
Math 4A03: Practice problems on Multivariable

Calculus

Problem 1. Consider the mapping f = (u, v) : R2 → R2 defined by

f(x, y) = (ey + x, ex − y) (x, y) ∈ R2.

(a) Is it possible to express (x, y) as a differentiable function of (u, v) near
the origin (x0, y0) = (0, 0)?

(b) Compute ∂x
∂u , ∂x

∂v , ∂y
∂u , ∂y

∂v at (x, y) = (0, 0), i.e. when (u, v) = (1, 1).

Problem 2. Consider the mapping f = (u, v) : R2 → R2 defined by

f(x, y) = (x2 − y2, 2 x y), (x, y) ∈ R2.

(a) Show that the range of f is R2 and that if (u0, v0) 6= (0, 0), there are
exactly two points in R2 that are mapped to (u0, v0) by f .

(b) Show that the mapping f is locally invertible at the point (x0, y0) =
(1, 1). Find an explicit formula for its local inverse g(u, v) defined in a neigh-
borhood of f(1, 1) = (0, 2).

Problem 3. Consider the system of equations
{

w xy z = 0
w4 + x4 + y4 + z4 = 18

(a) Is it possible to express (x, y) as a differentiable function of (w, z) near
the solution (w, x, y, z) = (−1, 0, 1, 2)? (Use the implicit function theorem to
answer this question.)

(b) If so, what are ∂x
∂w (−1, 2) and ∂x

∂z (−1, 2)? (Use the implicit function
theorem to answer this question.)

(c) Compute explicitely the differentiable function of (w, z) in part (a) and
verify your answers in part (b) by a direct computation (i.e. without using the
implicit function theorem).

Problem 4. Determine if the function f : R2 → R defined by

f(x, y) =
{

x + y, x 6= y,
x2 + x, x = y

is differentiable at (0, 0) using the definition of differentiablity.
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Solution. We first compute the first-order partial derivatives at (0, 0).

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)
h

= lim
h→0

h

h
= 1.

and
∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)
h

= lim
h→0

h

h
= 1.

We know that if f ′(0, 0) exists then

f ′(0, 0) =
[
∂f

∂x
(0, 0)

∂f

∂y
(0, 0)

]
= [1 1] .

To see if f is differentiable at (0, 0), we need to check if

|f(h1, h2)− f(0, 0)− ∂f
∂x (0, 0)h1 − ∂f

∂y (0, 0)h2|√
h2

1 + h2
2

=
|f(h1, h2)− f(0, 0)− h1 − h2|√

h2
1 + h2

2

→ 0,

as (h1, h2) → (0, 0). If h1 6= h2, we have f(h1, h2) = h1 +h2 and since f(0, 0) =
0, f(h1, h2) − f(0, 0) − h1 − h2 = 0 so, clearly, the previous quotient goes to 0
if (h1, h2) → (0, 0) with h1 6= h2. On the other if h1 = h2, we have

|f(h1, h2)− f(0, 0)− h1 − h2|√
h2

1 + h2
2

=
|h2

1 + h1 − 2 h1|√
2 h2

1

=
|h1 − 1|√

2

and this large expression does not converge to 0 as h1 → 0. Hence, f is not
differentiable at (0, 0).

Problem 5. Let E ⊂ Rn be open and let f : E → R be a function having partial
derivatives ∂f

∂xj
, j = 1, . . . , n, bounded on E. Prove that f is continuous on E.

Hint: Proceed as in the proof done in class that, if these partial derivatives
are continuous on E, then f ∈ C1(E).

Solution. Let x ∈ E and choose r > 0 small enough so that

{y ∈ Rn, ||x− y|| < r} ⊂ E.

where ||.|| denotes the usual euclidean norm on Rn. let h =
∑n

j=1 hj ej with
||h|| < r (where e1, . . . , en is the standard orthonormal basis in Rn). Define
v0 = 0 and vk =

∑k
j=1 hj ej for k = 1, . . . n. We can thus write

f(x + h)− f(x) =
n∑

j=1

[f(x + vj)− f(x + vj−1)] .

Define

gj(t) = f(x + vj−1 + t (vj − vj−1)) = f(x + vj−1 + t hj ej), 0 ≤ t ≤ 1,
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for j = 1, . . . , n. Then,

g′j(t) =
∂f

∂xj
(x + vj−1 + t hj ej)hj .

By the mean value theorem, there exists θj with 0 < θj < 1 such that

gj(1)− gj(0) = g′j(θj),

or, equivalently,

f(x + vj)− f(x + vj−1) =
∂f

∂xj
(x + vj−1 + θj hj ej)hj .

