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ABSTRACT. Taubes’ gluing theorems establish the existence of ASD connections on
closed, oriented 4-manifolds. We extend these gluing results to the mASD connections
of Morgan–Mrowka–Ruberman on oriented 4-manifolds with cylindrical ends. As a
corollary, we obtain an ASD-existence result in the presence of degenerate asymptotic
flat connections.

1. INTRODUCTION

The results of Taubes [19, 20] on “gluing” establish the existence of non-trivial anti-
self dual (ASD) connections on closed, oriented 4-manifolds, provided one works with
an SU(2)-bundle with sufficiently high second Chern class. This was extended by Don-
aldson [3] to a general gluing theorem for connected sums; see also [2, 9]. These gluing
results have direct extensions to cylindrical end 4-manifolds, provided one works with
ASD connections having a non-degenerate flat connection as an asymptotic limit [4].
However, in the absence of such non-degeneracy assumptions, the space of ASD con-
nections on a cylindrical end 4-manifold is generally not well-controlled (e.g., the ASD
operator is not Fredholm) and this now-standard gluing formalism breaks down. Nev-
ertheless, the question of existence for ASD connections in this degenerate cylindrical
end setting remains well-posed. One of our main results, Theorem A below, establishes
one such ASD-existence result in the degenerate setting.

To state this, suppose X is a connected, oriented 4-manifold with cylindrical ends.
Thus, we can write X = X0 ∪ End X, where X0 is a compact 4-manifold with bound-
ary N, and End X ∼= [0, ∞)× N is diffeomorphic to a cylinder. We refer to X0 as the
compact part and to End X as the cylindrical ends. Unless otherwise stated, we allow
the case where N has multiple components, or is empty. Fix a metric g on X that is
asymptotically cylindrical in the sense described in Section 2A.

Theorem A. Assume b+(X) ≤ 1. Assume further that the 3-manifold N is connected and
satisfies one of the following:

(i) N is a circle bundle over a surface with positive Euler class: e(N) > 0; or
(ii) N has first Betti number at most one: b1(N) ≤ 1.
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Then, for any integer ` ≥ b+(X) + 1, the manifold X admits an irreducible ASD-connection
A on a principal SU(2)-bundle over X, and A satisfies∫

X
|FA|2 dvol = 8π2`.

We prove this in Section 6D. As a concrete example, the hypotheses of Theorem A
hold when X0 is diffeomorphic to the total space of a positive Euler class disk bundle
over a surface. To the authors’ knowledge, Theorem A (and its extension, Theorem 6.9)
is the first general ASD existence result for cylindrical end manifolds that allows for a
degenerate flat limit down the end.

Our approach to Theorem A is to (locally) embed the space of ASD connections into
the larger space of modified ASD (mASD) connections of Morgan, Mrowka, and Ruber-
man [17]. This larger space is obtained by modifying the ASD operator in such a way
that one obtains a Fredholm operator whose zero set contains an open set in the space
of finite-energy ASD connections; it may also contain some new solutions. It is shown
in [17] that, by allowing the auxiliary choices in this construction to vary, every finite-
energy ASD connection belongs to some mASD space of connections defined in this
way. The other main results of the present paper, stated below, show that the gluing
results of Taubes and Donaldson for connected sums have extensions to this mASD
setting. We then arrive at Theorem A as a consequence of these mASD-gluing results;
the topological hypotheses on N imply that the mASD connections thus obtained are
in fact ASD.

Before stating these mASD-gluing results, we give several remarks to help provide
further context for this mASD setting.

Remark 1.1. (a) Our primary motivation for developing these gluing results was to
use the Morgan–Mrowka–Ruberman “moduli space” of mASD connections to study
the action on X of a finite group π. Even in the ASD setting, generic perturbations are
usually not π-equivariant, so the standard transversality arguments are not available,
and one must appeal to some other approach to handle singularities in the moduli
space. As a sequel to this paper, we planned to study the π-equivariant compactifi-
cation of the “mASD moduli space” as was done in [11], [12], and [13] for the ASD
moduli space.

Unfortunately, the mASD operator fails to be gauge equivariant in any reasonable
sense (see Remark 2.12). This appears to be an oversight in the original text [17] (e.g.,
see [17, p. 125]), and at present we do not know how to define a suitable gauge quotient
of the space of mASD connections that one might call the “mASD moduli space”. It
is a fundamental and interesting open problem to construct an appropriate mASD-
replacement for the ASD moduli space. See Section 2B.5 for more information about
this issue.

(b) The foundational work of Mrowka [18], Morgan–Mrowka–Ruberman [17], and
Taubes [21, 22] concerning instantons on cylindrical end 4-manifolds was done shortly
before the Seiberg–Witten revolution in gauge theory. One of their striking results
in this setting is that a finite-energy ASD connection has a well-defined limiting flat
connection on the 3-manifold N “at infinity”.
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At that time, a central problem was to understand the behaviour of ASD connec-
tions under neck-stretching within a closed 4-manifold, as well as the reverse operation
in which ASD connections on non-compact 4-manifolds with matching data on their
cylindrical ends could be glued together. Indeed, the authors of [17, p. 12] state: “The
[mASD] moduli space seems to provide the correct geometric context for a general
gluing theorem for ASD connections, although we do not treat this topic in this book”
(see Remark 7.2). This point of view was a main ingredient in a paper of Fintushel and
Stern [7] (and in unpublished work of Morgan and Mrowka [16]). An account of gluing
along cylindrical ends from the perspective of Floer homology was later provided by
Donaldson [4], simplified by assuming the presence of a perturbation to avoid degen-
eracies (see (c), below). We note, however, that the gluing results of the present paper
take place on the compact part X0, and not on the ends.

(c) Researchers have worked around the technical issues involved in gluing in the
degenerate setting by various methods. Of these methods, one of the most popular is
to perturb the ASD equation on the ends in such a way that all perturbed-ASD connec-
tions are asymptotic to non-degenerate perturbed-flat connections [8], [4]. However,
this approach has several drawbacks. For one, ASD connections are generally not solu-
tions of perturbed-ASD equations of this type; this can obscure the geometric informa-
tion one can infer from an abstract existence result for perturbed-ASD connections (e.g.,
to what extent do these connections depend on the perturbation?). Another drawback
is that these perturbation schemes are not well-behaved in the presence of reducible
flat connections (e.g., the trivial flat connection), and this limits the applicability of
such approaches. For example, a full SU(2)-instanton Floer theory for 3-manifolds N
with b1(N) ≥ 1 is still lacking, and even the existing instanton Floer theory for integer
homology spheres handles the trivial flat connection separately. In summary, a more
in-depth understanding of ASD connections with degenerate limits is desired, and we
view the results of this paper as being a step in that direction.

To state our gluing results for mASD connections, let G be a compact Lie group and
fix a principal G-bundle E → X. We assume that E is translation-invariant on the end;
that is, we assume the diffeomorphism End X ∼= [0, ∞) × N is covered by a bundle
isomorphism E|End X

∼= [0, ∞)× Q for some principal G-bundle Q → N. We also fix a
flat connection Γ on Q.

Given a connection A on E that converges sufficiently fast down the end, one can
define a quantity

κ(E, A|End X) := − 1
8π2

∫
X
〈FA ∧ FA〉 ∈ R

that we call the relative characteristic number of the adapted bundle (E, A|End X); see Section
6A for more details. If A is ASD, then κ(E, A|End X) = (8π2)−1

∫
X |FA|2 equals the usual

energy of the connection A. The upshot for us is that the quantity κ(E, A|End X) is well-
defined for a much larger class of connections than those with finite energy. Indeed,
this relative characteristic number depends only on the topological type of the adapted
bundle (E, A|End X), and it is a lift of the Chern–Simons value of the connection on Q
to which A is asymptotic. Note that if κ(E, A|End X) 6= 0, then A is not flat. When X is
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closed, then this relative characteristic number is actually an integer that depends only
on E, and we will simply write it as κ(E) (e.g., if G = SU(r), then κ(E) = c2(E) [X]
is the second Chern number). We will primarily use κ(E, A|End X) to keep track of the
topological data in our gluing operations, just as the second Chern class keeps track
of the underlying bundle type when gluing in the standard SU(2)-setting for ASD
connections on closed 4-manifolds.

By making several auxiliary choices, collectively called thickening data, one can de-
fine the modified ASD (mASD) operator, which is a non-linear Fredholm map s defined
on a suitable space of connections on E (see Section 2 for definitions). In particular,
we note that this space of connections is defined so that all elements are asymptotic to
connections close to the flat connection Γ fixed above. By definition, the mASD con-
nections are those in the zero set of s, and we say that an mASD connection A is regular
if the linearization of s at A is surjective when restricted to a Coulomb slice.

For k = 1, 2, suppose Xk is an oriented, cylindrical end 4-manifold equipped with
a principal G-bundle Ek → Xk and thickening data, as above. Let X = X1#X2 be a
connected sum of these manifolds, taken at points in the compact parts of the Xk. Then
the Ek can be used to form a connected sum bundle E→ X, and we equip this with the
thickening data induced from those of the Ek; see Section 3A. Our basic gluing result
can be stated as follows.

Theorem B. For k = 1, 2, suppose Ak is a regular mASD connection on Ek. Then for any
ε > 0, the bundle E = E1#E2 admits an mASD connection A with the property that the
distance between A|Xk∩X and Ak|Xk∩X is less than ε for k = 1, 2. Moreover,

(1.2)
∣∣∣κ(E, A|End X)−

2

∑
k=1

κ(Ek, Ak|End X)
∣∣∣ < ε.

In the statement of Theorem B, the distance is relative to a L2
2(N)× Lp∗

δ (X)-metric on
the space of connections; see (3.6) for a precise statement (the connection A of Theo-
rem B is what is called J (A1, A2) in (3.6)). Theorem B is a special case of Theorem 3.3,
which works in the broader setting where the Ak are not necessarily regular. In this
broader setting, the connection A need not be mASD, but its failure to be mASD is ex-
pressed through an obstruction map. In Theorem 5.1, we extend Theorem B to a gluing
result for families of regular mASD connections. These results are mASD-extensions of
results familiar from the ASD setting; see [5, Section 7.2].

As an application of Theorems B and 5.1, we establish the following existence result,
extending that of Taubes [19, 20] to the present cylindrical end mASD situation.

Theorem C. Assume G = SU(2) and b+(X) ≤ 1, and fix an integer ` ≥ b+(X) + 1. Then
for every ε > 0, there is a principal SU(2)-bundle E → X and an mASD connection A on E
that is irreducible, and satisfies

(1.3) |κ(E, A|End X)− `| < ε.

If b+(X) = 0, then the connection A is regular.
The cases b+(X) = 0 and b+(X) = 1 are special cases of Theorem 6.2 and Theorem

6.3, respectively. Structurally, our proof strategies for these are very similar to the
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analogous statements in the closed case [19, 20] by realizing X as a trivial connected
sum X ∼= X#S4. Under the assumption that b+(X) = 0, it follows that the trivial flat
connection on X is regular as an mASD connection (see Remark 2.19). It is well-known
that the 4-sphere admits irreducible ASD connections of every positive second Chern
class, and these are necessarily regular for topological reasons. Then Theorem C for
b+(X) = 0 follows from the general gluing result of Theorem B and adjacent results
designed to handle gauge transformations (more below). We note also that Theorem
6.2 (the more general version of Theorem C) is proved for an arbitrary compact Lie
group G, under mild hypotheses on ` and G.

Remark 1.4. If X is simply-connected and b+(X) = 0, we expect that a modified gluing
construction will produce an open subset of the space of mASD connections that are in
Coulomb gauge relative to some fixed connection. The issues involved in carrying out
this improvement are briefly indicated in Remark 5.3(b).

The strategy for our proof of Theorem C when b+(X) = 1 is similar, albeit more
involved since the trivial flat connection on X is no longer regular. Thus a careful
analysis of the obstruction map of Theorem 3.3 is required. Just as in [20], we glue
ASD connections on S4 at several sites instead of one, and this is sufficient to show that
the obstruction vanishes for some choice of gluing parameters. In this analysis, we use
the assumption that G = SU(2). As Taubes mentions [20, p. 518], it is likely that the
restriction to G = SU(2) can be removed, but that would call for a different approach.

We prove our general existence results only for b+ ≤ 1 because (i) these are the
cases of interest for our applications, and (ii) extending the discussion to higher values
of b+ would add considerable length to the paper (this can already be seen in [20]).
For similar reasons we also carry out our analysis with connections that are locally
in Sobolev class Lp

1 as opposed to, say, Lp
k for k ≥ 1. We do not see any inherent

obstruction to extending our results to higher Sobolev spaces and presumably such
extensions would recover our Lp

1 -results by elliptic regularity. We leave the details of
such extensions to interested parties.

The appearance of ε > 0 in the statements of Theorems B and C is new to this
mASD setting. To explain it, we note that in the standard set-up of gluing ASD con-
nections on a closed 4-manifold, the inequality (1.2) would be replaced by the equality
κ(E1#E2) = κ(E1) + κ(E2); likewise (1.3) would be replaced by κ(E) = `. The presence
of an inequality for us reflects a need to freely vary the asymptotic values in order to ob-
tain the mASD connection A. Indeed, as discussed further in Remark 2.19, the ability
to freely vary these asymptotic values is at the heart of what makes the mASD set-up
a viable candidate for the type of existence statement in Theorem C and thus Theorem
A. For example, when b+(X) = 0, the trivial flat connection is regular only because the
mASD operator allows for this variation in the asymptotic values.

In Section 7, we have included a discussion of how Theorem C for b+(X) = 0 pro-
vides a “partial compactification” of the space of mASD connections. We also discuss
why this compactification is only partial, and what a more complete compactification
would require.
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As mentioned above, the lack of gauge-equivariance for the mASD operator means
that we are not free to pass to the quotient modulo gauge. Indeed, to obtain a Fred-
holm problem for the gluing constructions, we work entirely within a fixed Coulomb
slice. Since the natural Coulomb slice varies as the connections vary, this dependence
becomes relevant when we glue over families of connections, which is necessary for
Theorem C. This is a central obstacle with which we must contend in the present pa-
per: In the usual ASD setting, one could apply suitable gauge transformations that
put all nearby ASD connections into the same slice. However, in this mASD setting,
the gauge-transformed mASD connections would no longer be mASD. To account
for this, we establish a pair of gauge fixing results, Proposition 4.3 and Theorem 4.5,
that show that, by a making an additional perturbation, an mASD connection in one
Coulomb slice can be perturbed to an mASD connection in a nearby Coulomb slice.

Apart from the failure of gauge equivariance in the mASD setting, the main dif-
ference between the mASD and ASD settings is that we now need to handle the ad-
ditional nonlinearities that arise from the term modifying the ASD operator. The key
observation we use for handling this term is that it factors through a finite-dimensional
manifold.

