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Abstract. The Wall surgery obstruction groups have two interesting geometrically de-
fined subgroups, consisting of the surgery obstructions between closed manifolds, and the
inertial elements. We show that the inertia group InC1.�;w/ and the closed manifold sub-
group CnC1.�;w/ are equal in dimensions nC 1 � 6, for any finitely-presented group �
and any orientation character wW� ! Z=2. This answers a question raised in 1980.
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1 Introduction

Let � be a finitely-presented group, and let Ln.Z�;w/ denote Wall’s surgery ob-
struction group for oriented surgery problems up to simple homotopy equivalence,
where wW� ! Z=2 is an orientation character (see [36, Chap. 5–6]). We work
with topological (rather than smooth) manifolds throughout, so rely on the work
of Kirby–Siebenmann [18] for the extension of surgery theory to the topological
category.

Let Xn be a closed, topological n-manifold, n � 5, and let cWX ! B� denote
the classifying map of its universal covering, so that c�W�1.X; x0/

�
�! � is a given

isomorphism. The orientation class w1.X/ 2 H 1.X IZ=2/ induces an orientation
character wW� ! Z=2. The surgery exact sequence

Œ†.X/;G=TOP�
�nC1.X/
������! LnC1.Z�;w/ �! S .X/

�! ŒX;G=TOP�
�n.X/
����! Ln.Z�;w/
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developed by Browder, Novikov, Sullivan and Wall [36, Chap. 9] relates the classi-
fication of manifolds which are simple homotopy equivalent toX to the calculation
of the surgery obstruction maps �nC1.X/ and �n.X/.

In the surgery exact sequence †.X/ D .X � I /=@.X � I /, and S .X/ denotes
the s-cobordism classes of pairs .M; f /, where f WM ! X is a simple homotopy
equivalence. For a suitable H -space structure on G=TOP (see [18, 20, 27]), these
surgery obstruction maps are homomorphisms between abelian groups.

For a fixed .X;w/, let Cn.X;w/ � Ln.Z�;w/ denote the image of �n.X/.
This is the subgroup of Ln.Z�;w/ given by the surgery obstructions of all de-
gree 1 normal maps .f; b/WM ! X from some closed n-manifoldM . By varying
X over all closed manifolds with the same orientation character w, we define the
closed manifold subgroup

Cn.�;w/ � Ln.Z�;w/ (1.1)

as the subgroup of the L-group generated by all of the closed manifold subgroups
Cn.X;w/. In the oriented case (w � 1), Cn.�/ is just the image of the Sullivan–
Wall homomorphism [36, 13B.3]

�n.B� �G=TOP; B� � �/! Ln.Z�/

defined by the surgery obstruction.
For a fixed .X;w/, let InC1.X;w/ � LnC1.Z�;w/ denote the image of the

map �nC1.X/. This is the subgroup of LnC1.Z�;w/ which acts trivially on the
structure set S .X/. The surgery exact sequence (and the s-cobordism theorem)
shows that the elements of InC1.X;w/ are exactly the surgery obstructions of
relative degree 1 normal maps

.f; b/W .W; @W /! .X � I;X � @I /;

where the f restricted to the boundary @W is a homeomorphism. By glueing a
copy of X � I along the boundary components in domain and range, we obtain a
closed manifold surgery problemW [@W .X � I /! X �S1. By varying X over
all closed manifolds with the same orientation character w, we define the inertia
subgroup

InC1.�;w/ � LnC1.Z�;w/ (1.2)

as the subgroup of the L-group generated by all of the inertia groups InC1.X;w/.
By construction, InC1.�;w/� CnC1.�;w/ for all fundamental group data .�;w/,
and n � 5. Here is our main result:

Theorem A. Let � be a finitely-presented group and wW� ! Z=2 be an orien-
tation character. The inertia subgroup InC1.�;w/ equals the group of closed
manifold surgery obstructions CnC1.�;w/ � LnC1.Z�/;w/, for all n � 5.
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As stated, this holds for the simple surgery obstructions in LsnC1.Z�;w/, but
the inertial or closed manifold subgroups of LhnC1.Z�;w/ are just the images
of InC1.�;w/ or CnC1.�;w/ under the natural change of K-theory homomor-
phism Ls ! Lh (or Lh ! Lp). It follows that the inertial and closed manifold
subgroups are equal for all torsion decorations in Ki .Z�/, i � 1. In [10] it was
proved that the images of these two subgroups were equal in the projective surgery
obstruction groups LpnC1.Z�;w/, for � a finite group, and the question answered
here was raised in [10, p. 107].

Remark 1.3. Fairly complete information is available about the closed manifold
obstructions for finite fundamental groups [12, Theorem A], under the assump-
tions that the manifolds are oriented and surgery obstructions are measured up to
weakly simple homotopy equivalence, with Whitehead torsion in SK1.Z�/. The
outstanding open problems in this area are (i) to investigate the non-oriented case,
(ii) to compute the simple closed manifold obstructions in Ls�, and (iii) to de-
cide whether the component �4WH4.� IZ=2/ ! L6.Z�/ of the assembly map
A�WH�.B�

wIL�/!L�.Z�;w/ is zero or non-zero (see Section 2 and [12, p. 352]
for this notation).