Since all first-order partial derivatives are bounded by M on E, it follows that

|f(x + vj)− f(x + vj−1)| = | ∂f

∂xj
(x + vj−1 + θj hj ej)| |hj | ≤ M |hj |.

This leads to

|f(x + h)− f(x)| ≤
n∑

j=1

|f(x + vj)− f(x + vj−1)| ≤ M

n∑

j=1

|hj | → 0,

as ||h|| → 0. This shows that

lim
||h||→0

f(x + h) = f(x),

which means that f is continuous at x.

Problem 6. Let f : R2 → R2 be the mapping defined by

f(x, y) = (ex cos y, ex sin y), (x, y) ∈ R2.

(a) What is the range of f .

(b) Show that f is locally one-to-one on R2 (i.e. one-to-one on a neighborhood
of every point (x0, y0) ∈ R2), but not globally one-to-one (i.e. not one-to-
one on R2).

(c) Let g be the continuous inverse of f defined in a neighborhood of (1
2 ,
√

3
2 ) =

f(0, π
3 ). Find an explicit formula for g. Compute f ′

(
0, π

3

)
and g′

(
1
2 ,
√

3
2

)

and verify that

g′
(

1
2
,

√
3

2

)
=

(
f ′

(
0,

π

3

))−1

.

(d) What are the images under f of lines parallel to the coodinate axes?
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Solution.
(a) Since any point (u, v) ∈ R2 can be written in polar coordinate as (u, v) =

(r cos(y), r sin(y)) where r ≥ 0 and r = 0 if and only (u, v) = (0, 0) while r = ex,
for some real x if and only if r > 0 or (u, v) 6= (0, 0), it follows that the range of
f is the set R2 \ {(0, 0)}.

(b) If (x0, y0) ∈ R2, we have

f ′(x0, y0) =

[
∂f1
∂x (x0, y0) ∂f1

∂y (x0, y0)
∂f2
∂x (x0, y0) ∂f2

∂y (x0, y0)

]
=

[
ex0 cos(y0) −ex0 sin(y0)
ex0 sin(y0) ex0 cos(y0)

]

Since det (f ′(x0, y0)) = e2 x0 (cos2(x0) + sin2(x0)) = e2 x0 6= 0, it follows that
f ′(x0, y0) is invertible and the inverse function theorem shows that f is one-
to-one on a neighborhood of (x0, y0). Nevertheless, f is not one-to-one on R2,
since

f(x, y + 2π) = (ex cos(y + 2π), ex sin(y + 2π))
= (ex cos(y), ex sin(y))
= f(x, y).

(c) Since f(0, π
3 ) = ( 1

2 ,
√

3
2 ), we need to solve the system

{
ex cos(y) = u
ex sin(y) = v

for (x, y) in term of (u, v), for (u, v) close to ( 1
2 ,
√

3
2 ). Since u2 + v2 = e2 x, it

follows that x = ln(
√

u2 + v2). Since tan(y) = v
u , we have y = tan−1( v

u ) (Note

that tan−1(
√

3
2
1
2

) = tan−1(
√

3) = π
3 ). The inverse mapping g is thus given by

g(u, v) =
(
ln(

√
u2 + v2), tan−1(

v

u
)
)

.

Letting g = (g1, g2), we have

g′(u0, v0) =
[

∂g1
∂u (u0, v0) ∂g1

∂v (u0, v0)
∂g2
∂u (u0, v0) ∂g2

∂v (u0, v0)

]
=

[ u
u2+v2

v
u2+v2

− v
u2+v2

u
u2+v2

]

We have

f ′
(
0,

π

3

)
=

[
1
2 −

√
3

2√
3

2
1
2

]
, g′

(
1
2
,

√
3

2

)
=

[
1
2

√
3

2

−
√

3
2

1
2

]

and

f ′
(
0,

π

3

)
g′

(
1
2
,

√
3

2

)
=

[
1
2 −

√
3

2√
3

2
1
2

] [
1
2

√
3

2

−
√

3
2

1
2

]
=

[
1 0
0 1

]

which shows that

g′
(

1
2
,

√
3

2

)
=

(
f ′

(
0,

π

3

))−1

.
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(d) The line x = x0 has for image the circle of radius ex0 centered at (0, 0) while
the line y = y0 has for image a ray starting at the origin (but not including it)
that makes an angle y0 with the positive x-axis.

Problem 7.

Solution.

Problem 8. Consider the mapping f = (u, v) : R2 → R2 defined by

f(x, y) = (x + y, 2 x y), (x, y) ∈ R2.

(a) Show that the range of f is the set

L = {(u, v) ∈ R2, u2 − 2 v ≥ 0}

Hint: Show first that f maps R2 into L and then that every point in L is the
image under f of some point in R2.