Finally, we mention that if Γ is non-degenerate, then every mASD connection with
asymptotic value near Γ is in fact ASD. E.g., this non-degeneracy hypothesis is satisfied
when N is a rational homology 3-sphere and Γ is the trivial connection. As such, our
results recover standard gluing results for ASD connections on cylindrical end mani-
folds with non-degenerate asymptotic limits; see Sections 2C.2 and 6D for more details.
More interestingly, there are situations for which Γ is degenerate, but for which every
mASD connection with asymptotic value near Γ is ASD. In such cases, our mASD
gluing theorem produces an ASD connection. Theorem A is one result of this type.
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2. BACKGROUND ON THE THICKENED MODULI SPACE

In this section we give a rapid review of the relevant background material from [17];
we also expand on some of the results of [17], which will assist in our discussion of
gluing below. With a few exceptions, we use much of the same notation and set-up
established in [17]. To allow for a more streamlined discussion, we assume throughout
that the 3-manifold end N is nonempty; however, see Section 2C for an extension to
the case N = ∅.

We will writeA(E) and G(E) for, respectively, the spaces of smooth connections and
gauge transformations on E → X. When the bundle is clear from context, we will
simply write A(X) and G(X). Given a connection A, we denote by FA its curvature,
which is a 2-form on X with values in the adjoint bundle gE. We will write Ω`(X), and
sometimes Ω`, for the space of smooth adjoint bundle-valued `-forms on X that are
rapidly decaying.

To touch base with constants associated with characteristic classes below, we work
relative to an inner product on g obtained as follows. Fix a Lie group homomorphism

(2.1) G −→ SU(r)

that is also an immersion. Then the induced map g ↪→ su(r) is an embedding of Lie
algebras. Let 〈·, ·〉 : g⊗ g→ R denote the inner product on g obtained by pulling back
the inner product A⊗ B 7→ −tr(AB) on su(r). This inner product is Ad-invariant, and
so determines a metric on the adjoint bundle gE.

Notation such as Lp
k (Ω

`(X), g) will denote the Lp
k -Sobolev completion of Ω`(X), rel-

ative to a metric g on X and the above-defined metric on gE. When X or g are clear
from context, or not relevant, we may drop them from the notation.

2A. Auxiliary choices.

2A.1. The center manifold. Recall from the introduction that we have fixed a bundle
Q → N as well as a smooth flat connection Γ on Q. Fix a metric gN on N. Let UΓ ⊆
L2

2(A(N)) be a coordinate patch centered at Γ, in the sense of [17, Def. 2.3.1]; for our
purposes, it suffices to know that UΓ is a small open neighborhood of Γ in the Coulomb
slice {Γ}+ ker(d∗Γ). As in [17, Lemma 2.5.1], there is a unique Stab(Γ)-equivariant map

Θ : UΓ −→ L2
2(Ω

0(N))
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with Θ(a) ∈ (ker ∆Γ)
⊥ and

d∗Γ(∗Fa − daΘ(a)) = 0.
It follows from this last equation, and uniqueness, that if a has higher regularity then
so too does Θ(a).

We will be interested in the densely-defined vector field

∇ fΓ : UΓ −→ TUΓ a 7−→ ∇ fΓ(a) := − ∗ Fa + daΘ(a).

Note that the zeros of ∇ fΓ are precisely the flat connections in UΓ. (As described in
[17, Lemma 2.5.1(1)], this vector field is the (negative) gradient of the restriction to UΓ
of the Chern–Simons functional, where the gradient is taken relative to a certain inner
product that takes into account the possibility of a non-trivial stabilizer of Γ.)

For m ≥ 2, let H = HΓ ⊆ UΓ be a Stab(Γ)-invariant Cm-center manifold for the
vector field ∇ fΓ, as in [17, Cor. 5.1.4]. In particular, this means that

• HΓ is a finite-dimensional Cm-manifold containing Γ,
• the tangent space toHΓ at Γ is the Γ-harmonic space

H1
Γ := ker(dΓ ⊕ d∗Γ) ⊆ Ω1(N),

• ∇ fΓ is tangent toHΓ, and
• every zero of ∇ fΓ sufficiently close to Γ is contained inHΓ.

We denote by Ξ = ΞΓ the restriction of ∇ fΓ toHΓ.
Fix a compactly supported cutoff function β : H → [0, 1] that is identically 1 near Γ.

The trimmed vector field is given by

Ξtr(h) := β(h)Ξ(h).

SetHin = β−1(1) andHout = β−1((0, 1]).
Fix a real number T ≥ 1. The trimmed vector field is complete and so, for each

h ∈ H, there is a unique solution hT : R→ H to the flow

d
dt

hT(t) = Ξtr(hT(t)) hT(T) = h.

We then set
α(h) = αT(h) := hT(t) + Θ(hT(t))dt.

Depending on context, we may view α as a connection on the submanifold End X ∼=
[0, ∞)× N, or on the cylinder R× N.

Lemma 2.2. For all h ∈ H, the connection α(h) is in L2
2,loc(R× N)∩ C0(R× N), and hence

in Lp
1,loc(R× N) ∩ C0(R× N) for any 1 ≤ p < 4. Moreover, the map α : h 7→ α(h) is Cm

relative to the L2
2(N)-topology on the domain and the C0(R× N)-topology on the codomain.

Proof. The initial condition h is in L2
2(N) ⊂ C0(N), by assumption. It then follows from

standard regularity arguments for flows that the path hT is in L2
2,loc ∩ C0 on R × N.

Hence α(h) is in the same space as well, since the regularity of Θ(hT) is controlled by
that of hT. That α is Cm relative to these topologies follows from a similar argument
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applied to its kth derivative for 1 ≤ k ≤ m. The assertion about Lp
1 follows from the

embedding L2
2,loc ↪→ Lp

1,loc, which holds provided 1 ≤ p < 4. �

In Hin, the flow defining hT(t) is gauge equivalent to the Chern–Simons gradient
flow. It follows that if hT(t) ∈ int(Hin) lies in the interior for some t, then α(h) is ASD
in a neighborhood of {t} × N. This has the following useful linear analogue for the
linearization (Dα)Γ of α at Γ.

Lemma 2.3. If η ∈ TΓH = H1
Γ, then

(Dα)Γη = π∗η

where π : R× N → N is the projection.

Proof. Since Γ is flat, we have Θ(Γ) = 0 and so α(Γ) = π∗Γ. This is a flat connection on
R× N and so it is ASD:

F+
α(Γ) = F+

π∗Γ = 0.

Linearizing this in the direction of η ∈ TΓH implies

d+π∗Γ((Dα)Γη) = 0.

Note that, since η is Γ-harmonic, we also have

d+π∗Γ(π
∗η) = 0.

In general, we can view the kernel of d+A on the cylinder R× N as defining a flow on
the space Ω1(N) ×Ω0(N). In the case of (Dα)Γη and π∗η, these both take values in
the graph

Graph((DΘ)Γ|TΓH) ⊆ TΓH× L2
2(Ω

0(N))

of the linearization of Θ. Observe two things: (i) this graph is finite-dimensional, and
(ii) the 1-forms (Dα)Γη and π∗η, viewed as paths in the graph, both equal η at time
T. Then (Dα)Γη = π∗η follows by the uniqueness for flows on finite-dimensional
spaces. �

2A.2. The choice of metric. We will use t : End X → [0, ∞) to denote the projection rela-
tive to the identification End X ∼= [0, ∞)× N. With the use of a cutoff function, we can
view t as a smooth real-valued function defined on all of X, which we will denote by
the same symbol.

Fix a smooth cylindrical end metric g0 on X; this means that the restriction

g0|End X = dt2 + gN

is a product metric, where gN is the fixed metric on N. Let B be a C3-neighborhood of
g0 in the space of Cmax(m,3)-metrics on X so that the conclusions of [17, Theorem 2.6.3]
hold (the proof of Theorem 2.6.3 shows that such a set exists; the details of the theorem
will not play an active role in the discussion that follows). Let µ±Γ be the smallest
positive eigenvalue of ∓ ∗ dΓ : Ω1(N) → Ω1(N). The sign convention here is to agree
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with that of [17, Def. 2.1.1]. Then we will say that a metric g on X is asymptotically
cylindrical if g ∈ B and

‖g− g0‖C1({t}×N) ≤ e−max(µ−Γ ,µ+
Γ )t

for all t ≥ 0. (This is effectively Condition A3 of [17, p. 116].) Throughout, we will
always assume our metrics are asymptotically cylindrical in this sense. Note that every
cylindrical end metric is automatically asymptotically cylindrical.

2A.3. Thickening data. Fix data as in [17, Section 7.2]; we will refer to this as the thicken-
ing data and denote it by TΓ. In particular, this includes the choice of positive numbers
ε0 and δ, that we will describe momentarily. The details of the remaining data in TΓ
will not play an active role in our discussion. For convenience, we also assume that TΓ
includes the choice of the fixed T ≥ 1 from above.

The key feature for us regarding ε0 is that |CS(h2)− CS(h1)| < ε0/2 for all h1, h2 ∈
supp(β), where CS is the Chern–Simons function. For any ε0 > 0, this inequality can
be arranged by shrinking the support of β, if necessary. The remaining requirements
for ε0 will not be directly relevant to us, but see [17, Definition 4.3.2] for more details.
As for δ, we assume δ > µ−Γ and that δ/2 is not an eigenvalue of − ∗ dΓ. By shrinking
the size of the coordinate patch UΓ, if necessary, we may assume further that δ/2 is
not an eigenvalue of − ∗ da for any a ∈ UΓ. At various times, we may place additional
restrictions on δ.

2A.4. Weighted spaces. We define the space Lp
k,δ(X) to be the completion of the set of

compactly supported smooth forms f on X, relative to the weighted Sobolev norm:

‖ f ‖Lp
k,δ

:= ‖eδt/2 f ‖Lp
k

When p = 2, this recovers the family of norms used in [17]. The subspace of `-forms
will be denoted by Lp

k,δ(Ω
`) or Lp

k,δ(Ω
`(X)). Following standard conventions, when

k = 0, we will write Lp
δ for Lp

0,δ. Note that the norm ‖ f ‖Lp
k,δ

is equivalent to the norm:

∑
0≤j≤k

‖eδt/2∇j f ‖Lp

In particular, we can use this equivalence to transfer Sobolev embedding results for Lp
k

to the weighted setting; e.g., see the proof of Lemma 3.9.

2B. Gauge theory.

2B.1. The space of connections. For 1 ≤ p < 4, define A1,p(TΓ) to consist of the connec-
tions A on E satisfying the following:

• A has regularity Lp
1,loc,

• there is some h ∈ Hout so that A− α(h) ∈ Lp
1,δ(Ω

1(End X)),
• for each t ≥ T, the connection A|{t}×N is gauge equivalent to a connection in

the coordinate patch UΓ centered at Γ.



EXISTENCE OF mASD CONNECTIONS 11

This space of connections is generally not an affine subspace of Lp
1,loc(A(E)); this re-

flects the nonlinearities in the definition of the map h 7→ α(h). We give A1,p(TΓ) the
structure of a Cm-Banach manifold, as in [17, Section 7.2.2]. (Equivalently, this Cm-
Banach manifold structure is precisely the one for which the map ι, defined in (2.5)
below, is a Cm-diffeomorphism.) By [17, Prop. 7.2.3] (see also [17, p. 120]), given
A ∈ A1,p(TΓ), the element h ∈ Hout from the second bullet point is uniquely deter-
mined; this uses the assumption that δ > µ−Γ . As such, there is a well-defined map

pT : A1,p(TΓ) −→ Hout

that is Cm-smooth.

Remark 2.4. (a) Note that our space A1,p(TΓ) consists of connections with weaker reg-
ularity than the one in [17, Ch. 7], which is modeled on L2

2 instead of Lp
1 . This changes

little as far as the exposition of [17] is concerned; the only significant exception to this
is the gauge group, which we will discuss in the next section.

(b) The restriction to p less than 4 is, at the moment, coming from Lemma 2.2. A
much deeper reason for restricting to p less than 4 will appear in our gluing analysis
of Section 3 (in particular, (3.12)), where this condition ensures we have a right inverse
to our linearized operator that is uniformly bounded; see also [5, p. 293].

Fix a smooth cutoff function β′′ on X supported on [T − 1/2, ∞)× N and identically
1 on [T, ∞) × N. Fix also a smooth reference connection Are f on E; we assume this
belongs to the space A1,p(TΓ). Using these objects, we can form the map

i : Hout −→ A1,p(TΓ)
h 7−→ Are f + β′′(α(h)− Are f )

where α(h) = hT(t) + Θ(hT(t))dt is as above. This map i is Cm-smooth. As in [17,
Lemma 10.1.1], it is convenient to introduce the map

(2.5) ι : Hout × Lp
1,δ(Ω

1(X)) −→ A1,p(TΓ)
(h, V) 7−→ ι(h, V) := i(h) + V

This map ι is a Cm-diffeomorphism with inverse given by A 7→ (pT(A), A− i(pT(A))).
It follows immediately from the definitions that

pT(i(h)) = pT(ι(h, V)) = h

for all h ∈ Hout and V ∈ Lp
1,δ(Ω

1). We view ι as providing something of a coordinate
system on the space of connections.

The tangent space to A1,p(TΓ) at A is the space of all 1-forms W ∈ Lp
1,loc(Ω

1(X)) so
that there is some η ∈ Tp(A)H with

W − (Di)pT(A)η ∈ Lp
1,δ(X)
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where (Di)h is the linearization at h ∈ Hout of the map i : Hout → A1,p(TΓ). Linearizing
ι at (h, V), we obtain a Banach space isomorphism

(2.6) (Dι)(h,V) : ThHout × Lp
1,δ(Ω

1(X)) −→ TAA1,p(TΓ)
(η, W) 7−→ (Di)hη + W

The 1-form (Di)hη vanishes on X0, so the operator norm of (Dι)(h,V) is independent of
the metric on X0.

2B.2. The gauge group. When 2 < p < 4, we will write G2,p
δ (Γ) for the set of bundle

automorphisms u of E with the property that u∗A ∈ A1,p(TΓ) for all A ∈ A1,p(TΓ).
The condition that p be less than 4 is a carry-over from Remark 2.4 (b). The condition
that p be larger than 2 ensures that G2,p

δ (Γ) is a well-defined Banach Lie group that acts
Cm-smoothly on A1,p(TΓ); these claims follow from the Sobolev multiplication maps
W2,p

loc ×W2,p
loc → W2,p

loc and W2,p
loc ×W1,p

loc → W1,p
loc being well-defined in dimension 4 for

p > 2. See, for example, [23, Lemma A.6]. We will only consider G2,p
δ (Γ) for p satisfying

2 < p < 4.
The proof of [17, Lemma 7.2.7] carries over to this setting to imply that the group
G2,p

δ (Γ) is equal to the space of Lp
2,loc-gauge transformations with the property that there

is some τu ∈ Stab(Γ), viewed as a t-invariant gauge transformation on End X, so that
u|End X ◦ τ−1

u is in Lp
2,δ(End X). The gauge transformation τu is uniquely determined by

u, and we denote by G2,p
δ ⊆ G2,p

δ (Γ) the (normal) subgroup of all gauge transformations
u with τu = I equal to the identity. Thus, we have a short exact sequence of groups:

(2.7) {e} −→ G2,p
δ −→ G2,p

δ (Γ) −→ Stab(Γ) −→ {e}

We will write Stab(A) for the stabilizer of A under the action of G2,p
δ (Γ). The center

Z(G) of G embeds into G2,p
δ (Γ) as the set of constant maps X → Z(G), and we will

identify Z(G) with its image in the gauge group. Note that Z(G) is also the center of
G2,p

δ (Γ) and Z(G) ⊆ Stab(A). We will say that A is irreducible if Z(G) and Stab(A) have
the same dimension (equivalently, if they have isomorphic Lie algebras). Note that the
term “irreducible” is only defined when 2 < p < 4.