For a finitely-presented group � , the closed manifold subgroup Cn.�;w/ is
contained in the image An.�;w/ of the assembly map, but for � of infinite order
they are not always equal (see Example 5.5). However, these subgroups do become
equal after localizing at 2 (see Theorem 4.2), or after stabilizing as follows. The
periodicity isomorphism

Ln.Z�;w/
�CP2
���! LnC4.Z�;w/

allows us to identify Ln Š LnC4k , for all k � 0. We define the periodic image of
the assembly map Aq.�;w/, 0 � q � 3, as the subgroup of Lq.Z�;w/ generated
by all of the images of the assembly maps An.�;w/, for n � q .mod 4/.

Similarly, we define the periodic inertial subgroup Iq.�;w/ and the periodic
closed manifold subgroup Cq.�;w/, 0 � q � 3, as the subgroups of Lq.Z�;w/
generated by all In.�;w/ and Cn.�;w/, respectively, for n � q .mod 4/. After
stabilization we obtain a result for all fundamental groups.

Theorem B. Let � be a finitely-presented group and wW� ! Z=2 be an orienta-
tion character. The periodic inertial subgroup Iq.�;w/ and the periodic closed
manifold subgroup Cq.�;w/ both equal the periodic image of the assembly map
Aq.�;w/ � Lq.Z�;w/, for 0 � q � 3.

Remark 1.4. For infinite torsion-free groups, theL-theory assembly maps are con-
jectured to be isomorphisms [8], and this is currently an active area of research.
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For infinite groups � with torsion, conjecturally the contribution to Cn.�/ arising
from finite subgroups is determined by the virtually cyclic subgroups of � . Theo-
rem B is proved by showing that the periodic inertial subgroup Iq.�;w/ is equal
to a periodic stabilization of the image of the assembly map (see Theorem 5.1).

2 The surgery assembly map

We will need to use the relationship between the closed manifold subgroup and
the image of the L-theory assembly map. Recall that there is a factorization due
to Quinn [25] and Ranicki [26], [27, §18] (see also Nicas [23, §3]):

ŒX � I;X � @I IG=TOP;��
�nC1.X/

//

\ŒX;@X�L0
��

LnC1.Z�;w/

HnC1.X
w IL�/

i� // HnC1.X
w IL0/

c� // HnC1.B�
w IL0/

AnC1

OO

of the surgery obstruction map �nC1.X/ through the assembly map AnC1, where
L0 denotes the .�1/-connective quadratic L-spectrum with Z � G=TOP in di-
mension zero, and ŒX; @X�L0 is the fundamental class for symmetric L0-theory.
Cap product with this fundamental class gives a Poincaré duality isomorphism
[27, 18.3] for L0, and for its 0-connective cover L� (which has G=TOP in dimen-
sion zero). In particular,

H 0.X; @X IL�/ D ŒX � I;X � @I IG=TOP;�� Š Hn.Xw IL�/:

The (co)fibration i�WL� ! L0 ! HZ of spectra induces a long exact sequence
relating the two homology theories. Similarly, we have the formula

�n.X/ D An ı c� ı i� ı .� \ ŒX�L0/:

The notation Xw or B�w means the Thom spectrum of the line bundle over X or
B� induced by w, with Thom class in dimension zero, and the assembly maps A�
are induced by a spectrum-level composite

A�;w WB�
w
^ L0

a�;w^1
�����! L0.Z�;w/ ^ L0 �! L0.Z�;w/

as described in [12, §1]. In particular, the homomorphisms An, n � 0, are just the
maps induced on homotopy groups by A�;w . We define the subgroup

An.�;w/ D im
�
Hn.B�

w
IL�/

i�
�! Hn.B�

w
IL0/

An
��! Ln.Z�;w/

�
(2.1)

as the image of the assembly map restricted to L�, for any dimension n � 0. Let
Aq.�;w/ denote the image of the assembly map made periodic. We observe that
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the factorization of the surgery obstruction map implies that

Cn.�;w/ � An.�;w/ � Ln.Z�;w/;

and
InC1.�;w/ � CnC1.�;w/ � AnC1.�;w/;

but the inertial subgroup and the closed manifold subgroup have purely geometric
definitions independent of the assembly map.

Remark 2.2. In [27, 18.6 (i)] it is stated without proof that Cn.�;w/ D An.�;w/,
for n � 5. This is not true in general (see Example 5.5), but we will verify this
for � finite. For � any finitely-presented group, we show that Cn.�;w/˝Z.2/ D
An.�;w/˝ Z.2/, for n � 5, and that Cq.�;w/ D Aq.�;w/, for 0 � q � 3.

3 The characteristic class formulas

We will use the characteristic class formulas for the surgery obstruction maps
��.X/ as presented by Taylor and Williams [32] (see also [35], and [12, §1] for
the non-oriented case). Let bo.ƒ/ denote the connective KO-spectrum with co-
efficients in a group ƒ. The associated homology theory is called ko-homology
(with coefficients in ƒ). The Morgan–Sullivan characteristic class [22] is denoted
L 2 H 4�.BSTOPIZ.2//, and V 2 H 2i .BSTOPIZ=2/ denotes the total Wu class.