(b) (9 pts.) Show that the mapping f is locally invertible at the point
(x0, y0) = (2,−1). Find an explicit formula for its local inverse g(u, v) defined
in a neighborhood of f(2,−1) = (1,−4).

(c) (5 pts.) Compute g′(1,−4).

Solution. (a) Let u = x + y and v = 2 x y, then

u2−2 v = (x+y)2−4 x y = x2+2 x y+y2−4 x y = x2−2 x y+y2 = (x−y)2 ≥ 0.

This shows that the range of f is contained in L.
Now let (u, v) belong to L, so u2 − 2 v ≥ 0.
If v = 0, we have f(0, u) = (u, 0) (or f(u, 0) = (u, 0)) showing that (u, 0)

belongs to the range of f for any value of u.
If v 6= 0 we have y = v

2 x and u = x+ v
2 x or x2−u x+ v

2 = 0, so x = u±√u2−2 v
2 .

There are thus two points mapped to (u, v) by f , namely

(x, y) =

(
u +

√
u2 − 2 v

2
,

v

u +
√

u2 − 2 v

)

and

(x, y) =

(
u−√u2 − 2 v

2
,

v

u−√u2 − 2 v

)
.

Thus (u, v) also belongs to the range of f when (u, v) ∈ L and v 6= 0.
(b) We have

f ′(x, y) =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
=

[
1 1

2 y 2 x

]
.
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Since the first-order partial derivatives of u and v are continuous, f belongs to
C1(R2). Since

f ′(2,−1) =
[

1 1
−2 4

]

and ∣∣∣∣
1 1
−2 4

∣∣∣∣ = 6 6= 0,

the inverse mapping theorem shows that f is locally invertible at the point
(2,−1). Using part (a), the local inverse is given by

g(u, v) =

(
u +

√
u2 − 2 v

2
,

v

u +
√

u2 − 2 v

)

=

(
u +

√
u2 − 2 v

2
,
u−√u2 − 2 v

2

)
.

(c)

g′(1,−4) = (f ′(2,−1))−1 =
[

2
3 − 1

6
1
3

1
6

]

Equivalently, we can use the explicit expression of g to compute g′. We have

g′(u, v) =
[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
=

[
1
2 + u

2
√

u2−2 v
− 1

2
√

u2−2 v
1
2 − u

2
√

u2−2 v
1

2
√

u2−2 v

]

and

g′(1,−4) =
[

2
3 − 1

6
1
3

1
6

]
.

Problem 9. (a) Show that the system
{

x2 + y2 − u v − 3 = 0
xu + y v − 2 = 0

can be solved for x, y in terms of u, v near the point (x, y, u, v) = (1, 0, 2,−1).

(b) Compute the partial derivative

∂x

∂u
(2,−1).

Solution. Let f(x, y, u, v) = (f1, f2) = (x2 + y2 − u v − 3, x u + y v − 2).
Note that f belongs to C1(R2) and

f ′(x, y, u, v) =

[
∂f1
∂x

∂f1
∂y

∂f1
∂u

∂f1
∂v

∂f2
∂x

∂f2
∂y

∂f2
∂u

∂f2
∂v

]
=

[
2 x 2 y −v −u
u v x y

]
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For the system to be solvable for x, y in terms of u, v, we need to verify, according
to the implicit function theorem, that the matrix

[
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

]

evaluated at the point (x, y, u, v) = (1, 0, 2,−1) is invertible. This matrix is
[
2 x 2 y
u v

]

(1,0,2,−1)

=
[
2 0
2 −1

]

which has determinant −2 6= 0 and is thus invertible.
(b) Since

f1(x(u, v), y(u, v), u, v) = 0,

we have
∂f1

∂x

∂x

∂u
+

∂f1

∂y

∂y

∂u
+

∂f1

∂u
= 0.

Similarly,
∂f2

∂x

∂x

∂u
+

∂f2

∂y

∂y

∂u
+

∂f2

∂u
= 0.

This can be written is matrix form as
[

∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

] [
∂x
∂u
∂y
∂u

]
= −

[
∂f1
∂u
∂f2
∂u

]

from which we deduce that

[
∂x
∂u
∂y
∂u

]
= −

[
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

]−1 [
∂f1
∂u
∂f2
∂u

]

Evaluating the previous expression at the point (x, y, u, v) = (1, 0, 2,−1), we
obtain

[
∂x
∂u
∂y
∂u

]

(2,−1)

= −
[
2 0
2 −1

]−1 [
1
1

]
= −

[
1
2 0
1 −1

] [
1
1

]
=

[− 1
2

0

]

In particular,
∂x

∂u
(2,−1) = −1

2
.