Lemma 2.8. Fix 2 < p < 4, and assume A ∈ A1,p(TΓ) is irreducible. Then there is a
neighborhood U ⊆ A1,p(TΓ) of A so that A′ is irreducible for all A′ ∈ U.

Proof. We begin with a few preliminaries. Set A := A1,p(TΓ) and G := G2,p
δ (Γ). Lin-

earizing the gauge group action at A ∈ A, we obtain a map

dA : Lie(G) −→ TAA φ 7−→ dAφ.

Then a connection A ∈ A is irreducible if and only if the kernel of dA equals the Lie al-
gebra z := Lie(Z(G)) of the center of G. It follows form the definition of the topologies
on A and G, as well as from standard elliptic estimates for δ-decaying spaces, that the
operator dA is bounded. Moreover, this operator has a range that is closed and admits
a complement in TAA.
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Let H0
Γ := ker(dΓ) ⊆ Ω0(N) be the Lie algebra of Stab(Γ). The center z is naturally a

subalgebra of H0
Γ, so we can write

H0
Γ = z⊕ z⊥

where z⊥ is the L2(N)-orthogonal complement of z. Then for τ ∈ H0
Γ, we will write

τ⊥ ∈ z⊥ for its projection.
Just as the map ι provides “coordinates” for A, there is an analogous Banach space

isomorphism

ιΩ0 : H0
Γ × Lp

2,δ(Ω
0) −→ Lie(G) (τ, ξ) 7−→ (τ − τ⊥) + β′′τ⊥ + ξ

where we are viewing τ − τ⊥ ∈ z as a 0-form on X. This map ιΩ0 takes z× {0} iso-
morphically to z ⊆ Lie(G). Let Υ ⊆ Lie(G) be the image under ιΩ0 of the complement
z⊥ × Lp

2,δ(Ω
0) to z× {0}. Then we have a direct sum decomposition

Lie(G) = z⊕ Υ.

The key point is that A is irreducible if and only if the restriction

d⊥A := dA|Υ : Υ −→ TAA
is injective. We will want to view this operator as a function of A, and for this it would
be convenient if d⊥A were to have a codomain that is independent of A. Though this
is not the case presently, we can arrange for A-independence of the codomain as fol-
lows: Let (Dι)A : ThH× Lp

1,δ(Ω
1) → TAA be the linearization of the coordinate map

ι. The L2
2-inner product for 1-forms on N provides a Riemannian metric on the finite-

dimensional subspace H ⊆ L2
2(A(N)) of connections on N. Use this Riemannian met-

ric to define the parallel transport map PTh : ThH → TΓH. Letting I denote the identity
on Lp

1,δ(Ω
1), we will be interested in the operator

DA := (PTh × I) ◦ (Dι)−1
A ◦ d⊥A : Υ −→ TΓH× Lp

1,δ(Ω
1).

This is a bounded linear map, and expansions of the form dA = dA′ + [(A− A′), ·]
show it depends continuously on A ∈ A in the operator norm topology on the space
B(Υ, TΓH× Lp

1,δ(Ω
1)) of bounded linear maps from Υ to TΓH× Lp

1,δ(Ω
1). Since Υ has

finite codimension, and dA has closed range, the operator DA has closed range as well.
It follows from the construction that DA is injective if and only if A is irreducible.

Assume that A is irreducible. Then the fact that im(dA) has a complement in TAA
implies that DA admits a bounded left inverse, which we denote by LA. In summary,
the map

A −→ B(Υ, Υ) A′ 7−→ LADA′

is a continuous map into the space of bounded linear operators on the Banach space
Υ. It is clearly invertible at A′ = A. Since the set of invertible bounded linear maps
on a Banach space is open, there is some neighborhood U ⊆ A of A so that LADA′ is
invertible for all A′ ∈ U. Thus if A′ ∈ U, then A′ is irreducible. �
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Remark 2.9. Completing Lp
2,δ(Υ) to Lp

1,δ(Υ), the map DA extends to a bounded linear
operator of the form

DA : Lp
1,δ(Υ) −→ TΓH× Lp

δ (Ω
1(X)).

Let p∗ = 4p/(4− p) be the Sobolev conjugate of p ∈ (2, 4). Then one can show that the
map A 7→ DA ∈ B(Lp

1,δ(Υ), TΓH× Lp
δ (Ω

1(X))) is continuous in A = i(h) + V relative

to the topology (h, V) ∈ C0(N) × Lp∗

δ (X). The proof we gave for Lemma 2.8 carries
over to show that A′ = ι(h′, V′) is irreducible whenever A = ι(h, V) is irreducible, and
‖h− h′‖C0 + ‖V −V′‖

Lp∗
δ

is sufficiently small.

2B.3. The mASD equation. Fix a cut off function β′ on X that is identically 1 on the
cylinder [T + 1/2, ∞) × N and supported on the slightly larger cylinder [T, ∞) × N.
Consider the map

s : A1,p(TΓ) −→ Lp
δ (Ω

+(X)) A 7−→ F+
A − β′F+

i(pT(A))
.

We will call s the modified ASD (mASD) operator. The equation s(A) = 0 is the modified
ASD (mASD) equation, and any A satisfying s(A) = 0 will be called modified ASD
(mASD). The map s is Cm in the specified topologies; see [17, Lemma 7.1.1] and use the
fact that the composition of Cm functions is again Cm.

The following will help us understand the linearization of s.

Lemma 2.10. If A = ι(h, V) for (h, V) ∈ Hout × Lp
1,δ(Ω

1(X)), then

(2.11) s(A) = s(ι(h, V)) = (1− β′)F+
i(h) + d+i(h)V +

1
2
[V ∧V]+ .

Proof. This follows from the identity F+
i(h)+V = F+

i(h) + d+i(h)V + 1
2 [V ∧V]+ and the fact

that pT(ι(h, V)) = h. �

Remark 2.12. Unfortunately, when G is not abelian, the mASD operator s is not gener-
ally well-behaved under any suitable gauge group; e.g., it is not equivariant relative to
the action of the gauge group of Section 2B. The issue is that the term Fi(pT(A)) is gauge
equivariant relative to the trivial G-action on g, while the term FA is gauge equivariant
relative to the adjoint G-action on g. Consequently, any non-trivial linear combination
of these (e.g., as in the above formula for s) is not equivariant relative to either G-action.
This issue is apparent even in the smooth compactly supported setting, and hence per-
sists regardless of which Sobolev completion we choose. See Section 2B.5 for some
comments about the effect of this issue on the results of [17].

2B.4. A Coulomb slice. To obtain a Fredholm operator, we will restrict the operator s to
a Coulomb (gauge) slice

SL(A′) :=
{

ι(h, V)
∣∣∣ h ∈ H and V ∈ ker(d∗,δA′ ) ⊆ Lp

1,δ(Ω
1)
}

for some fixed connection A′. Here d∗,δA = e−tδd∗Aetδ is the adjoint relative to the L2
δ-

inner product. For more details on this slice, see [17, Prop. 10.3.1]. Since δ/2 is not in
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the spectrum of − ∗ dΓ on 1-forms, it follows from [17, Lem. 8.3.1] that the restriction
s|SL(A′) of s to this slice is a Fredholm map.

We set
M̂ = M̂(TΓ, A′) := s−1(0) ∩ SL(A′)

which we refer to as the space of mASD-connections. For us, this will play the role that
the ASD moduli space usually plays in the closed setting (though, as discussed in the
introduction, this is less than satisfying for global considerations due to its dependence
on A′). Elliptic regularity implies that any element of M̂ has regularity Cm.

Consider the restriction of the mASD operator s to this slice SL(A′). Then the lin-
earization at A ∈ SL(A′) of this restriction is a bounded linear map(

Ds|SL(A′)
)

A : TASL(A′) −→ Lp
δ (Ω

+).

We will say that an mASD connection A is A′-regular if this operator is surjective. When
A′ = A, we drop the A′ and say that A is regular if it is A-regular. We will also be
interested in connections that are not regular, and for these we will need to consider
the cokernel

(2.13) H+
A,δ := coker

(
Ds|SL(A)

)
A.

Clearly H+
A,δ = 0 if and only if A is regular.

We will write
M̂reg = M̂reg(TΓ, A′) ⊆ M̂(TΓ, A′)

for the subset of A′-regular mASD connections. It follows from the implicit function
theorem that M̂reg is a Cm-smooth manifold.

2B.5. Navigating Morgan–Mrowka–Ruberman [17]. Since the operator s is not gauge equi-
variant, we do not currently know how to define a suitable gauge quotient of s−1(0) ⊂
A1,p(TΓ) in order to obtain the mASD moduli spaceM`,w(TΓ, T0, g) envisaged in [17,
p. 125]. Though this appears to be a significant error in [17], the major results of [17]
remain intact. For the reader’s benefit, we will now review [17], highlighting those ar-
eas that need adjustment. In this section, we refer freely to the notation established in
[17], and the phrase “thickened moduli space” will refer to any of the following spaces

M`,w(TΓ, T0, g), M0
`,w(TΓ, T0, g), M`,w(h, TΓ, T0, g)

(note that sometimes the w or the g are dropped from the notation in [17]).
The thickened moduli space does not appear in any significant way in Chapters 1–

6, 10–13, 15–16, and the results therein remain intact as stated. In Chapters 7–9, it is
often the case that claims about the thickened moduli space remain intact if one inter-
prets the term as meaning an object defined by a gauge slice as opposed to a quotient
by the gauge group (e.g., replace the based versionM0

`,w(TΓ, T0, g) by what we called

M̂(TΓ, A′) above). Such is the case with the patching results of § 7.4, the index calcu-
lations of Ch. 8 (more details below), and most of the generic metrics results of Ch. 9.
However, it is not immediately clear to us how best to interpret the claims in Lemma
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7.5.3 and §9.4 since they refer to the µ-map on the thickened moduli space, which is an
inherently global object.

At first sight, Chapter 14 appears to have issues but, upon closer inspection, the
results of this chapter remain intact as well, with the possible exception of the claims
of [17, Remark 14.0.5] (which don’t appear to be used elsewhere in [17]). Here are
some more details regarding Chapter 14: The main goal of this chapter is to prove
Theorem 14.0.1, which is a structural result that gives dimension formulas for various
ASD moduli spaces. This theorem has two cases. In the situation of Case I, as the
authors point out explicitly (p. 202), every mASD connection is actually ASD and so
the “thickened moduli space” is indeed well-defined because it is really (an open set
of) the ASD moduli space (this coincidence is one that we too exploit, and is discussed
more in Section 6D). Thus, there is no problem with this case. The remaining Case II
in Theorem 14.0.1 does not appeal to the thickened moduli space at all, and instead
works with the space B0

`,δ(X) (despite being a gauge group quotient, the space B0
`,δ(X)

is indeed well-defined as it does not make reference to the mASD operator s). Thus, the
statement and proof of Theorem 14.0.1 need no adjustment and appear to be correct as
written. However, we are not sure how to interpret the argument of Remark 14.0.5,
which uses the thickened moduli space to deduce a Whitney stratification on the ASD-
moduli space. In the setting of this remark, there are mASD connections that are not
ASD, so the above-referenced coincidence does not apply.

We end this section with a more detailed discussion of Chapter 8 in [17], with the aim
of salvaging the index calculation of Proposition 8.5.1. As in [17, Ch. 8], in addition
to our usual hypotheses on δ, we also assume that δ < 2µ−Γ . We also restrict to the
case where G = SO(3) or G = SU(2); the index for more general compact G can be
computed using the strategy outlined in [5, Section 7.1] (e.g., when G is simple and
simply-connected, use the data from [1, Table 8.1] to pin down the constants specific to
G).

The first issue appears on p. 139, since the image of the map Dωm is not gener-
ally contained in the kernel of Dωs (this is the linear version of the fact that s is not
gauge-equivariant). As a consequence, Eδ(ω) is not a complex in the usual sense. Nev-
ertheless, much of what is desired of Eδ(ω) can be salvaged by “wrapping it up” and
considering the operator

D := (d∗,δω , Dωs) : TωA`,w(TΓ, T0) −→ TeGδ(Γ)×Ω2
+,1,δ(X)

where d∗,δω = e−tδd∗ωetδ is the L2
δ-adjoint of dω and Dωs is the notation used in [17] for

the linearization of s at a connection ω (what they call ω is what we call A). Then
Proposition 8.5.1 can be interpreted as saying that this operator D is Fredholm with
index given by the formula:

Ind(D) = 8`− 3
2
(χ(X) + σ(X)) +

h1
Γ − h0

Γ
2

+
ρ(Γ)

2
.
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There is a “based” version of this that replaces Gδ(Γ) by the normal subgroup Gδ. Wrap-
ping in this case produces a map

D0 := (d∗,δω , Dωs) : TωA`,w(TΓ, T0) −→ TeGδ ×Ω2
+,1,δ(X).

This operator is also Fredholm and, in light of the sequence (2.7), its index is given by

Ind(D0) = Ind(D) + h0
Γ = 8`− 3

2
(χ(X) + σ(X)) +

h1
Γ + h0

Γ
2

+
ρ(Γ)

2

since h0
Γ = dim(Stab(Γ)). Restricting D0 to a slice SL(A′) and projecting to the

Ω2
+,1,δ(X)-component, we obtain the operator that we called (Ds|SL(A′))A above. When

A = A′ and this connection is flat down the end, it follows readily that the index of
(Ds|SL(A))A equals that of D0. Since the index remains unchanged under addition of
compact operators, it follows that

(2.14) Ind((Ds|SL(A′))A) = 8`− 3
2
(χ(X) + σ(X)) +

h1
Γ + h0

Γ
2

+
ρ(Γ)

2
for all A ∈ SL(A′). The right-hand side of (2.14) is the expected dimension of the
mASD space M̂(TΓ, A′), and it is the actual dimension of the Cm-manifold M̂reg(TΓ, A′)
of A′-regular mASD connections.

2C. Special cases.

2C.1. Flat connections. In this section, we study the linearized operator (Ds)A and its
cokernel in the special case when A is flat and asymptotic to Γ. To simplify the discus-
sion, we assume A is in temporal gauge on the end [4, p. 15] (though we continue to
work in the general setting where the metric is asymptotically cylindrical). It follows
that, for each t ≥ T, the restriction A|{t}×N = Γ is constantly equal to Γ on the end.
Then A ∈ A1,p(TΓ) and p(A) = Γ. The associated flow α(Γ) = A recovers the flat
connection A on End X. This implies A is mASD.