(i) ([32, Theorem A]) The spectra L0.Z�;w/ and L0.Z�;w/ are generalized
Eilenberg–MacLane spectra when localized at 2, and when localized away
from 2 are both

bo.ƒ0/ _ bo.ƒ1/ _ bo.ƒ2/ _ bo.ƒ3/;

whereƒi D �i .L0.Z�;w//˝ZŒ1=2�. In particular, there is an equivalence
of spectra L0 ˝ ZŒ1=2� ' bo.ZŒ1=2�/, defining a characteristic class

� 2 KO0.L�IZŒ1=2�/

whose associated map � WG=TOPŒ1=2�
�
�! BSŒ1=2� is the homotopy equiv-

alence of infinite loop spaces due to Sullivan and Kirby–Siebenmann (see
[31, 21], and the exposition in [20, 4.28]).

(ii) The splitting of the spectrum L0 ˝ Z.2/ is given by universal cohomology
classes ` 2 H 4�.L0 IZ.2// and k 2 H 4�C2.L0 IZ=2/. The domain of the
assembly map

Hn.B�
w
IL0/˝ Z.2/

�
�!

M
i�0

Hn�4i .� IZ
w
.2//˚Hn�4i�2.� IZ=2/
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has a natural splitting induced by ` and k. The assembly map has component
maps

ImWHm.� IZ
w
.2//! Lm.Z�;w/˝ Z.2/; m � 0;

and
�mWHm.� IZ=2/! LmC2.Z�;w/˝ Z.2/; m � 0;

which determine An.�;w/˝ Z.2/ completely (see [12, §1]).

(iii) ([32, Theorem C]) Let X be a closed n-manifold, with a reference map
cWX ! B� such that c�.w/ D w1.X/, and let �X denote the orienta-
tion line bundle over X . Let uX WX ! BSTOP classify the bundle �C such
that �C ˚ �X is the stable normal bundle �X . Let f WX ! L� determine a
degree 1 normal map. Then

�X .f /.odd/ D A�c�
�
f �.�/ \ ŒX�bo

�
gives the surgery obstruction localized away from 2, where ŒX�bo 2 kon.Xw/
denotes the ko-fundamental class of X . Furthermore, the 2-local surgery
obstruction is given by

�X .f /.2/ D A�c�

��
u�X .L/ [ f

�.`/C u�X .L/ [ f
�.k/

C ı�.u�X .VSq
1V / [ f �.k//

�
\ ŒX�

�
where ı� denotes the integral Bockstein and A� is the assembly map.

These formulas translate the given information about the manifold X and the
surgery problem f WX ! L� into a collection of ko-homology classes (away
from 2), or a collection of ordinary Zw

.2/
or Z=2 homology classes for .�;w/.

The surgery obstruction �X .f / 2 Ln.Z�;w/ is then computed by applying the
assembly map to these classes. There are similar formulas for the obstruction to a
relative surgery problem defined by f W†.X/! L�, involving the relative funda-
mental class ŒX � I;X � @I �.

Remark 3.1. Note that the degree 0 component of the class f �.`/ in the 2-local
formula is zero. The class f �.�/ has a similar property which will be made
precise in Lemma 5.3.

4 The proof of Theorem A (localized at 2)

We fix the fundamental group data .�;w/. The idea of the proof (generalizing
[10, §4]) is to construct enough inertial surgery problems to realize all possible
elements of CnC1.�;w/. The target manifolds for these surgery problems will
have the form Xn � I , where Xn is the total space of an Sn�m-bundle over Y m,
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with structural group Z=2, and the dimension of Y has the formm D .nC1/�4i

or m D .nC 1/ � 4i C 2, for some i > 0. By construction, the bundle X ! Y

will have a section so we can embed Y � X . The surgery problems

.f; b/W .W; @W /! .X � I;X � @I /;

with degf D 1 and bW �W ! �X�I a bundle map covering f , will be constructed
by glueing a simply-connected Milnor or Kervaire manifold surgery problem fibre-
wise into a tubular neighbourhood of Y � X �¹1=2º � X � I . The details of this
construction will be given below.

The basic input is the relation between bordism and homology or KO-theory.

(i) (localized at 2) By the work of Thom [33] and Conner–Floyd [4], the Hure-
wicz map �SO

m .X;A/ ˝ Z.2/ ! Hm.X;AIZ.2// for oriented bordism is
surjective for every pair .X;A/. Similarly, the Hurewicz map Nm.X;A/ !

Hm.X;AIZ=2/ for unoriented bordism is surjective, m � 0.

(ii) (localized away from 2) There is an isomorphism

h0W�
SO
kC4�.X/˝�SO

� .pt/ ZŒ1=2�
�
�! KOk.X IZŒ1=2�/

induced by the image of the KOŒ1=2�-fundamental class (see [20, 4.15]).
In this tensor product, the action �SO

� .pt/ ! ZŒ1=2� is given by the index
homomorphism if � D 4i , and zero if � ¤ 4i .

For finite groups, there is the following foundational result:

Theorem 4.1 (Wall [34, §7]). For � a finite group, andw an orientation character,
the localization map Ln.Z�;w/! Ln.Z�;w/˝ Z.2/ is injective.

