in the March 2, 2007 draw, the jackpot was $12,000,000 and the
second prize was $207,317.80. There were no winners. However, the third prize
was $1,470.30, paid to each of 141 winners. A reasonable strategy for parlaying
would be to save all parlayed tickets to be played when the jackpot is very
high.

6 Other games

A similar analysis can be carried out for other lotteries. We illustrate with
Lotto 6/49 and Instant Crossword, and also very briefly with multistate lot-
teries such as Powerball and Hot Lotto. In view of the simplicity of the parlay
factor, it is not necessary to compute the coefficients of generating functions.
All that is needed is the mean of the associated offspring p.g.f.

6.1 Lotto 6/49

Lotto 6/49 is also an online game with drawings held twice per week on
Wednesdays and Saturdays. A ticket costs $2 and players choose six numbers
from 1 to 49. The prize structure and probabilities are given in Table 5.

As before, we assume that the lowest prize $5 is used to purchase two
additional tickets (with $1 left over to combine with future winnings), the
second lowest prize $10 is used to purchase five additional tickets, and the
top four prizes are also used to purchase five additional tickets. Thus the
associated branching process has an offspring distribution concentrated on
{0, 2, 5} with mean m = 0.1178 and parlay factor Λ = 1.1336, which is
substantially less than for Lotto Super 7. If we assume that only the lowest



Branching Processes and the Effect of Parlaying Bets on Lottery Odds 371

Table 7. Prizes and winning probabilities in Lotto 6/49.

match prize probability

6 numbers share 80.50% of pool p1 =
`
6
6

´`
43
0

´
/

`
49
6

´

5 numbers + bonus number share 5.75% of pool p2 =
`
6
5

´`
42
0

´`
1
1

´
/

`
49
6

´

5 numbers share 4.75% of pool p3 =
`
6
5

´`
42
1

´`
1
0

´
/

`
49
6

´

4 numbers share 9% of pool p4 =
`
6
4

´`
43
2

´
/

`
49
6

´

3 numbers $10 p5 =
`
6
3

´`
43
3

´
/

`
49
6

´

2 numbers + bonus number $5 p6 =
`
6
2

´`
42
3

´`
1
1

´
/

`
49
6

´

two prizes are parlayed, then the mean m = 0.1129 and Λ = 1.1272, showing
that the results change little, as stated in Section 2. Actually, the parlay factor
is somewhat higher, taking into account the $1 left over from a $5 prize. This
is briefly discussed after Instant Crossword.

6.2 Instant Crossword

Another popular game in Ontario is Instant Crossword, which costs $3 for a
card that the player scratches to reveal letters. The probabilities vary slightly
from game to game because of either the ticket run (number of tickets pro-
duced) or if there are bonus games, but the corresponding prize structure
remains constant. We assume in the branching structure that only the $3,
$5, and $10 prizes are each used to purchase additional 1, 1, and 3 tickets,
respectively, while the larger prizes are also parlayed into 3 additional tickets.
Table 6 shows the probabilities for Crossword games #1250, #1252, #1259,
and #1264 between November 2006 and February 2007 and the corresponding
means and parlay factors.

In modeling Lotto 6/49 and Instant Crossword as branching processes we
have not taken into consideration that the probabilities change slightly from
game to game. However, the mean remains fairly constant so the parlay factor
based on a strict branching assumption still gives a reasonable measure of the
gain in probability obtained by parlaying. We have also ignored parlaying any
winnings that do not make up the full cost of a ticket. In 6/49, $1 remains
after the lowest prize of $5 is used to purchase two additional $2 tickets, while
in Crossword $2 remains after one $3 ticket is bought with a $5 prize and
$1 remains after three tickets are purchased with the proceeds of a $10 prize.
These amounts will accumulate over time and could also be used to purchase
additional tickets, if this were the strategy. To carry out a rigourous analysis
which would account for such accumulation it would be necessary to generalize
the theory of branching processes to allow fractional offspring that reproduce
when they accumulate to an integer. Generalizations of branching processes
do exist for nonpositive integer offspring such as continuous state branching
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Table 8. Prizes and probabilities for Instant Crossword games.

game bonus game game Quest for Gold
prize #1250 #1252 #1259 game #1264

$50,000 p1 = 1/1,000,000 1/1,000,000 1/1,000,000 1/1,666,666.67
$25,000 p2 = 1/1,000,000 1/1,000,000 1/1,000,000 1/1,666,666.67
$10,000 p3 = 1/500,000 1/1,000,000 1/1,000,000 1/1,666,666.67
$5,000 p4 = 1/500,000 1/1,000,000 1/1,000,000 1/1,666,666.67
$100 p5 = 1/2,000 1/10,000 1/2,000 1/1,754.39
$50 p6 = 1/1,000 1/4,000 1/1,000 1/1,612.90
$25 p7 = 1/500 1/500 1/250 1/172.12
$10 p8 = 1/14.47 1/18.6 1/15.85 1/22.22
$5 p9 = 1/25 1/10 1/17.54 1/11.11
$3 p10 = 1/5.32 1/5.26 1/5.32 1/8.33

m 0.4458 0.4585 0.4508 0.3661
Λ 1.8044 1.8466 1.8207 1.5775
m! 0.5355 0.6431 0.5668 0.5311
Λ! 2.1529 2.8015 2.3085 2.1326

processes (see references in Athreya and Ney 1972) and recently branching
processes with negative offspring distribution (Dumitriu, Spencer, and Yan
2003), but the problem of accumulation has not been addressed.

To understand the effect that accumulation might have, as a first approx-
imation the means can be adjusted fractionally and proportionally. They are
denoted as m" with corresponding parlay factors Λ" in Table 6 for Instant
Crossword. For Lotto 6/49 the mean increases to m" = 0.1240 and the parlay
factor to Λ" = 1.1415.

6.3 Multistate Lotteries

For comparison we include the means and parlay factors for two multistate
lotteries. For consistency with the bettor’s parlay policy in the previous three
numerical illustrations, we assume in Powerball that the ninth (lowest) prize
of $3 is parlayed into three $1 tickets, the eighth prize of $4 is parlayed into
four tickets, the seventh and sixth prizes of $7 each are parlayed into seven
tickets, while the remaining prizes whose values are $100 or more are parlayed
into ten tickets. For Hot Lotto the ninth (lowest) prize of $2 is parlayed into
two $1 tickets, the eighth prize of $3 is parlayed into three tickets, the seventh
and sixth prizes of $4 each are parlayed into seven tickets, while the remaining
prizes whose values are $50 or more are parlayed into ten tickets.

• Powerball: m = 0.1096,Λ = 1.1231.
• Hot Lotto: m = 0.1650,Λ = 1.1977.
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