The operator s is defined in terms of the map ι, and we recall that the definition of ι
required the choice of a reference connection Are f on X. Likewise, the space of mASD
connections is defined by restricting s to a slice SL(A′) for some choice of connection
A′. It is convenient to take Are f := A and A′ := A; the reader can check that any
other choice of Are f does not affect the outcome of the discussion that follows, though
different choices of A′ may. In particular, our choice of Are f gives

A = i(Γ) = ι(Γ, 0)

Let b+(X, A) be the dimension of a maximal positive definite subspace for the pair-
ing map qA : Ĥ2(X, ad(A))⊗ Ĥ2(X, ad(A))→ R, as in [17, Section 8.7], where X is the
natural compactification of X obtained by adding a copy of N at infinity. For example,
when A = Atriv is the trivial connection on the trivial G-bundle, then b+(X, Atriv) =
dim(G)b+(X) is a multiple of the usual self-dual Betti number of X. We will need the
following result.
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Proposition 2.15. Assume 0 < δ/2 < µ−Γ , where µ−Γ is as in Section 2A. Then the cokernel
H+

A,δ = (Ds|SL(A))A has dimension b+(X, A).

This is proved in [17, Prop. 8.7.1(4)], however the discussion there does not deal with
the linearized operator (Ds)A directly. In preparation for our gluing arguments below,
we will summarize the argument given in [17, Prop. 8.7.1(4)], but from the present per-
spective. Our proof is sketched below, after we give some preliminary computations
that will be useful in their own right.

The restriction ι| : H× ker(d∗,δA ) → SL(A) is a diffeomorphism, essentially by def-
inition. To understand the cokernel H+

A,δ it suffices to understand the cokernel of the
linearization of s ◦ ι|. Towards this end, differentiating (2.11) at A = ι(Γ, 0) in the di-
rection of (η, V) ∈ TΓHout × ker(d∗,δA ) gives

(2.16) (Ds)A ◦ (Dι)(Γ,0)(η, V) = (1− β′)d+A(Di)Γη + d+AV.

Next, it follows from Lemma 2.3 that (Di)Γη = β′′η. Since we also have dΓη = 0 for
η ∈ TΓH = H1

Γ, it follows that

(2.17) d+A(Di)Γη = (∂tβ
′′)(dt ∧ η)+.

This is zero everywhere except on (T − 1/2, T) × N, where it vanishes if and only if
η = 0. Combining this with (2.16), we therefore have the formula

(2.18) (Ds)A ◦ (Dι)(Γ,0)(η, V) = (1− β′)(∂tβ
′′)(dt ∧ η)+ + d+AV.

This shows that, relative to the coordinates afforded by ι, the leading order term of(
Ds|SL(A)

)
A is d+A |ker(d∗,δA )

. The remaining term is compactly-supported and of order
zero.

Proof of Proposition 2.15 (sketch). A maximal positive definite subspace for qA can be re-
alized as the space H+(X, ad(A)) of self-dual 2-forms W ∈ L2(Ω+(X, ad(A))) satis-
fying dAW = 0 and so that the restriction to any slice {t} × N has trivial Γ-harmonic
part; note that this definition does not depend on δ, but see also Lemma 2.20. Setting

D :=
(

Ds|SL(A)

)
A

we can similarly represent the cokernel H+
A,δ of D as the L2

δ-orthogonal complement
(im D)⊥,δ to the image. Then Proposition 2.15 follows by showing that the map

j : (im D)⊥,δ −→ H+(X, ad(A)) W 7−→ eδtW

is well-defined and bijective. That the map j is well-defined follows from the formula
in (2.18). Indeed, if W ∈ (im D)⊥,δ, then the identity (2.16) implies

0 = (W, D ◦ (Dι)(Γ,0)(0, V))δ = (W, d+AV)δ = (d∗,δA W, V)δ

where (·, ·)δ is the L2
δ-inner product. This holds for all V ∈ L2

1,δ(Ω
1), so it follows that

dA j(W) = −etδ ∗ d∗,δA W = 0. Similarly, we have

0 = (W, D ◦ (Dι)(Γ,0)(η, 0))δ = (W, (1− β′)(∂tβ
′′)(dt ∧ η)+)δ.



EXISTENCE OF mASD CONNECTIONS 19

Since (1− β′)∂tβ
′′ is non-zero on the cylinder (T − 1/2, T)× N, and since η ∈ TΓH =

H1
Γ is allowed to roam freely over the Γ-harmonic space, it follows that the harmonic

part of W|{t}×N must vanish for any t ∈ (T − 1/2, T).
It is clear that the map j is injective; this already gives dim(H+

A,δ) ≤ b+(X, A). Sur-
jectivity of j is equivalent to the reverse inequality holding, and this follows from a di-
mension count: By [17, Prop. 8.7.1(4)] (which uses the assumption 0 < δ/2 < µ−Γ ), the
integer b+(X, A) is equal to the dimension of the cokernel of (Ds)A : TAA1,p(TΓ) →
Lp

δ (Ω
+). The result follows because cokernels are non-decreasing under domain re-

striction:

b+(X, A) = dim coker
(
(Ds)A : TAA1,p(TΓ)→ Lp

δ (Ω
+)
)

≤ dim coker
(
(Ds|SL(A))A : TASL(A)→ Lp

δ (Ω
+)
)

= dim H+
A,δ.

�

Remark 2.19. Proposition 2.15 is the observation that makes the mASD-operator—and
not the ASD-operator—a viable candidate for our existence results, including Theorem
A which is purely in the ASD setting. Indeed, consider the case where b+(X) = 0
and A is the trivial flat connection. Then b+(X, A) = b+(X) = 0 and so Proposition
2.15 implies A is regular as an mASD connection. However, when Γ is degenerate,
the trivial flat connection A is not regular as an ASD connection: The proof just given
shows that, for the operator (2.18), the image of η 7→ (1 − β′)(∂tβ

′′)(dt ∧ η)+ is not
contained in the image of d+A . Thus, the additional degree of freedom afforded by
η ∈ TΓH in (2.18) is necessary (and sufficient) to obtain surjectivity of (Ds|SL(A))A
when A is the trivial flat connection, Γ is degenerate, and b+(X) = 0.

We end with the following exponential decay estimate that we will use in Section
6C.

Lemma 2.20. For each W ∈ H+(X, ad(A)), there is some C so that the restriction W|{t}×N
satisfies

‖W|{t}×N‖C0(N) ≤ Ce−µ+
Γ t

for all t ≥ 0. In particular, H+(X, ad(A)) ⊆ L2
δ(X) for any δ < 2µ+

Γ .

Proof. It suffices to establish the estimate of the lemma under the assumption that the
metric g is cylindrical. Since A is in temporal gauge on the end, its covariant derivative
decomposes as dA = dt ∧ ∂t + dΓ. Standard elliptic estimates for the operator ∆Γ =
d∗ΓdΓ + dΓd∗Γ on N provide a uniform constant C so that

‖v‖C0(N) ≤ C
(
‖v‖L2(N) + ‖∆Γv‖L2(N)

)
for all v ∈ Ω1(N).

Fix W ∈ H+(X, ad(A)). On End X, we can write W = dt ∧ v + ∗Nv for some path
v = v(t) ∈ Ω1(N) of 1-forms. The condition dAW = 0 implies dΓ ∗N v = 0 and
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∗NdΓv = ∂tv. In particular, the above elliptic estimate implies

‖v(t)‖C0(N) ≤ C
(
‖v(t)‖L2(N) + ‖∂2

t v(t)‖L2(N)

)
.

It suffices to show that f (t) := ‖v(t)‖2
L2(N)

+ ‖∂2
t v(t)‖2

L2(N)
decays exponentially in t at

a rate of 2µ+
Γ . To see this, differentiate twice to get

f ′′(t) = 2‖∂tv(t)‖2
L2(N)

+ 2‖∂3
t v(t)‖2

L2(N)
+ 2
(
∂2

t v(t), v(t)
)
+ 2
(
∂4

t v(t), ∂2
t v(t)

)
= 4‖dΓv(t)‖2

L2(N)
+ 4‖dΓ∂2

t v(t)‖2
L2(N)

where we used ∂tv = ∗NdΓv and integration by parts. By definition of H+(X, ad(A)),
v(t) is orthogonal to the Γ-harmonic space and dΓ ∗N v(t) = 0. It follows that v(t) lies
in the image of ∗NdΓ. Moreover, the 2-form W, and hence v, is in L2, by definition.
This combines with the equation ∗NdΓv = ∂tv to imply that v(t) lies in the span of the
negative eigenspaces of ∗NdΓ: express v(t) as a t-dependent linear combination of an
orthonormal basis of eigenvectors, use a separation of variables argument to show that
each coefficient decays or grows down the end according to whether the eigenvalue is
negative or positive, and then use the fact that v is in L2 and so must decay down the
end.

Likewise, ∂2
t v(t) always lies in the negative eigenspace of ∗NdΓ. Recall that µ+

Γ is the
smallest positive eigenvalue of − ∗N dΓ. Thus, it is the absolute value of the largest
negative eigenvalue of ∗NdΓ, and so

f ′′(t) = 4‖dΓv(t)‖2
L2(N) + 4‖dΓ∂2

t v(t)‖2
L2(N) ≥ 4(µ+

Γ )
2 f (t).

Since f (t) is non-negative and converges to 0 as t approaches ∞, it follows from this
estimate that f (t) ≤ Ce−2µ+

Γ t (e.g., see [6, p. 623]). �

2C.2. Non-degenerate Γ. Here we assume that Γ is non-degenerate in the sense that the
harmonic space H1

Γ = {0} is trivial. Then any center manifold necessarily consists
of a single point and so there is a unique choice of cutoff function β. Then the mASD
operator is the ASD operator. Moreover, non-degeneracy implies that any finite-energy
ASD connection asymptotic to Γ decays exponentially on the end at a rate of e−δt for
any δ/2 < µ−Γ , where µ−Γ is as in Section 2A (the proof of this assertion is similar to the
proof of Lemma 2.20, but µ−Γ appears in the present setting since the curvature is anti-
self dual). We also assumed that δ is greater than µ−Γ , but that was only to construct
the map pT, whose existence is trivial in the non-degenerate setting since the center
manifold consists of a single point. Thus, in the non-degenerate case this lower bound
restriction on δ can be dropped, though we still need to retain the assumption that
δ/2 is not an eigenvalue of − ∗N dΓ. In particular, it follows that whenever −µ+

Γ <
δ/2 < µ−Γ , the resulting mASD/ASD space is independent of the choice of this δ, and
the dimension of the space is given by (2.14) (apart from this paragraph, we always
assume δ > 0).

In summary, when Γ is non-degenerate, there is an essentially canonical choice of
thickening data TΓ,can. Moreover, if A′ is any connection defining a slice, then the
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associated space of mASD connections

M̂(TΓ,can, A′) =
{

A ∈ A(X)
∣∣∣ F+

A = 0, d∗A′(A− A′) = 0, lim
t→∞

A|{t}×N = Γ
}

is the set of ASD connections in the A′-Coulomb slice that are asymptotic to Γ.

2C.3. Closed X. Here we assume that X is closed. View X as a cylindrical end 4-
manifold with an empty end. Then one can check that it makes sense to choose the
empty set T∅ = ∅ of thickening data, and that, e.g., the mASD space M̂(T∅, A′) is
exactly the set of ASD connections on E in the A′-Coulomb slice.

3. GLUING TWO mASD CONNECTIONS

Here we state and prove our first gluing result, which discusses gluing together
mASD connections over the compact parts of two cylindrical end 4-manifolds. When
the connections are not regular, the resulting connection may not be mASD, and its
failure to be mASD is captured by a suitable obstruction map. Our set-up is very simi-
lar to that of ASD gluing outlined in Donaldson–Kronheimer [5, Section 7.2], to which
we refer the reader for more details at various points. When introducing new terms for
the analysis, we have tried to keep our notation as consistent with that of [5] as possi-
ble. Our emphasis below will be on the new features that arise in the mASD setting.
In the present section, the only serious new features arise from the fact that the mASD
operator s has a nonlinear term not present in the usual ASD setting; these features
manifest themselves in the proofs of the claims appearing in the proof of Theorem 3.3.

3A. Set-up for gluing. Let X1 and X2 be oriented cylindrical end 4-manifolds equipped
with asymptotically cylindrical metrics as in Section 2A.2. We will write Xk0 for com-
pact part of Xk and we set Nk := ∂Xk0. We will need parameters λ > 0 and L > 1
so that b := 4Lλ1/2 � 1. The constant L will be fixed later, but we will ultimately be
interested in allowing λ to be arbitrarily small. For each k, fix a point

xk ∈ Bb(xk) ⊂ int(Xk0)

in the interior of the compact part. To simplify the discussion, we assume that the
metric on Xk is flat over Bb(xk); see [3, Section IV(vi)] for how to extend the discussion
to handle more general metrics.

Following the approach in [5, Section 7.2.1], we glue along the annuli

Ωk := BLλ1/2(xk)\BL−1λ1/2(xk)

using an “inversion” map fλ : Ω1 → Ω2 to produce a connected sum

X = X(L, λ) :=
(
X1\BL−1λ1/2(x1)

)
∪ fL,λ

(
X2\BL−1λ1/2(x2)

)
.

Then X is an oriented cylindrical end 4-manifold with asymptotic 3-manifold N =
N1 t N2. We will write X0 for the compact part of X; this is formed by analogously
gluing the compact parts Xk0 of the Xk. The metrics on the Xk can be glued to form
a metric on X, and we assume this is done as outlined at the end of p. 293 in [5]. We
denote this metric by gL,λ. Since we are interested in the limiting behavior of this for
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small λ, we will include the metric in the notation for our various norms and spaces of
connections, forms, etc. whenever it is relevant.

Bb(x1)

X10

End X1

X1

Bb(x2)

X20

End X2

X2
(a)

X0

End X

X

(b)

FIGURE 1. Illustrated above are the manifolds X1, X2 in (a), and their
connected sum X in (b). The 3-manifolds N1, N2, and N are unlabeled,
but are illustrated as dotted lines in the figure above.

Fix principal G-bundles Ek → Xk and flat connections Γk ∈ A(Nk) for k = 1, 2. These
induce a bundle over N as well as a flat connection Γ on N. Fix δ > 0 as in Section 2A.3
associated to this flat connection Γ. It follows that, for k = 1, 2, the quantity δ/2 is not
in the spectrum of − ∗ dΓk on 1-forms. Let Tk,Γk

be thickening data for Ek with this δ.
Fix an isomorphism ρ : (E1)x1 → (E2)x2 of G-spaces, as well as flat connections A[,k

for Ek over Bb(xk). Using these flat connections and radial parallel transport, we can
extend ρ to a bundle isomorphism E1|Ω1

∼= E2|Ω2 covering fλ. It is with this bundle
isomorphism that we glue the Ek over the Ωk to obtain a bundle

E = E(ρ, L, λ) −→ X(L, λ).

Since the gluing takes place away from the cylindrical end, the thickening data Tk,Γk
for the Ek induce thickening data TΓ for E.