We now divide the argument into two cases since it suffices to show that the
groups InC1.�;w/ andCnC1.�;w/ are equal after tensoring with Z.2/ and ZŒ1=2�
separately.

Theorem 4.2. Let � be a finitely-presented group, n � 5, and wW� ! Z=2 an
orientation character. Then

(i) Cn.�;w/˝ Z.2/ D An.�;w/˝ Z.2/, and

(ii) InC1.�;w/˝ Z.2/ D AnC1.�;w/˝ Z.2/.

Corollary 4.3. If � is a finite group, then we have Cn.�;w/ D An.�;w/ and
InC1.�;w/ D AnC1.�;w/, for all n � 5.

Proof. For finite groups, the only elements of infinite order in An.�;w/ come
from the trivial group (see [36, 13B.1]). Hence Theorem A for finite groups fol-
lows from the 2-local version and Theorem 4.1.
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Proof of Theorem 4.2. We first show that InC1.�;w/ ˝ Z.2/ D AnC1.�;w/ ˝

Z.2/, and note that (ii) ) (i) for n C 1 � 6. Alternately, a direct proof that
Cn.�;w/˝ Z.2/ D An.�;w/˝ Z.2/, for all n � 5, can be given along the same
lines. The details are similar, but easier, and will be left to the reader.

We proceed as outlined above to construct enough inertial elements to generate
the domain

HnC1.B�
w
IL�/˝ Z.2/

�
�!

M
i>0

HnC1�4i .� IZ
w
.2//˚HnC1�4iC2.� IZ=2/

(4.4)

of the assembly map restricted to L�.
Suppose that ˛ 2 Hm.� IZw.2// is a given homology class (with twisted coef-

ficients given by the orientation character w). Let � denote the line bundle over
K.�; 1/ with w1.�/ D w. By the Thom isomorphism,

ˆWHm.� IZ
w
.2// Š HmC1.E; @EIZ.2//;

where E D E.�/ denotes the total space of the disk bundle of �. Suppose that
hW .V mC1; @V / ! .E; @E/ is an oriented .mC 1/-manifold, with reference map
to .E; @E/, whose fundamental class h�ŒV; @V � D ˆ.˛/. Now let gWY m ! B�

be the transverse pre-image of the zero section in E.�/, with w1.Y / D g�.w/. By
construction, g�ŒY � D ˛.

The model surgery problems with target X � I will be constructed from prod-
uctsX D Y m�Sn�m. A small tubular neighbourhood of Y � X�¹1=2º � X�I
is homeomorphic to the product U D Y �DnC1�m. By our choice of dimensions,
nC 1 � m D 4i , for some i > 0. Let 'W .M 4i ; @M/ ! .D4i ; @D4i / denote the
simply-connected Milnor manifold surgery problems, whose surgery obstructions
represent generators of L4i .Z/. Recall that these are smooth surgery problems,
with boundary manifolds @M 4i smooth homotopy spheres (at least if 4i > 4),
but homeomorphic to the standard sphere by the solution of the Poincaré conjec-
ture [28]. In dimension 4, we need the E8-manifold constructed by Freedman [9].

Now we define W by removing the interior of U from X � I , and glueing in
Y product with the Milnor manifold M 4i . The degree 1 map f WW ! X � I

is the identity outside of U D Y � DnC1�m, and inside U is given by idY � '.
Similarly, the bundle map bW �W ! �X�I is the identity over the complement of
U and given by the simply-connected problem over U . We now have a degree 1
normal map .f; b/WW ! X � I which is the identity on the boundary, hence
defines an element in Œ†.X/;G=TOP�.

It follows from the characteristic class formula that the surgery obstruction

�.f; b/.2/ D Am.˛/C lower terms;
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where Am D Im or Am D �m, and the “lower terms” are the images under Aj
for j < m (in this formula we have identified Ln�4i D Ln by periodicity).

The surgery problems constructed so far are enough to deal with degree m D
.n C 1 � 4i/ contributions to HnC1.B�w IL�/ from the first of the summands
in formula (4.4). To realize the Z=2-homology classes ˇ 2 Hm.� IZ=2/ aris-
ing from the second summand, we start with a possibly non-orientable manifold
gWY m ! B� with g�ŒY � D ˇ. In this case, nC 1�m D 4i � 2, for some i > 0.

Sometimes Y can be chosen so that w1.Y / D g�.w/, and then we proceed
again as above. The model surgery problemsW with target X � I are constructed
from products X D Y m � Sn�m, by removing a small tubular neighbourhood
U D Y �DnC1�m of Y � X � ¹1=2º � X � I . This time we glue in the product

idY �  WY � .K4i�2; @K/! Y � .D4i�2; @D4i�2/

of Y with the simply-connected Kervaire surgery problem, whose surgery obstruc-
tion represents the generator of L4i�2.Z/. The boundary @K4i�2 is a smooth ho-
motopy sphere, which is again homeomorphic to the standard sphere, so we may
extend by the identity on the complement of U .

However, in general we may not have w1.Y / D g�.w/, and X will be the total
space of a certain non-trivial Sn�m-bundle over Y with structural group Z=2,
which we now construct.

Let � denote the line bundle over Y with w1.�/ D w1.Y / C g�.w/. Let
� D .2i � 1/� ˚ .2i � 1/" be the Whitney sum of .2i � 1/ copies of �, to-
gether with .2i � 1/ copies of the trivial line bundle ". Now let pWX ! Y denote
the total space of the associated sphere bundle X D S.�/, and observe that the
class w1.X/ D p�.g�.w//. The fibre sphere has dimension 4i � 3 D n � m.
Notice that the bundle � has structural group Z=2, and the transition functions
defining this bundle operate through the involution denoted S4i�3.2i � 1/, mean-
ing the restriction to the unit sphere of the representation R2i�1

C
˚R2i�1� in which

a generator of Z=2 acts as C1 on the first subspace and as �1 on the second.
Since i > 0, this bundle has non-zero sections, so we may choose an embedding
of Y � X .

We will now show that the Kervaire sphere @K4i�2 admits an orientation-
reversing involution which is Z=2-equivariantly homeomorphic to S4i�3.2i � 1/.
Recall that W 4i�3.d/ denotes the Brieskorn variety given by intersecting the so-
lution set of the equation

zd0 C z
2
1 C � � � C z

2
2i�1 D 0

with the unit sphere in C2i , with d � 0 an odd integer. There is an involution
Td on W 4i�3.d/ given by complex conjugation zj 7! Nzj in each coordinate. It is
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known that W 4i�3.d/ is a homotopy sphere if d is odd, which is diffeomorphic
to the standard sphere if d � ˙1 .mod 8/, and to the Kervaire sphere @K4i�2

if d � ˙3 .mod 8/ (see [13]). The complex conjugation involution extends to
the perturbed zero set, which is diffeomorphic to the Kervaire manifold K4i�2 if
d � ˙3 .mod 8/.

Lemma 4.5. The involution .W 4i�3.d/; Td /, with d odd, is Z=2-equivariantly
homeomorphic to S4i�3.2i � 1/.

Proof. These involutions were studied by Kitada [19], who gave necessary and
sufficient conditions for .W 4i�3.d/; Td / to be Z=2-equivariantly diffeomorphic
to .W 4i�3.d 0/; Td 0/. We need only the easy part of his argument, namely that
.W 4i�3.d/; Td / is Z=2-equivariantly normally cobordant to S4i�3.2i � 1/ by
a normal cobordism which is the identity on a neighbourhood of the fixed set.
The remaining surgery obstruction to obtaining an equivariant s-cobordism lies
in the action of L4i�2.ZŒZ=2�; w/ Š Z=2 on the relative structure set of the
complement of the fixed set. In the smooth category, this action is difficult to
determine, but in the topological category the action is trivial (since this element
is in the image of the assembly map).

We can now glue in the simply-connected Kervaire manifold surgery problem
in a tubular neighbourhood U of Y � X �I . The boundary @U D eY �Z=2S

4i�3,
where eY is the double covering of Y given by w1.�/ and the fibre sphere has the
action S4i�3.2i � 1/. We have a homeomorphism

eY �Z=2 S
4i�3

� eY �Z=2 @K
4i�2

given by Lemma 4.5, and this is used to glue in eY �Z=2 K
4i�2 defined by the

extension of the complex conjugation involution over K4i�2. The characteristic
class formula shows as before that the surgery obstruction

�.f; b/.2/ D �m.ˇ/C lower terms;

where the “lower terms” are the images under Aj for j < m.

5 The proof of Theorem A (at odd primes) and Theorem B

By Theorem 4.2, the inertial subgroup and the closed manifold subgroup are both
equal to the image of the assembly map, after localization at 2. We now localize
away from 2, and this is where we will need to stabilize to identify the image of
the assembly map. As above, let Aq.�;w/, 0 � q � 3, denote the periodic image
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of the assembly map, generated by all the An.�;w/ for n � q .mod 4/. We will
prove:

Theorem 5.1. Let � be a finitely-presented group and w be an orientation char-
acter. Then

(i) InC1.�;w/˝ ZŒ1=2� D CnC1.�;w/˝ ZŒ1=2�, and

(ii) Iq.�;w/ D Cq.�;w/ D Aq.�;w/.

The procedure in this setting will be similar. The domain of the assembly map
is now

HnC1.B�
w
IL0/˝ ZŒ1=2� Š konC1.B�w IZŒ1=2�/;

and we will write elements arising from CnC1.�;w/ as a sum with ZŒ1=2�-coef-
ficients of inertial surgery problems with surgery obstructions in InC1.�;w/.

Remark 5.2. Note for use in part (ii) that the obstructions of these surgery prob-
lems actually come from

HnC1.B� IL�/˝ ZŒ1=2� Š koŒ1�nC1.B� IZŒ1=2�/;

where koŒ1�� denotes the homology theory given the 0-connective cover boŒ1� of
the spectrum bo. The cofibration of spectra boŒ1� ! bo ! HZ induces a long
exact sequence

� � � ! H�C1.X IZŒ1=2�/! koŒ1��.X IZŒ1=2�/

! ko�.X IZŒ1=2�/
h
�! H�.X IZŒ1=2�/! � � � ;

where hWko�.X IZŒ1=2�/
h
�! H�.X IZŒ1=2�/ is the Hurewicz homomorphism.