Fix 1 ≤ p < 4 and suppose that, for each k, we have a smooth mASD connection

Ak ∈ A1,p(Tk,Γk
)

on Xk. By performing the cutting off procedure described in Sections 7.2.1 and 4.4.5 of
[5], we can form a connection A′k on Ek that is equal to Ak outside of the ball Bb(xk) and
equal to the flat connection A[,k inside of the ball Bb/2(xk). Then the A′k patch together
to determine a smooth connection A′ = A′(A1, A2) on E; this depends on ρ, L, λ and
the Ak. It follows that A′ is equal to Ak in Xk\Bb(xk) ⊆ X and that A′ is approximately
mASD:

(3.1) ‖s(A′)‖Lp
δ (X,gL,λ)

≤ C(3.1)b
4/p

where C(3.1) is a constant independent of L, λ (see (7.2.36) in [5]). We will refer to A′ as
the preglued connection. We define the maps i and ι of Section 2B.1 by taking Are f := A′.
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Remark 3.2. Assume 2 < p < 4 and set p∗ = 4p/(4 − p). By [5, Eq. (7.2.37)], as
b → 0, the connections A′k converge in Lp∗

δ to Ak. In particular, by Remark 2.9, if Ak is
irreducible, then so too is A′k provided b is sufficiently small. The stabilizer group of
A′ is contained in that of A′k and so it follows that A′ is irreducible when either of A1
or A2 is irreducible and b is sufficiently small.

On Xk, use the slice SL(Ak) defined by Ak and denote by H+
k := H+

Ak,δ the cokernel
of the linearized operator Dk := (Ds|SL(Ak)

)Ak , as in (2.13). As described in [5, p. 290],
we can choose lifts

σk : H+
k −→ Lp

δ (Ω
+(Xk))

so that the operator Dk ⊕ σk is surjective. Moreover, we can do this in such a way that,
for every v ∈ H+

k , the form σk(v) is supported in the complement of the ball B2b(xk).
Set

H+ := H+
1 ⊕ H+

2

and consider the linear map

σ := σ1 ⊕ σ2 : H+ −→ Lp
δ (Ω

+(X), gL,λ).

Relative to the Lp
δ (X, gL,λ)-norm on H+, this map σ is bounded with a bound indepen-

dent of L and λ.

3B. Gluing two connections. The main result of this section is as follows.

Theorem 3.3. Assume 2 ≤ p < 4 and set p∗ = 4p/(4− p). Fix ρ, δ, thickening data, and
mASD connections A1, A2 as in Section 3A. Then there are constants C, L, λ0 > 0 so that the
following holds for each 0 < λ < λ0.

Let A′ = A′(A1, A2) be the preglued connection constructed from ρ, L, λ, and the Ak.

(a) There is a Cm-map JA1,A2 : Lp
δ (Ω

+(X), gL,λ) → SL(A′) ⊆ A1,p(TΓ) that satisfies
JA1,A2(0) = A′. The first m derivatives of ξ 7→ JA1,A2(ξ) are bounded in operator
norm by a bound that is independent of λ.

(b) There is a linear map π : Lp
δ (Ω

+(X), gL,λ)→ H+ satisfying σ ◦ π ◦ σ = σ and

‖πξ‖H+ ≤ C‖ξ‖Lp
δ (X,gL,λ)

∀ξ ∈ Ω+(X).

(c) There is a unique 2-form ξ(A1, A2) ∈ Lp
δ (Ω

+(X)) so that

(3.4) ‖ξ(A1, A2)‖Lp
δ (X,gL,λ)

≤ Cb4/p

and so that the connection J (A1, A2) := JA1,A2(ξ(A1, A2)) satisfies

(3.5) s(J (A1, A2)) = −σπξ(A1, A2).

In particular, for k = 1, 2 the connection J (A1, A2) is close to Ak on Xk\BLλ1/2(xk) ⊆ X in
the sense that

(3.6) ‖ι−1(J (A1, A2))− ι−1(Ak)‖L2
2(Nk)×Lp∗

δ (Xk\BLλ1/2 (xk))
≤ Cb4/p.
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If A1 and A2 are regular, then the connection J (A1, A2) is regular. In this case, J (A1, A2)
is mASD and the maps (A1, A2, ξ) 7→ JA1,A2(ξ) and (A1, A2) 7→ ξ(A1, A2) are both Cm-
smooth, relative to the specified topologies.

If p > 2 and either A1 or A2 is irreducible, then so is J (A1, A2).

Before getting to the proof, we briefly discuss the maps appearing in this theorem,
and their analogues in the standard ASD theory; precise definitions of these maps are
given in the proof, below. First, the most interesting part of the theorem is part (c),
with parts (a) and (b) serving to set up (c). The map π from (b) is a measure of the
failure of A′ to be regular. It serves the same role here and enjoys the same properties
as the map of the same name [5, pp. 290—291] in the ASD setting. As for J in (a),
this map is formed from a near-right inverse P of (Ds|SL(A′))A ⊕ σ, pre-composed by
an exponential map (see Claim 1 below for a precise statement). As an example, in
the special case where Γ is non-degenerate (so mASD = ASD) the relevant space of
connections is an affine space, and this exponential map is simply given by the affine
action. In this case, the map JA1,A2 simplifies to JA1,A2(ξ) = A′+ Pξ, just as in the usual
ASD setting [5, p. 289].

The object J (A1, A2) is the glued connection we are after. Equation (3.5) expresses
the degree to which this connection is mASD. In particular, the obstruction map men-
tioned in the introduction can be taken to be the map (A1, A2) 7→ π ◦ ξ(A1, A2). Finally
we mention that the diffeomorphism ι−1 appears in (3.6) only to make explicit the sense
in which J (A1, A2) approximates the Ak away from the gluing points.

The proof of Theorem 3.3 that we adopt relies on the following two lemmas.

Lemma 3.7. Let S : B→ B be a Cm-map on a Banach space B with S(0) = 0 and

(3.8) ‖S(ξ1)− S(ξ2)‖ ≤ κ(‖ξ1‖+ ‖ξ2‖)‖ξ1 − ξ2‖,
for some κ > 0 and all ξ1, ξ2 ∈ B1(0) ⊂ B in the unit ball. Then for each η ∈ B with
‖η‖ < 1/(10κ), there is a unique ξ ∈ B with ‖ξ‖ ≤ 1/(5κ) such that

ξ + S(ξ) = η.

Moreover, if η = η(a) depends Cm-smoothly on a parameter a, then the solution ξ = ξ(a)
depends Cm-smoothly on this parameter as well.

Proof. The existence and uniqueness claims follow from the contraction mapping prin-
ciple and is carried out in [5, Lemma 7.2.23]. The Cm-smooth dependence of ξ on a
follows from, e.g., the discussion in [14, Section I.5]. �

The remaining lemma will be used to establish the nonlinear estimate (3.8) in our
mASD setting.

Lemma 3.9. Assume 2 ≤ p < 4 and set p∗ = 4p/(4− p). There is a constant C(3.9) so that
if L, λ > 0 are any constants for which the connected sum X is defined, then

‖ f g‖Lp
δ (X,gL,λ)

≤ C(3.9)‖ f ‖
Lp∗

δ (X,gL,λ)
‖g‖

Lp∗
δ (X,gL,λ)

for all real-valued functions f , g ∈ Lp∗

δ (X).
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Proof. Writing X = X0 ∪ End X, it suffices to show that there is a uniform constant C
so that

‖ f g‖Lp(X0,gL,λ)
≤ C‖ f ‖Lp∗ (X0,gL,λ)

‖g‖Lp∗ (X0,gL,λ)

‖ f g‖Lp
δ (End X,gL,λ)

≤ C‖ f ‖
Lp∗

δ (End X,gL,λ)
‖g‖

Lp∗
δ (End X,gL,λ)

.

We begin with the estimate over End X. Note that the metric gL,λ is independent of L, λ
over this region, so we do not need to worry about showing that any such constant C
is independent of L, λ. To obtain the estimate, use the definition of the δ-dependent
norms, together with Hölder’s inequality to get

‖ f g‖Lp
δ (End X) = ‖etδ/2 f g‖Lp(End X)

= ‖(e−tδ/2etδ/2 f )(etδ/2g)‖Lp(End X)

≤ ‖e−tδ/2(etδ/2 f )‖L4(End X)‖etδ/2g‖Lp∗ (End X)

Since 2 ≤ p < 4, we have 4 ≤ p∗ < ∞. Hence there is some 4 < r ≤ ∞ with
4−1 = r−1 + (p∗)−1. Then we can use Hölder’s inequality again to continue the above:

‖ f g‖Lp
δ (End X) ≤ ‖e−tδ/2‖Lr(End X)‖ f ‖

Lp∗
δ (End X)

‖g‖
Lp∗

δ (End X)
.

Then the requisite estimate holds with C = ‖e−tδ/2‖Lr(End X), which is plainly finite.
As for the estimate over X0, the same type of argument gives

‖ f g‖Lp(X0,gL,λ)
≤ vol(X0, gL,λ)

1/r‖ f ‖Lp∗ (X0,gL,λ)
‖g‖Lp∗ (X0,gL,λ)

.

As discussed on p. 293 of [5], the condition p ≥ 2 implies that vol(X0, gL,λ) can be taken
to be independent of L, λ, provided Lλ1/2 is uniformly bounded from above (which is
necessarily the case whenever the connected sum is defined). �

Proof of Theorem 3.3. Our intention is to apply Lemma 3.7. To do this, we need to recast
solving s(A) = 0 for A into solving an equation for a self-mapping S of a Banach space.
Ultimately, the Banach space will be the codomain of the mASD operator s, and S will
essentially be the quadratic part of s.

We begin this process by passing to a local chart on A1,p(TΓ) (recall from Section
2B.1 that this space of connections is generally not an affine space). For this, write

A′ = ι(h′, V′) = i(h′) + V′

for (h′, V′) ∈ Hout × Lp
1,δ(Ω

1(X)). Let exph′ : Bε(0) ⊂ Th′H → H be the exponential
map associated to the L2

2(N)-metric onH := HΓ; here ε > 0 is small enough so that the
exponential is well-defined. This is all taking place on the 3-manifold N, and so this
exponential and this ε are manifestly independent of L, λ. Coupling this exponential
onH with the exponential on Ω1(X) given by the affine action, we obtain a map

exp(h′,V′) : Bε(0)× Lp
1,δ

(
Ω1(X)

)
−→ H× Lp

1,δ

(
Ω1(X)

)
(η, V) 7−→

(
exph′(η), V′ + V

)
.

The chart for A1,p(TΓ) that we will use is ι ◦ exp(h′,V′). We note that ι ◦ exp(h′,V′) identi-

fies the “slice” Bε(0)× Lp
1,δ(ker(d∗,δA′ )) with a neighborhood of A′ in SL(A′).
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Remark 3.10. Throughout the proof that follows, we will work with the L2
2(N)-norm

on Th′H; we will often not keep track of this in the notation. Note that this choice of
norm is effectively immaterial since H is finite-dimensional and so any two norms are
equivalent, provided they are well-defined.

Consider the map

s̃ : Bε(0)× Lp
1,δ

(
ker(d∗,δA′ )

)
−→ Lp

δ

(
Ω+(X), gL,λ

)
(η, V) 7−→ s

(
ι
(

exp(h′,V′)(η, V)
))

which is the map s|SL(A′) relative to the chart just described. This satisfies s̃(0, 0) =

s(A′) and so (3.1) gives

(3.11) ‖s̃(0, 0)‖Lp(X,gL,λ)
≤ C(3.1)b

4/p.

Write (Ds̃)(η,V) for the linearization of s̃ at (η, V). As the following claim indicates, the
definition of σ implies that the operator (Ds̃)(0,0) ⊕ σ is surjective.

Claim 1: For 2 ≤ p < 4, there are constants C(3.12), λ0 > 0, and L > 1, as well as linear maps

P : Lp
δ (Ω

+(X), gL,λ) −→ Th′H× Lp
1,δ

(
ker(d∗,δA′ ), gL,λ

)
π : Lp

δ (Ω
+(X), gL,λ) −→ H+

so that P⊕ π is a right inverse to (Ds̃)(0,0) ⊕ σ that, for all 0 < λ < λ0, satisfies

(3.12) ‖(P⊕ π)ξ‖
(L2

2(N)×Lp∗
δ (X,gL,λ))⊕Lp

δ (X,gL,λ)
≤ C(3.12)‖ξ‖Lp

δ (X,gL,λ)
∀ξ ∈ Ω+(X).

This claim also has an extension to some p < 2; see Corollary 3.26 for details. We
will prove Claim 1 shortly. At the moment, we will show how we use it to finish the
proof of the theorem. To prove Theorem 3.3 (a), set

J(ξ) = JA1,A2(ξ) := ι
(

exp(h′,V′)(Pξ)
)
∈ SL(A′).

Clearly J(0) = A′ and J is an immersion near 0. That the derivatives of J are bounded
uniformly (λ-independent) follows from the fact that P is uniformly bounded (by the
claim) and the fact that the maps ι and exp(h′,V′) are uniformly bounded. The map in
Theorem 3.3 (b) is the map π from Claim 1.

We now prove Theorem 3.3 (c). Define S : Lp
δ (Ω

+(X), gL,λ)→ Lp
δ (Ω

+(X), gL,λ) by

S(ξ) := s̃(Pξ)− (Ds̃)(0,0)Pξ − s̃(0, 0).

This is Cm and is the nonlinear part of the map s̃ ◦ P. The following claim says that this
map satisfies the requisite nonlinear estimates.

Claim 2: The map S satisfies the hypotheses of Lemma 3.7 with a constant κ that is independent
of 0 < λ < λ0.
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Once again, we defer the proof of this claim until after we have finished the argu-
ment for Theorem 3.3. It follows from Claim 2, Lemma 3.7, and the estimate (3.11) that,
provided λ is sufficiently small, there is a unique ξ = ξ(A1, A2) ∈ Lp

δ (Ω
+) satisfying

(3.13) ξ + S(ξ) = −s̃(0, 0) and ‖ξ‖Lp
δ (X) ≤ 1/(5κ).

Setting ‖ · ‖Lp
δ

:= ‖ · ‖Lp
δ (X,gL,λ)

and using (3.8), we get

‖ξ‖Lp
δ
≤ ‖s̃(0, 0)‖Lp

δ
+ ‖S(ξ)‖Lp

δ
≤ C(3.1)b

4/p +
1
5
‖ξ‖Lp

δ
.

This implies the requisite estimate on ξ. Unraveling the definitions, we also have

s(J (A1, A2)) = s̃(Pξ) = s̃(0, 0) + (Ds̃)(0,0)Pξ + S(ξ) = −ξ + (Ds̃)(0,0)Pξ = −σπξ,

where J (A1, A2) := J(ξ), by definition. This finishes the proof of (c).
To prove (3.6), note that

ι−1(J (A1, A2))− ι−1(A′) = exp(h′,V′)(Pξ)− exp(h′,V′)(0).

From our definition of the exponential appearing on the right, we see that the differ-
ence exp(h′,V′)(Pξ)− exp(h′,V′)(0) equals Pξ plus some higher order terms supported
only on the center manifold component, and thus in a component with a norm inde-
pendent of λ. In particular, since ξ is small, these higher order terms can be uniformly
controlled to yield a uniform first order estimate of the form

‖ι−1(J (A1, A2))− ι−1(A′)‖
L2

2(N)×Lp∗
δ (X,gL,λ)

≤ C1‖Pξ‖
L2

2(N)×Lp∗
δ (X,gL,λ)

We can then combine this with (3.12) to get

(3.14) ‖ι−1(J (A1, A2))− ι−1(A′)‖
L2

2(N)×Lp∗
δ (X,gL,λ)

≤ C1C(3.12)‖ξ‖Lp
δ (X,gL,λ)

≤ C2b4/p

where the second inequality comes from the estimates of the previous paragraph. The
estimate (3.6) follows from this and the fact that Ak agrees with A′ = A′(A1, A2) on
Xk\BLλ1/2(xk).

When the Ak are regular, the map π is the zero map so J (A1, A2) is automati-
cally mASD by (3.5). In this case, the operator (Dι)(h′,V′) ◦ P is a right inverse to
(Ds|SL(A′))A′ , essentially by definition; in particular, (Ds|SL(A′))A′ is surjective. Thus
(Ds|SL(A))A is surjective whenever A is close to A′. In particular, by (3.14), this is the
case with A = J (A1, A2) and so J (A1, A2) is regular. The Cm-smooth dependence of
J on the Ak follows from Remark 3.19 (a) below, and the Cm-smoothness of ξ follows
from the Cm-smoothness assertion of Lemma 3.7.

Finally, assume A1 or A2 is irreducible (assume p > 2 so this term is defined). It
follows from Remark 3.2 that A′ is irreducible as well. The irreducibility of J (A1, A2)
then follows from (3.14) and Lemma 2.8.

To finish the proof of Theorem 3.3, it therefore suffices to verify the claims; we begin
with Claim 1. LetHk be the spaceHout for the connection Γk, and set

hk = pT(Ak) ∈ Hk
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where pT is the map from Section 2B.1. Similar to what we did above over X, for each
k, we can form a map

s̃k : Thk
Hk × Lp

1,δ(ker(d∗,δAk
)) −→ Lp

δ (Ω
+(Xk))

by precomposing s with ι and the exponential exphk
for Hk based at hk. Linearizing at

(0, 0), and coupling with σk, we obtain a bounded linear map

D̃k := (Ds̃k)(0,0) ⊕ σk :
(

Thk
Hk × Lp

1,δ

(
ker(d∗,δAk

)
))
⊕ H+

k −→ Lp
δ (Ω

+(Xk)).

This is surjective by the construction of σk. Standard elliptic theory for δ-decaying
spaces [15] and the finite-dimensionality of Hk imply that D̃k restricts to a bounded
map of the form

D̃k :
(

Thk
Hk × Lp

`+1,δ

(
ker(d∗,δAk

)
))
⊕ H+

k −→ Lp
`,δ(Ω

+)

for each ` ≥ 0, and this restriction remains surjective. In particular, the “Laplacian”

D̃kD̃∗,δk : Lp
2,δ(Ω

+) −→ Lp
δ (Ω

+)

is a Banach space isomorphism, where D̃∗,δk is the adjoint of D̃k relative to the δ-decaying
L2-inner products on the domain and codomain. It follows from these observations
that the formula

Pk := D̃∗,δk

(
D̃kD̃∗,δk

)−1 : Lp
δ (Ω

+) −→
(

Thk
Hk × Lp

1,δ

(
ker(d∗,δAk

)
))
⊕ H+

k

defines a bounded right inverse for D̃k. Coupling this with the embedding Lp
1,δ ↪→ Lp∗

δ
it follows that there is a constant ck with

(3.15) ‖Pkξ‖
(L2

2(Nk)×Lp∗
δ (Xk))⊕Lp

δ (Xk)
≤ ck‖ξ‖Lp

δ (Xk)
, ∀ξ ∈ Ω+(Xk).

The argument at this stage is almost identical to that given in [5, Section 7.2.3] (see also
[5, Prop. 7.2.18]); however, we supply some of the details since we will refer to them
below. Following [5, p. 288], the operators P1, P2 can be glued together to produce an
operator

Q : Lp
δ

(
Ω+(X), gL,λ

)
−→

(
Th′H× Lp

1,δ

(
Ω1(X), gL,λ

))
⊕ H+

that satisfies

‖Qξ‖
(L2

2(N)×Lp∗
δ (X,gL,λ))⊕Lp

δ (X,gL,λ)
≤ (c1 + c2)‖ξ‖Lp

δ (X,gL,λ)
∀ξ ∈ Ω+(X).

Somewhat more explicitly, we have

Q = β1P1γ1 + β2P2γ2

where the {β1, β2} and {γ1, γ2} are partitions of unity on X. The only property we
need about these partitions is that the derivatives ∇βk are supported in the gluing
region and satisfy ‖∇βk‖L4(X) → 0 as L → ∞ and b → 0. For future reference we note



EXISTENCE OF mASD CONNECTIONS 29

that since A′ equals the Ak away from the gluing region and the Pk take values in the
Ak-slice, there is a uniform constant C3 so that

(3.16) ‖d∗,δA′ Qξ‖Lp
δ
≤ C3(‖∇β1‖L4 + ‖∇β2‖L4)‖Qξ‖

Lp∗
δ

.

It also follows that Q is an approximate right inverse to (Ds̃)(0,0) ⊕ σ in the sense that(
(Ds̃)(0,0) ⊕ σ

)
◦Q = I + R

for some R satisfying
‖R(ξ)‖Lp

δ
≤ ε(L, b, p)‖ξ‖Lp

δ

where ε(L, b, p) → 0 as L → ∞ and b → 0 (the assumption p ≥ 2 is used here to
establish this decay property for ε(L, b, p), see [5, pp. 293,294]).

At this stage, Donaldson and Kronheimer [5] take their right inverse to be Q(I +
R)−1. However, this is not sufficient for us since we want our right inverse to take
values in the slice, and the operator Q(I + R)−1 generally does not. We thus want
to modify the construction above, and we do this by simply projecting to the slice.
Specifically, let Π be the L2

δ-orthogonal projection of Ω1(X) to the kernel of d∗,δA′ (note
that d∗,δA′ is injective on the image of I −Π). This projection Π extends to the codomain
of Q by acting on the Ω1(X)-factor only. Thus, the map

Q̃ := Π ◦Q

takes values in the slice. We want to use this Q̃ in place of Q, but for this we need to
port the estimates on Q over to Q̃. To achieve this goal, note that the difference Q− Q̃
takes values in the image of I−Π, on which the operator d∗,δA′ is injective. From this we
have the following Sobolev-type estimate

‖Qξ − Q̃ξ‖
(L2

2(N)×Lp∗
δ (X,gL,λ))⊕Lp

δ (X,gL,λ)
≤ C4‖d∗,δA′ (Qξ − Q̃ξ)‖Lp

δ

for all ξ ∈ Lp
δ (Ω

+(X)). As in [5, Section 7.2.3], our range restriction on p implies
that this constant C4 can be taken to be uniform in the neck-scaling parameter b. By
construction, Q̃ takes values in the kernel of d∗,δA′ and so we can combine the above with
(3.16) to get

(3.17) ‖Qξ − Q̃ξ‖
(L2

2(N)×Lp∗
δ (X,gL,λ))⊕Lp

δ (X,gL,λ)
≤ C3C4(‖∇β1‖L4 + ‖∇β2‖L4)‖Qξ‖

Lp∗
δ

By taking L large and b sufficiently small, we can now transfer our estimate from Q
to Q̃ to conclude that Q̃ is uniformly bounded and is an approximate right inverse to
(Ds̃)(0,0) ⊕ σ in the sense that

((Ds̃)(0,0) ⊕ σ) ◦ Q̃ = I + R̃

for some R̃ satisfying

(3.18) ‖R̃(ξ)‖Lp
δ
≤ ε̃(L, b, p)‖ξ‖Lp

δ
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where ε̃(L, b, p)→ 0 as L→ ∞ and b→ 0. The whole point, of course, is that

Q̃ : Lp
δ

(
Ω+(X), gL,λ

)
−→

(
Th′H× Lp

1,δ

(
ker(d∗,δA′ )

))
⊕ H+

takes values in the slice where Q may not have.
Choose L > 1, λ0 > 0 so that ε̃(L, 4Lλ1/2

0 , p) < 1/3 and C3C4(‖∇β1‖L4 + ‖∇β2‖L4) <

1. Then Q̃(I + R̃)−1 is a right inverse to D̃ ⊕ σ and has operator norm at most 3(c1 +

c2 + 1). Then we can write this right inverse as Q̃(I + R̃)−1 = P⊕ π, where the split-
ting corresponds to the direct sum decomposition of the codomain of Q̃. The estimate
(3.12) immediately follows, so this finishes the proof of Claim 1.

Remark 3.19. (a) It is not hard to show from the construction outlined in [5] that, when
the Ak are regular, then the right inverse P depends Cm-smoothly on the Ak. The key
observation here is that, though many choices have been made in this construction
(e.g., cutoff functions), the only ones that depend on the Ak are the choices of σk, but
these can be taken to be zero when the Ak are regular.

(b) By construction, the connection J (A1, A2) of Theorem 3.3 naturally belongs to
two slices: The one centered at itself, and the one centered at A′.

Now we move on to prove Claim 2. Fix L, λ0 as in Claim 1 and we assume λ ∈
(0, λ0). We clearly have S(0) = 0, so it suffices to show that S satisfies the quadratic
estimate (3.8) for a uniform constant κ. For this, note that by Lemma 2.2 and Taylor’s
Theorem, we can write

i(exph′(η)) = i(h′) + (Di)h′η + qh′(η)

where qh′ : Th′H → Lp
1,loc(X) ∩ C0(X) vanishes to first order. Since Hout is finite-

dimensional, we can quantify this relative to any metric with respect to which the
terms are well-defined. In particular, there is a constant C(3.20) so that

(3.20) ‖qh′(η1)− qh′(η2)‖C0(X) ≤ C(3.20)(‖η1‖L2
2(N) + ‖η2‖L2

2(N))‖η1 − η2‖L2
2(N)

for all η1, η2 in the unit ball in Th′H. Note that qh′(η) need not decay to zero down the
ends of X since i(h′) and i(exph′(η)) generally do not converge to the same connection
at infinity. However, on the compact part we have

(3.21) qh′(η)|X0 = 0.

Indeed, on X0 the connection i(h) equals the reference connection for all h ∈ Hout, and
i vanishes to all but the zeroth order on X0.

To verify (3.8), fix ξ1, ξ2 ∈ Lp
δ (Ω

+(X), gλ) with ‖ξ j‖Lp
δ
≤ 1 and set

(ηj, Vj) := Pξ j ∈ Th′H× Lp
1,δ(Ω

1(X)).

Then using the definition of S and the formula (2.11), we can write

(3.22)
S(ξ j) = 1

2

[
Vj ∧Vj

]+
+ 1−β′

2

[(
(Di)h′ηj + qh′(ηj)

)
∧
(
(Di)h′ηj + qh′(ηj)

)]+
+(1− β′)d+i(h′)qh′(ηj) +

[
V′ ∧ qh′(ηj)

]+
+
[
Vj ∧ qh′(ηj)

]+
+
[
Vj ∧ (Di)h′ηj

]+ .
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(These are the higher order terms in the mASD operator s, expressed in terms of Vj and
ηj.) It suffices to show that each term on the right satisfies an estimate of the form (3.8).
Below we set ‖ · ‖Lp

δ
:= ‖ · ‖Lp

δ (X,gλ)
.

We begin with the first term on the right of (3.22). This shows up in the ASD set-
ting as well (see [5, p. 289]), but our argument is a bit more involved due to the non-
compactness of X. For this, we use Lemma 3.9 to get

1
2

∥∥ [V1 ∧V1]
+ − [V2 ∧V2]

+ ∥∥
Lp

δ
= 1

2

∥∥ [(V1 + V2
)
∧
(
V1 −V2

)]+ ∥∥
Lp

δ

≤ cg
∥∥|V1 + V2||V1 −V2|

∥∥
Lp

δ

≤ cgC(3.9)

(
‖V1‖Lp∗

δ

+ ‖V2‖Lp∗
δ

)
‖V1 −V2‖Lp∗

δ

where cg is defined by

(3.23) cg := sup
(ν1,ν2,ν3)

|〈ν1, [ν2, ν3]〉|

with the supremum running over all νj ∈ g with |νj| = 1. Since Vj is a component of
Pξ j, we can then use the estimate of Claim 1 to continue the above and get

1
2

∥∥ [V1 ∧V1]
+ − [V2 ∧V2]

+ ∥∥
Lp

δ
≤ cgC(3.9)C2

(3.12)

(
‖ξ1‖Lp

δ
+ ‖ξ2‖Lp

δ

)
‖ξ1 − ξ2‖Lp

δ

which is the desired estimate.
Now we move on to the second term in (3.22). Set r(η) := (Di)h′η + qh′(η), so we

want to bound the Lp
δ -norm of

1−β′

2

(
[r(η1) ∧ r(η1)]

+ − [r(η2) ∧ r(η2)]
+
)
= 1−β′

2

[(
r(η1) + r(η2)

)
∧
(
r(η1)− r(η2)

)]+
in terms of the right-hand side of (3.8). Note that this is supported on the compact
cylinder Cyl0 := [T − 1/2, T + 1/2]× N, and so its Lp

δ -norm is bounded by a constant
times (

∑2
j=1 ‖r(ηj)‖Lp∗

δ (Cyl0)

)
‖r(η1)− r(η2)‖Lp∗

δ (Cyl0)

≤ ‖etδ/2‖2
Lp∗ (Cyl0)

(
∑2

j=1 ‖r(ηj)‖C0(Cyl0)

)
‖r(η1)− r(η2)‖C0(Cyl0)

By Lemma 2.2, this is bounded by a constant times(
‖η1‖L2

2(N) + ‖η2‖L2
2(N)

)
‖η1 − η2‖L2

2(N) ≤ C2
(3.12)

(
‖ξ1‖Lp

δ
+ ‖ξ2‖Lp

δ

)
‖ξ1 − ξ2‖Lp

δ

as desired.
The estimate for the third term (1− β′)d+i(h′)qh′(ηj) is similar and we leave it to the

reader. Moving on to the fourth term in (3.22), recall from (3.21) that qh′(ηj) vanishes
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on X0. This observation combines with (3.20) and then Claim 1 to give∥∥ [V′ ∧ qh′(η1)]
+ − [V′ ∧ qh′(η2)]

+ ∥∥
Lp

δ

=
∥∥ [V′ ∧ (qh′(η1)− qh′(η2)

)]+ ∥∥
Lp

δ (End X)

≤ cg‖V′‖Lp
δ (End X)‖qh′(η1)− qh′(η2)‖C0(End X)

≤ cgC(3.20)‖V′‖Lp
δ (End X)

(
‖η1‖L2

2(N) + ‖η2‖L2
2(N)

)
‖η1 − η2‖L2

2(N)

≤ cgC(3.20)C2
(3.12)‖V

′‖Lp
δ (End X)

(
‖ξ1‖Lp

δ
+ ‖ξ2‖Lp

δ

)
‖ξ1 − ξ2‖Lp

δ

This is the desired estimate for this term because ‖V′‖Lp
δ (End X) is plainly independent

of λ and the ξ j.
The remaining two terms are the most difficult to bound. This is because (i) these

terms involve both the infinite-dimensional terms Vi as well as the finite-dimensional
terms qh′(ηj) and (Di)h′ηj, and (ii) neither of these finite-dimensional terms gener-
ally decays to zero at infinity (nor do the differences qh′(η1)− qh′(η2) and (Di)h′η1 −
(Di)h′ηj). The main estimate we need is the following, which we will see is equivalent
to the fact that the operator d+A′ is Fredholm (on the appropriate spaces) with our choice
of δ.