It follows that, after periodic stabilization, the same image Aq.�;w/ is gener-
ated from the domains HnC1.B� IL0/ ˝ ZŒ1=2� Š konC1.B� IZŒ1=2�/, with
nC 1 � q .mod 4/.

We need more information about the class � 2 KO0.L� IZŒ1=2�/ used in the
characteristic class formula for the surgery obstruction (see Section 3). Recall that
there is a Conner–Floyd isomorphism [5, p. 39] for cobordism

h0W�4�.X/˝��.pt/ ZŒ1=2�
�
�! KO0.X IZŒ1=2�/

which gives the KO-theory for a finite complex X in terms of oriented cobordism
away from 2 (this formula uses the identification MSpŒ1=2� ' MSOŒ1=2�).

Lemma 5.3. The class � 2 KO0.G=TOPIZŒ1=2�/ is represented by a formal sum
of classes b�k 2 �4k.G=TOP/˝ ZŒ1=2� of positive degrees k > 0.
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Proof. We first recall the description of � given in [20, Chap. 4]. For each k > 0,
let Sk W�4k.G=TOP/ ! Z be the homomorphism which assigns to an element
f WX ! G=TOP, the signature difference .indexM � indexX/=8 for the asso-
ciated surgery problem M ! X . These are ��.pt/-module homomorphisms,
where ��.pt/ acts on ZŒ1=2� via the signature in dimensions � 0 .mod 4/, and
zero otherwise.

By [20, Lemma 4.26], the collection ¹Skº induces a homomorphism

�0WKO0.G=TOPIZŒ1=2�/! ZŒ1=2�:

The proof uses the Conner–Floyd isomorphism and an inverse limit argument over
finite skeleta of G=TOP. Now one applies the universal coefficient formula for
KO-theory [39, (2.8)] and in particular the isomorphism

evalWKO0.G=TOPIZŒ1=2�/! HomZ.KO0.G=TOPIZŒ1=2�/;ZŒ1=2�/

to get the element

� 2 fKO0.G=TOPIZŒ1=2�/ D ŒG=TOP; BOŒ1=2��;

with eval.�/ D �0 (see [20, p. 86] and the proof of [20, (4.26)] for the assertion
that eval is an isomorphism). Note that the element� lies in reduced KO0 since the
homomorphisms Sk have positive degree. The associated map � WG=TOPŒ1=2�!
BOŒ1=2� is the Sullivan homotopy equivalence (see [20, 4.28]).

By the Conner–Floyd isomorphism for cobordism, there is a unique elementb� 2 e�4�.G=TOP/˝��.pt/ ZŒ1=2�;

such that h0.b�/ D � 2 fKO0.G=TOPIZŒ1=2�/. We may consider this tensor
product as a quotient of the corresponding direct product, and represent elements
as infinite formal sums.

Quillen [24, Theorem 5.1] proved that the reduced (complex) cobordism group
of a connected finite complex is generated as a U �.pt/-module by elements in
strictly positive dimensions, and the same is true for oriented bordism as an
��.pt/-module after inverting 2. Therefore, b� is represented in the tensor product
by a formal sum of elements

�k 2 e�4k.G=TOPIZŒ1=2�/

with k > 0.

Proof of Theorem 5.1, part (i). We consider an element

˛ D .f �.�/ \ ŒV �bo/ 2 ko�.V w IZŒ1=2�/;

given by f WV ! L� and reference map cWV ! B� , with c�.w/ D w1.V /,
whose image under the assembly map gives an element of CnC1.�;w/˝ ZŒ1=2�.
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By Lemma 5.3 and Poincaré duality for bordism theory [1], we can express

˛ D
X
k>0

akŒY
nC1�4k; gk�

as a finite ZŒ1=2�-linear combination of manifolds gk WY nC1�4k ! V , with
g�
k
.w1.V // D w1.Y /, and coefficients ak 2 ZŒ1=2� for k > 0. Let gWY nC1�4k!

B� be a manifold with reference map (by composing with V ! B�) such that k
is the smallest integer with ak ¤ 0. Hence ak � g�.ŒY �bo/ D ˛ C lower terms.

We will now construct an element in InC1.�;w/. We write nC 1 � m D 4k,
and define X D Y m � S4k�1. The surgery problem

.h; b/W .W nC1; @W /! .X � I;X � @I /

will be constructed as before, by gluing in the Milnor manifold surgery problem

.M 4k; @M/! .D4k; @D4k/

fibrewise along a tubular neighbourhood U � X � I of Y � X � ¹1=2º in the
interior of X � I . Let hW†.X/ ! L� also denote the normal invariant of .h; b/,
which factors as the composite

hW†.X/
project
����! Y �D4k=Y � S4k�1

1�'
���! L�;

where 'WS4k ! L� is the normal invariant of the Milnor problem (i.e., the gene-
rator of �4k.L�/ D Z). The characteristic class formula

ak � �.h/.odd/ D ak �A�.g � 1/�

�
h�.�/\ ŒY � S4k�bo

�
D A�.˛/C lower terms

since h�.�/\ ŒY � S4k�bo D ŒY �bo, and ak � g�.ŒY �bo/ D ˛C lower terms. This
completes the proof of part (i) of Theorem 5.1.