Claim 3: There is some T1 � T + 3/2 and a constant C(3.24) so that

(3.24) ‖V‖Lp
δ ([T1,∞)×N) ≤ C(3.24)‖d+A′V‖Lp

δ ([T1−1,∞)×N)

for all V ∈ Lp
1,δ(Ω

1(X)) with d∗,δA′ V|[T1−1,∞)×N = 0.

We prove Claim 3 after we finish our estimates for the last two terms in (3.22). The
argument we give applies to both of these last two terms, so we focus on establishing
the estimate for the second-to-last term:

[V1 ∧ qh′(η1)]
+ − [V2 ∧ qh′(η2)]

+

= 1
2

( [(
V1 −V2

)
∧
(
qh′(η1) + qh′(η2)

)]+
+
[(

V1 + V2
)
∧
(
qh′(η1)− qh′(η2)

)]+ ).

It suffices to bound the Lp
δ -norm of each term on the right by the right-hand side of (3.8);

we will carry this out for [V1 + V2 ∧ qh′(η1)− qh′(η2)]
+, the other term is similar. Since

the qh′(ηj) are supported on End X, we do not need to worry whether our constants
are λ-dependent. With T1 as in Claim 3, write

(3.25)

∥∥ [(V1 + V2
)
∧
(
qh′(η1)− qh′(η2)

)]+ ∥∥
Lp

δ

≤
(∥∥ [(V1 + V2

)
∧
(
qh′(η1)− qh′(η2)

)]+ ∥∥
Lp

δ ([0,T1]×N)

+
∥∥ [(V1 + V2

)
∧
(
qh′(η1)− qh′(η2)

)]+ ∥∥
Lp

δ ([T1,∞)×N)

)
.



EXISTENCE OF mASD CONNECTIONS 33

Set Cyl1 := [0, T1]× N and estimate the first term on the right as follows:∥∥ [(V1 + V2
)
∧
(
qh′(η1)− qh′(η2)

)]+ ∥∥
Lp

δ (Cyl1)

≤ cg

(
‖V1‖Lp∗

δ (Cyl1)
+ ‖V2‖Lp∗

δ (Cyl1)

)
‖qh′(η1)− qh′(η2)‖L4

δ(Cyl1)

≤ cg‖etδ/2‖L4(Cyl1)

(
‖V1‖Lp∗

δ

+ ‖V2‖Lp∗
δ

)
‖qh′(η1)− qh′(η2)‖C0(Cyl1)

≤ cgC(3.20)C3
(3.12)‖e

tδ/2‖L4(Cyl1)

(
‖ξ1‖Lp

δ
+ ‖ξ2‖Lp

δ

)2
‖ξ1 − ξ2‖Lp

δ

which is the desired estimate for this terms since we have assumed ‖ξ j‖Lp
δ
≤ 1, and so

(‖ξ1‖Lp
δ
+ ‖ξ2‖Lp

δ
)2 ≤ 2(‖ξ1‖Lp

δ
+ ‖ξ2‖Lp

δ
).

As for the remaining term on the right of (3.25), note that it is bounded by a constant
times(
‖V1‖Lp

δ ([T1,∞)×N) + ‖V2‖Lp
δ ([T1,∞)×N)

)
‖qh′(η1)− qh′(η2)‖C0([T1,∞)×N)

≤ C(3.20)C2
(3.12)

(
‖V1‖Lp

δ ([T1,∞)×N) + ‖V2‖Lp
δ ([T1,∞)×N)

)
(‖ξ1‖Lp

δ
+ ‖ξ2‖Lp

δ
)‖ξ1 − ξ2‖Lp

δ

We will therefore be done with the proof of Claim 2 if we can show that the terms
‖Vj‖Lp

δ ([T1,∞)×N) are bounded. For this, note that the linearization of s̃ can be written as

(Ds̃)(0,0)(η, V) = d+A′
(
(Di)h′η + V

)
− β′d+i(h′)(Di)h′η

= d+A′V + (1− β′)d+i(h′)(Di)h′η + [V′ ∧ (Di)h′η]
+ .

Note also that, by the definition of P, the 1-form Vj lies in the kernel of d∗,δA′ . We can
therefore use Claim 3 and the above formula for (Ds̃)(0,0) to write

‖Vj‖Lp
δ ([T1,∞)×N) ≤ C(3.24)‖d+A′Vj‖Lp

δ ([T1−1,∞)×N)

≤ C(3.24)

(
‖(Ds̃)(0,0)(ηj, Vj)‖Lp

δ
+ ‖

[
V′ ∧ (Di)h′ηj

]+ ‖Lp
δ

)
where we also used the fact that β′ = 1 on [T1 − 1, ∞)× N. Since (ηj, Vj) = Pξ j and
P⊕ π is a right-inverse for (Ds̃)(0,0) ⊕ σ, we can continue this as

≤ C(3.24)

(
‖ξ j‖Lp

δ
+ ‖σπξ j‖Lp

δ
+ cg‖V′‖Lp

δ
‖(Di)h′ηj‖C0

)
≤ C(3.24)

(
1 + Cσπ + cgC(Di)h′

‖V′‖Lp
δ
‖ηj‖L2

2(N)

)
≤ C(3.24)

(
1 + Cσπ + cgC(Di)h′

C(3.12)‖V′‖Lp
δ

)
where Cσπ and C(Di)h′

are the operator norms of σπ and (Di)h′ , respectively (we are
viewing the latter as a map L2

2(N) → C0(X); see Lemma 2.2 and the definition of i).
This is the uniform bound we are after, and thus finishes the proof of Claim 2.
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Finally, we prove Claim 3. Let h′T : [T, ∞) → Hout denote the flow of the trimmed
vector field Ξtr with h′T(T) = h′. Let

h′∞ := lim
t→∞

h′T(t) ∈ Hout

be the limiting connection of this flow. This is a connection on N, but we will view
it as a connection on End X = [0, ∞)× N that is constant in the t-direction. Let X be
the Lp

1,δ-completion of the space of 1-forms on X supported on End X, and let Y be the
Lp

δ -completion of the elements of Ω+ ⊕Ω0 supported on End X (so the elements of X
and Y vanish on the compact part). Then the map

d+h′∞ ⊕ d∗,δh′∞
: X −→ Y

is bounded and elliptic. We have assumed that δ/2 is not in the spectrum of − ∗ dh, so
it follows that the above operator has trivial kernel (it also has trivial cokernel, though
we do not need this). In particular, there is a constant C5 so that

‖V‖Lp
δ
≤ ‖V‖Lp

1,δ
≤ C5

(
‖d+h′∞V‖Lp

δ
+ ‖d∗,δh′∞

V‖Lp
δ

)
for all V ∈ X . The connection A′ is C0-asymptotic to h′∞. In particular, we can choose
T1 large enough so that

‖A′ − h′∞‖C0([T1−1,∞)×N) < 1/(6cgC4).

Then if V ∈ X is supported on [T1 − 1, ∞)× N and in the kernel of d∗,δA′ we have

‖V‖Lp
δ ([T1−1,∞)×N) ≤ C5

(
‖d+h′∞V‖Lp

δ ([T1−1,∞)×N) + ‖d
∗,δ
h′∞

V‖Lp
δ ([T1−1,∞)×N)

)
= C5

(∥∥d+A′V +
[(

h′∞ − A′
)
∧V

]+ ∥∥
Lp

δ ([T1−1,∞)×N)

+
∥∥ [(h′∞ − A′

)
∧ ∗V

] ∥∥
Lp

δ ([T1−1,∞)×N)

)
≤ C5‖d+A′V‖Lp

δ ([T1−1,∞)×N) +
1
3‖V‖Lp

δ ([T1−1,∞)×N).

Then Claim 3 follows (with C(3.24) := 3C5/2) from this estimate and a cutoff function.
�

3C. Extensions to p < 2. In our existence result of Section 6C, we will need extensions
to p < 2 of the estimates (3.4) and (3.12); we state and prove the relevant extensions
here. In fact, all we will need is an extension to p = 4/3 (so p∗ = 2); we leave any more
general extensions to the interested reader. Throughout this section, we fix data as in
the statement of Theorem 3.3.

For the first result, let L > 1, λ0 > 0, and P ⊕ π be as in the statement of Claim 1
appearing in the proof of Theorem 3.3.

Corollary 3.26. There is a constant C so the following holds for all 0 < λ < λ0 and ξ ∈
Ω+(X):

‖(P⊕ π)ξ‖
(L2

2(N)×L2
δ(X,gL,λ))⊕L4/3

δ (X,gL,λ)
≤ C‖ξ‖L4/3

δ (X,gL,λ)
.
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Proof. We refer to the notation established in the proof of Claim 1. Momentarily sup-
pressing Sobolev completions, let

(P⊕ π)∗,δ :
(

Th′H× ker(d∗,δA′ )
)
⊕ H+ −→ Ω+(X)

be the formal adjoint of P ⊕ π, relative to the L2
δ-inner product on X. By the duality

isometries (L2
δ(X))∗ ∼= L2

δ(X), (L4
δ(X))∗ ∼= L4/3

δ (X), and (L2
2(N))∗ ∼= L2

−2(N), we will
be done if we can establish a uniform bound of the form

‖(P⊕ π)∗,δ(η, V, µ)‖L4
δ(X) ≤ C1

(
‖η‖L2

−2(N) + ‖V‖L2
δ(X) + ‖µ‖L4

δ(X)

)
.

Since Th′H is finite-dimensional, there is a bound of the form ‖η‖L2
2(N) ≤ C2‖η‖L2

−2(N)

for all η ∈ Th′H. It therefore suffices to show

(3.27) ‖(P⊕ π)∗,δ(η, V, µ)‖L4
δ(X) ≤ C3

(
‖η‖L2

2(N) + ‖V‖L2
δ(X) + ‖µ‖L4

δ(X)

)
for a uniform constant C3. This is precisely the estimate of Claim 1, except with the
adjoint operator (P⊕ π)∗,δ in place of P⊕ π. We will show that the proof of Claim 1
can be sufficiently modified to hold for this adjoint.

Towards this end, note that the adjoint of Pk = D̃∗,δk (D̃kD̃∗,δk )−1 is given by P∗,δk =

(D̃kD̃∗,δk )−1D̃k and so satisfies

‖P∗,δk (ηk, Vk, µk)‖L4
δ(Xk)

≤ ck

(
‖ηk‖L2

2(Nk)
+ ‖Vk‖L2

δ(Xk)
+ ‖µk‖L4

δ(Xk)

)
.

Just as before, these can be glued together to form an operator Q∗,δ that satisfies

(3.28) ‖Q∗,δ(η, V, µ)‖L4
δ(X) ≤ (c1 + c2)

(
‖η‖L2

2(N) + ‖V‖L2
δ(X) + ‖µ‖L4

δ(X)

)
.

Moreover, it is not hard to see that this gluing can be done so that Q∗,δ is exactly the
formal L2

δ-adjoint of the operator Q appearing in the proof of Claim 1. It follows that
the formal L2

δ-adjoint of Q̃ is the restriction of Q∗,δ to the slice (this just restricts V to
line in the kernel of d∗,δA′ ).

Then the defining formula P ◦ π = Q̃(I + R̃)−1 implies

(3.29) (P ◦ π)∗ = (I + R̃∗,δ)−1Q̃∗,δ

where R̃∗,δ is the formal adjoint of R̃ and so satisfies ‖R̃∗,δξ‖L2
δ(X) = ‖R̃ξ‖L2

δ(X). Then
the estimate (3.27) follows from (3.29), (3.28), and (3.18). �

For the second and last of the extensions we need, let ξ(A1, A2) ∈ L2
δ(Ω

+(X)) be as
in the conclusion of Theorem 3.3 (c).

Corollary 3.30. There are C, λ′0 > 0, so that if 0 < λ < λ′0 then

‖ξ(A1, A2)‖L4/3
δ (X,gL,λ)

≤ Cλ3/2.
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Proof. Setting ξ := ξ(A1, A2), the identity in (3.13) gives

‖ξ‖L4/3
δ (X)

≤ ‖s̃(0, 0)‖L4/3
δ (X)

+ ‖S(ξ)‖L4/3
δ (X)

.

The estimate (3.1) holds with p = 4/3, so the same is true of (3.11); that is,

‖s̃(0, 0)‖L4/3
δ (X)

≤ C1b3

for a uniform constant C1, where b = 4Lλ1/2. To estimate S(ξ), note that the formula
(3.22) implies that S(ξ) is quadratically bounded in Pξ. Then we can argue as we did
in the proof of Claim 2, but use Hölder’s inequality ‖ f g‖L4/3

δ
≤ ‖ f ‖L4

δ
‖g‖L2 , to get a

uniform estimate of the form

‖S(ξ)‖L4/3
δ (X)

≤ C2‖Pξ‖L4
δ(X)‖Pξ‖L2

δ(X).

By (3.12) and Corollary 3.26, this implies

‖S(ξ)‖L4/3
δ (X)

≤ C3‖ξ‖L2
δ(X)‖ξ‖L4/3

δ (X)
.

It follows from (3.4) that we can assume ‖ξ‖L2
δ(X) < (2C3)

−1, provided λ > 0 is suffi-
ciently small. In summary, this implies

‖ξ‖L4/3
δ (X)

≤ C1b3 +
1
2
‖ξ‖L4/3

δ (X)

from which the corollary follows with C = 128L3C1. �

4. GAUGE FIXING AND THE mASD CONDITION

In the next section, we will find ourselves in the situation where we have an mASD
connection A and a nearby connection Are f . We will want to find a gauge transforma-
tion u so that u∗A is in the Coulomb slice of Are f . The issue is that, due to the failure
of the mASD equation to be gauge invariant, the connection u∗A will no longer be
mASD. Nevertheless, we will show in this section that, when A is regular, the connec-
tion u∗A is close to a unique mASD connection that lies in the Are f -Coulomb slice. This
is made precise in Theorem 4.5, which extends the discussion to handle connections A
that are not regular by means of an obstruction map. To accomplish this, we first prove
a general gauge fixing result that is tailored to our setting; this is stated in Proposition
4.3.

4A. Gauge fixing. We begin by refining our choices of δ and the cut-off function β
used to create Hout. For the former, we assume δ2/4 is not in the spectrum of the
Laplacian ∆ on real-valued functions. It then follows from Sobolev embedding that,
for each 1 < q < 4, there is a constant cq so that

(4.1) ‖ f ‖Lq
δ(X) + ‖ f ‖

Lq∗
δ (X)

≤ cq‖d f ‖Lq
δ(X)

for all compactly supported real-valued smooth functions f , where q∗ = 4q/(4− q) is
the Sobolev conjugate.



EXISTENCE OF mASD CONNECTIONS 37

As for the cutoff function β : H → [0, 1], we assume this is chosen so that it has small
support in the sense that

(4.2) sup
h,h0∈supp(β)

‖h− h0‖C0(N) + ‖Θ(h)−Θ(h0)‖C0(N) <
1

2c2cg

where cg is the constant from (3.23) and c2 is the constant from (4.1) with q = 2.
The main gauge fixing result we will need is as follows.