Remark 5.4. This formula for �.h/ is consistent with the rationalization of the
calculation at 2. Note that the Poincaré dual L.Y / of the L-genus gives the ratio-
nal part of the L0-theory fundamental class ŒY �Q \ L.Y / 2 Hm�4�.Y IQ/, by
[27, 25.17]. Under the equivalence L0 ˝ ZŒ1=2� ' bo.ZŒ1=2�/, the fundamental
class ŒY �L0 2 Hm.Y IL

0 ˝ ZŒ1=2�/ maps to ŒY �bo 2 kom.Y IZŒ1=2�/.

The proof of Theorem B. By Theorem 4.2, it is enough to show that Iq.�;w/ ˝

ZŒ1=2� D Aq.�;w/˝ ZŒ1=2�, for 0 � q � 3. We represent an arbitrary element
of Aq.�;w/ by the image Am.˛/ 2 Am.�;w/˝ ZŒ1=2� under the assembly map
of an element ˛ 2 kom.B�w IZŒ1=2�/, where m � q .mod 4/ and m � 5.
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Since KO-homology satisfies the wedge axiom, the group kom.B�w IZŒ1=2�/
is the direct limit of the ko-homology of the finite skeleta of the classifying
space B� . By periodic stabilization if necessary, we may assume that

˛ 2 im
�
kom.Xw IZŒ1=2�/! kom.B�w IZŒ1=2�/

�
;

where X is a suitable finite skeleton of B� with dimX < m. But then we have
kom.Xw IZŒ1=2�/ D KOm.Xw IZŒ1=2�/. By using the Conner–Floyd theorem
[20, 4.15] and the 4-fold periodicity KOmC4k Š KOm, for k > 0, we can express

˛ D
X
k>0

akŒY
mC4k; gk�

as a finite ZŒ1=2�-linear combination of the images of fundamental classes ŒY �bo
of manifolds gk WY mC4k ! B� , with g�

k
.w/ D w1.Y / and ak 2 ZŒ1=2�. The

same construction (glueing in Milnor manifold surgery problem .M 4l ; @M/ !

.D4l ; @D4l/) used in the proof of part (i) of Theorem 5.1, when applied to a typical
element .gk/�ŒY �bo 2 konC1.B� IZŒ1=2�/, produces an inertial surgery problem
with obstruction in ImC4kC4l.�;w/. It follows that the periodic stabilization of
the image Am.˛/ is the sum of surgery obstructions of elements in various inertial
subgroups InC1.�;w/, for nC1 � m .mod 4/. Therefore Am.�;w/˝ZŒ1=2� D
Im.�;w/˝ ZŒ1=2�.

Example 5.5. We give an example (based on work of Conner–Smith [6] and
Johnson–Wilson [16]) to show that, in a given dimension n, the image of the
assembly map An.�;w/ is not always equal to the closed manifold subgroup
Cn.�;w/. In particular, this contradicts [27, 18.6 (i)], and shows that for a suitable
finite complex X the elements ofHn.X IL�/ are not always represented by closed
manifold surgery problems.

We will need [11, Prop. 2.6], which is a variation of the Kan–Thurston theo-
rem [17, 2]. For any finite complex X , there exists a finitely-presented group �X
with B�X of dimension � dimX , and an epimorphism 'W�X ! �1.X/ with
perfect kernel. Moreover, there is a lifting ęX WX ! .B�X /

C
ker' of the classifying

map ˛X WX ! B�1.X/ which is a homotopy equivalence. In other words, X is
obtained by applying the Quillen plus construction to B�X . It follows (from the
Atiyah–Hirzebruch spectral sequence) that ko�.X/ Š ko�.B�X /. Since the im-
age of koŒ1��.X/ ! ko�.X/ equals the kernel of the Hurewicz homomorphism,
it is therefore enough to produce the following example:

Lemma 5.6. There exists a finite complex X such that the natural map

�SO
m .X/˝ ZŒ1=2�! kom.X IZŒ1=2�/
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is not surjective onto the kernel of the Hurewicz homomorphism

kom.X IZŒ1=2�/! Hm.X IZŒ1=2�/;

in some dimension m � 5.

Remark 5.7. Recall that Hn.X IL�/ ˝ ZŒ1=2� Š koŒ1�n.X IZŒ1=2�/. This ex-
ample also shows that the elements of Hn.KIL�/ are not always represented by
closed topological manifold surgery problems. The reason is that the natural maps

�SO
m .X/˝ ZŒ1=2�! kom.X IZŒ1=2�/

and
�STOP
m .X/˝ ZŒ1=2�! kom.X IZŒ1=2�/

have the same image, for X a finite complex. This is essentially a result of
Hodgkin–Snaith (see [20, 5.22, 5.24]: the natural mapsfKO�.MSTOPŒ1=2�/

�
�! fKO�.MSPLŒ1=2�/

�
�! fKO�.MSOŒ1=2�/

are all isomorphisms (using the fact that MSTOP and MSPL are the same away
from 2). The map

�SPL
m .X/˝ ZŒ1=2�! kom.X IZŒ1=2�/

is given by the map on homotopy groups induced by the map

MSPLŒ1=2� ^X ! BOŒ1=2� ^X

provided by smashing over the identity on X with the Sullivan orientation �SPL

(see Madsen–Milgram [20, p. 100], formula (5.2) and Lemma 5.3 to compare
with �SO).

We first discuss the analogous question for complex bordism. In a series of
papers Conner and Smith studied the natural map

hW�Um.X/! kum.X/

from complex bordism to connective complex K-homology theory induced by
the K-theory orientation (see Conner and Floyd [5]). The coefficient ring �U� .pt/
is a polynomial ring on even dimensional generators and the coefficient ring
ku�.pt/ D ZŒt �, where deg t D 2. Multiplication by ŒCP1� on �U� .X/ corre-
sponds under h to multiplication by t on kum.X/ (see Stong [30]).

Conner and Smith show in [6, Theorem 10.8] that, for any finite complexX and
for any class a 2 kum.X/, there exists an integer n D n.a/ � 0 such that tna 2
im.�UmC2n.X/ ! kumC2n.X//. However, according to a result of Johnson and
Smith [15, Theorem 1], for a finite complexX the natural map�U� .X/! ku�.X/
is onto if and only if the projective dimension of �U� .X/ over �U� .pt/ is � 2.
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On the other hand, by a result of Conner and Smith [7, Theorem 5.1], a large
N -skeleton X of K.Z=p; n/, p an odd prime, will have a large homological di-
mension over MU . We may pick one with hom dim�U� .pt/�

U
� .X/ � 3, and with

p an odd prime, and both n and N fairly large (see also [29, p. 854] for an explicit
example). Such a finite complex X gives an example to show that the natural map

�Um.X/˝ ZŒ1=2�! kum.X IZŒ1=2�/

is not surjective in some dimension m � 5 (the dimension m can always be
raised by suspension of the example). However, in this case the Hurewicz map
kum.X IZŒ1=2�/ ! Hm.X IZŒ1=2�/ may be injective, and non-realizable ele-
ments from kuŒ1�m.X IZŒ1=2�/ may not exist. It does however show that stabi-
lizing is sometimes actually necessary to realize elements of kum.X IZŒ1=2�/ by
fundamental classes of almost complex manifolds.

This theme was definitively addressed by Johnson and Wilson [16] using the
p-local Brown–Peterson homology theories BP�. Recall that for a given prime p,
the localized complex bordism spectrum MU.p/ splits as a wedge of shifted copies
of BP, and the coefficient ring BP�.pt/ D Z.p/Œv1; v2; : : : ; vn; : : : �, where vn has
degree 2pn � 2 (see [3, Theorem 1.3]). There are also associated theories BPhni,
for n � 1, with BPhni�.pt/ D Z.p/Œv1; : : : ; vn�, constructed by Wilson [37, 38].
The spectrum BPh1i is a wedge summand of bu.p/ under the identification v1 D
tp�1 (see [16, 2.7]).

The Brown–Peterson theory also shows that at odd primes the spectrum MSO.p/
splits as a wedge of shifted copies of BP (again see [3, Theorem 1.3]), and that
bo.p/ splits off BPh1i as a wedge summand. Furthermore, the natural map

�SO
m .X/˝ Z.p/ D �m.MSO.p/ ^X/! �m.bo.p/ ^X/ D kom.X IZ.p//

induced by the map of spectra MSO.p/ ! bo.p/ has a corresponding splitting, and
therefore contains the map BPm.X/! BPh1i�.X/ as a direct summand. In short,
it will be enough to find an example for BP-theory.

Proof of Lemma 5.6. We fix an odd prime p. Consider the following stable com-
plexes1. There is a self-map f W†2.p�1/X0 ! X0 realizing multiplication by v1
on BP�.X0/, where X0 D M.p/ denotes the mod p Moore spectrum. The cofi-
bre of f has a finite complex model (usually called V.1/, see Smith [29, Theo-
rem 1.5]).

Let X1 D M.p; vn1 / denote the cofibre of the n-fold iterate f n, n � 2,
which realizes multiplication by vn1 . Therefore BP�.X1/ D BP�=.p; vn1 /. Fur-

1 I am very much indebted to David Johnson and W. Stephen Wilson for providing this example.
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thermore, by Hopkins and J. H. Smith [14, Theorem 9], there exists a self-map
gW†2m.p

2�1/X1 ! X1 realizing multiplication by vm2 on BP�.X1/, for some
large m � 1. We let

X WDM.p; vn1 ; v
m
2 /

denote the cofibre of g. Then BP�.X/ D BP�=.p; vn1 ; v
m
2 /. However, multiplica-

tion by v2 is zero on BPh1i�-homology, and so

BPh1i�.X/ Š BPh1i�.X1/˚ BPh1i��k�1.X1/;

where k D 2m.p2�1/. Since BP�.X/ is concentrated in even dimensions, the odd
dimensional classes are not in the image of the natural map BP�.X/!BPh1i�.X/.

For the example, we may choose any non-zero multiple of v1 in the odd-dimen-
sional summand of BPh1i�.X/. Such an element is in the kernel of the Hurewicz
homomorphism (see [16, p. 328]), and is annihilated by vn�11 , but is not in the
image from BP�.X/.
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