Proposition 4.3. Fix 2 < p < 4, set p∗ = 4p/(4− p), and assume δ, β are as above. There
are constants C, ε > 0 so that if A = ι(h, V) and Are f = ι(hre f , Vre f ) are in A1,p(TΓ) and
satisfy

‖V −Vre f ‖Lp∗
δ (X)

+ ‖d∗,δAre f
(V −Vre f )‖Lp

δ (X) < ε

then there is a unique µ = µ(A, Are f ) ∈ Lp
2,δ(Ω

0(X)) so that

exp(µ)∗A ∈ SL(Are f ), and ‖d∗,δAre f
dAµ‖Lp

δ (X) ≤ C‖d∗,δAre f
(V −Vre f )‖Lp

δ (X).

Moreover, this 0-form µ(A, Are f ) depends Cm-smoothly on the pair (A, Are f ).

Proof. We will show below that

‖µ‖X := ‖d∗,δAre f
dAµ‖Lp

δ (X)

defines a norm on the space Ω0(X) of smooth rapidly decaying adjoint bundle-valued
0-forms. Assuming this for now, we denote by X the completion of Ω0(X) relative to
‖ · ‖X . Let Y be the completion of Ω0(X), but relative to the norm ‖ · ‖Y := ‖ · ‖Lp

δ (X).
Since p > 2, the map

F : A1,p(TΓ)×A1,p(TΓ)×X −→ Y
(A, Are f , µ) 7−→ d∗,δAre f

(u∗A− i(p(u∗A))−Vre f )

is Cm-smooth, where we have set u = exp(µ) ∈ G2,p
δ . Note that, relative to the prod-

uct structure given by ι via (2.5), the quantity u∗A − i(p(u∗A)) is the Lp
1,δ(Ω

1(X))-
component (i.e., non-center manifold-component) of u∗A, and so u∗A ∈ SL(Are f ) for
u = exp(µ) if and only ifF (A, Are f , µ) = 0. It therefore suffices to solveF (A, Are f , µ) =
0 for µ. For this, we have that µ = 0 is an approximate solution since

F (A, Are f , 0) = d∗,δAre f
(V −Vre f )

which we have assumed is bounded by ε. The linearization in the third component of
F at (A, Are f , 0) is the operator

µ 7−→ d∗,δAre f
dAµ.

This has operator norm 1 relative to the norms onX and Y . In particular, it is invertible
and so the proposition follows from the inverse function theorem (e.g., precompose F
in the third component with the inverse of d∗,δAre f

dA and then use Lemma 3.7).
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All that remains is to show that ‖ · ‖X defines a norm; it suffices to show that the
operator

d∗,δAre f
dA : Lp

2,δ −→ Lp
δ

is injective. For this, suppose µ lies in its kernel and let (·, ·)δ be the δ-dependent
L2-inner product. Note that µ ∈ L2

1,δ by Sobolev’s embedding theorem Lp
2 ↪→ L2

1 on
cylindrical end 4-manifolds [4, Prop. 3.20]. This justifies the following computation:

0 = (d∗,δAre f
dAµ, µ)δ = (dAµ, dAre f µ)δ = ‖dAre f µ‖

2
L2

δ
+
([(

A− Are f
)
, µ
]
, dAre f µ

)
δ
.

Hence
‖dAre f µ‖L2

δ
≤
∥∥∥[(A− Are f

)
, µ
]∥∥∥

L2
δ

.

The definition of ι gives A− Are f = β′′(h− hre f +(Θ(h)−Θ(hre f ))dt)+V−Vre f . Then
Hölder’s inequality and (4.2) allow us to continue the above inequality to get

‖dAre f µ‖L2
δ
≤ cg

(
‖V −Vre f ‖L4‖µ‖L4

δ
+ ‖h− hre f + (Θ(h)−Θ(hre f ))dt‖C0‖µ‖L2

δ

)
≤ cg‖e−δt/2‖Lr‖V −Vre f ‖Lp∗

δ

‖µ‖L4
δ
+ 1

2c2
‖µ‖L2

δ

where r is defined by r−1 + (p∗)−1 = 4−1. Using (4.1) with f = |µ|, and then Kato’s
inequality |d|µ|| ≤ |dAre f µ| (which holds for arbitrary metric connections), we can use
the above to get

‖µ‖L2
δ
+ ‖µ‖L4

δ
≤ c2‖d|µ|‖L2

δ

≤ c2‖dAre f µ‖L2
δ

≤ c2cg‖e−δt/2‖Lr‖V −Vre f ‖Lp∗
δ

‖µ‖L4
δ
+ 1

2‖µ‖L2
δ
.

When ε < 1/(2c2cg‖e−δt/2‖Lr), this implies that µ = 0. �

Remark 4.4. The operator d∗,δAre f
dA : Lp

2,δ → Lp
δ is Fredholm, and we have just seen that

it has trivial kernel under the hypotheses of the proposition. It then follows from the
embedding Lp

2,δ ⊆ Lp
δ ∩ C

0 that there is a constant C so that

‖µ‖Lp
δ (X) + ‖µ‖C0(X) ≤ C‖d∗,δAre f

dAµ‖Lp
δ (X)

for all µ ∈ Lp
2,δ(Ω

0(X)). It follows from arguments similar to those just used that this
constant can be chosen to be independent of A and Are f provided these connections
satisfy the hypotheses of Proposition 4.3.

4B. Recovering the mASD condition within a slice. Throughout this section, we as-
sume 2 < p < 4, and δ, β are chosen as in Section 4A.

As suggested in the introduction to this section, we will use Proposition 4.3 to put
mASD connections into a fixed nearby slice, but this process will generally not preserve
the mASD condition. The following theorem is our main readjustment tool that will
recover the mASD condition, while simultaneously preserving the slice condition. To
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state it, use the L2
δ-inner product to identify the cokernel H+

A,δ = coker(Ds|SL(A))A

with the subset of A-harmonic self-dual forms in Lp
δ (Ω

+(X)). We denote by

σA : H+
A,δ −→ Lp

δ (Ω
+(X)) πA : Lp

δ (Ω
+(X)) −→ H+

A,δ

the inclusion and L2
δ-orthogonal projection, respectively. (These maps will play a role

analogous to the one played by σ and π in Section 3.) It follows that (Ds|SL(A))A ⊕ σA

maps surjectively onto Lp
δ (Ω

+(X)).

Theorem 4.5. Fix Are f = ι(hre f , Vre f ) ∈ A1,p(TΓ). Then there are constants C, ε > 0 so that
the following holds for all mASD connections A = ι(h, V) satisfying

(4.6) ‖h− hre f ‖L2
2(N) + ‖V −Vre f ‖Lp∗

δ (X)
+ ‖d∗,δAre f

(V −Vre f )‖Lp
δ (X) < ε.

(a) There is a Cm-map KA : Lp
δ (Ω

+(X)) → SL(Are f ) that restricts to an embedding on
a neighborhood U of 0.

(b) There is a unique 2-form ζ(A) ∈ U ⊆ Lp
δ (Ω

+(X)) so that

‖ζ(A)‖Lp
δ (X) ≤ C‖d∗,δAre f

(V −Vre f )‖Lp
δ (X)

and so that the connection K(A) := KA(ζ(A)) satisfies

s(K(A)) = −σAπAζ(A).

In particular, the connection K(A) is close to A in the sense that there is a constant C′ so that

‖ι−1(K(A))− ι−1(A)‖
L2

2(N)×Lp∗
δ (X)

≤ C′‖d∗,δAre f
(V −Vre f )‖Lp

δ (X).

If either A or Are f is regular, then all three connections A, Are f and K(A) are regular and
K(A) is Are f -regular. In this case, the connection K(A) is mASD and the maps (A, ζ) 7→
KA(ζ) and A 7→ ζ(A) are both Cm-smooth, relative to the specified topologies. If A is irre-
ducible, then so is K(A). The constants ε, C, C′ can be chosen to vary continuously in Are f .

SL(Are f )

K(A)

Are f

M̂reg(TΓ, Are f ) SL(A)
A

M̂reg(TΓ, A)

FIGURE 2. Pictured above is the special case of Theorem 4.5 where A is
regular. The curved lines represent the spaces of regular mASD connec-
tions in the slices SL(Are f ) and SL(A), respectively.
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Proof. Take ε > 0 to be no larger than the epsilon from the statement of Proposition 4.3.
Then it follows from that proposition and Remark 4.4 that, given A = ι(h, V) with

s(A) = 0, and ‖V −Vre f ‖Lp∗
δ (X)

+
∥∥d∗,δAre f

(V −Vre f )
∥∥

Lp
δ (X)

< ε

there is a unique µ ∈ Lp
2,δ(Ω

0) so that exp(µ)∗A ∈ SL(Are f ) and

‖µ‖Lp
δ
+ ‖µ‖C0 ≤ C1

∥∥d∗,δAre f
(V −Vre f )

∥∥
Lp

δ
.

Set u = exp(µ) and write u∗A = ι(hA, VA) for hA ∈ Hout and VA ∈ Lp
1,δ(Ω

1). Let
exphA

: Bε(0) ⊆ ThAH → H be the exponential map for the center manifold based at
hA, and extend this to a map

exp(hA,VA)
: Bε(0)× Lp

1,δ

(
ker(d∗,δAre f

)
)
−→ H× Lp

1,δ(ker(d∗,δAre f
))

(η, V) 7−→
(

exphA
(η), VA + V

)
which is a Cm-diffeomorphism in a neighborhood of (0, 0). Using this, define

s̃ : ThAH× Lp
1,δ

(
ker(d∗,δAre f

)
)
−→ Lp

δ (Ω
+), (η, V) 7−→ s

(
ι
(

exp(hA,VA)
(η, V)

))
.

By definition of σA, the operator (Ds|SL(A))A ⊕ σA is surjective. The operators (Ds)A

and (Ds)u∗A are approximately equal when u is C0-close to the identity (i.e., when
‖µ‖C0 is small). Thus, when ε is sufficiently small, the operator (Ds|SL(Are f )

)u∗A⊕ σA is
also surjective, as is (Ds̃)(0,0)⊕ σA. Then we can choose a right inverse to (Ds̃)(0,0)⊕ σA

of the form P⊕ πA, where πA is the projection to H+
A,δ. For ζ ∈ Lp

δ (Ω
+(X)), define

KA(ζ) := ι
(

exp(hA,VA)
(Pζ)

)
.

This proves (a) in the statement of the theorem, by taking U ⊆ Lp
δ (Ω

+(X)) to be small
enough so that P(U) ⊆ Bε(0)× ker(d∗,δAre f

).
To prove (b), we use the same implicit function theorem argument as in Theorem 3.3.

Namely, set
S(ζ) := s̃(Pζ)− (Ds̃)(0,0)Pζ − s̃(0, 0).

The argument of Claim 2 in the proof of Theorem 3.3 carries over to show that S sat-
isfies the quadratic estimate of Lemma 3.7. We will show in a moment that there is a
uniform constant C2 so that

(4.7) ‖s̃(0, 0)‖Lp
δ
≤ C2

∥∥d∗,δAre f
(V −Vre f )

∥∥
Lp

δ
.

From this and Lemma 3.7 it follows that, by assuming ε is sufficiently small, there is a
unique ζ(A) so that

ζ(A) + S(ζ(A)) = −s̃(0, 0).

As we argued in the proof of Theorem 3.3, this ζ(A) satisfies the assertions of (b). The
regularity and irreducibility assertions also follow as in Theorem 3.3.



EXISTENCE OF mASD CONNECTIONS 41

It therefore suffices to verify (4.7). By definition of s̃, we have s̃(0, 0) = s(u∗A).
Recall that the projection pT to the center manifold is gauge invariant, so pT(u∗A) =
pT(A) = h. This implies

s̃(0, 0) = s(u∗A) = F+
u∗A − βF+

i(h)
= Ad(u−1)F+

A − βF+
i(h)

= Ad(u−1)βF+
i(h) − βF+

i(h)
= β(Ad(u−1)− I)F+

i(h)

where, in the penultimate equality, we used the assumption that s(A) = F+
A − βF+

i(h) =

0 vanishes. By shrinking ε further still, we may suppose ‖µ‖C0 ≤ 1. Then the Taylor
expansion for the exponential u = exp(µ) gives

‖s̃(0, 0)‖Lp
δ
≤ C3

∥∥F+
i(h)‖C0‖µ

∥∥
Lp

δ

≤ C1C3
∥∥F+

i(h)

∥∥
C0

∥∥d∗,δAre f
(V −Vre f )

∥∥
Lp

δ
.

The quantity ‖F+
i(h)‖C0 is bounded independent of h sinceHout is compact. �

5. GLUING REGULAR FAMILIES

Throughout this section we work with the space A1,p(TΓ) for fixed 2 < p < 4. We
assume that δ and the cutoff function β are chosen as in Section 4A. We also assume
δ/2 < µ−Γ , so the index formula discussed in Section 2B.5 applies.

We freely refer to the notation of Section 3. For k = 1, 2, fix a precompact open set

Gk ⊆ M̂reg(Tk,Γk
, Are f ,k)

of Are f ,k-regular mASD connections on Xk relative to some reference connection Are f ,k.
Since the Gk are precompact, we can fix L, λ > 0 so that conclusions of Theorem 3.3
hold for all (A1, A2) ∈ G1 × G2. (In our applications of the material of this section, the
values of L and λ will be fixed, so we do not keep track of them in the notation.) Then
Theorem 3.3 produces a regular mASD connection J (A1, A2) ∈ A1,p(TΓ).

Ideally, we would want to view the mapping (A1, A2) 7→ J (A1, A2) as a function
from G1 × G2 into a fixed mASD space. However, since the Coulomb slice to which
J (A1, A2) belongs depends on (A1, A2) (cf. Remark 3.19 (b)), it is more natural to
realize this mapping as a section of a bundle. Towards this end, set

E :=
{
(A1, A2, A)

∣∣∣ Ak ∈ Gk, A ∈ M̂reg
(
TΓ,J (A1, A2)

)}
.

Let Π : E → G1 × G2 be the projection to the first two factors. Then the map

Ψ(A1, A2) :=
(

A1, A2,J (A1, A2)
)

is clearly a section of the map Π.

Theorem 5.1.
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(a) For all sufficiently small λ > 0, there is a neighborhood U ⊆ E of the image of Ψ so that
the restriction Π|U : U → G1 × G2 is a locally trivial fiber bundle. The fibers of Π|U can be
identified with open subsets of M̂reg(TΓ, Are f ) for some Are f .

More specifically, every (A10, A20) ∈ G1 × G2 is contained in an open neighborhood V ⊆
G1×G2 so that the following holds. Let Are f = A′(A10, A20) be the preglued connection, and
consider the map K from Theorem 4.5, defined relative to this reference connection Are f . Then
the map

(5.2) Π−1(V) ∩ U −→ V × M̂reg(TΓ, Are f ) (A1, A2, A) 7−→ (A1, A2,K(A))

is a well-defined Cm-diffeomorphism onto an open subset of the codomain, and this map pro-
duces a local trivialization of Π|U over V .

(b) The map

Φ := K ◦ J : V 7−→ M̂reg(TΓ, Are f )

is a Cm-embedding. If A1 or A2 is irreducible, then the connection Φ(A1, A2) is also irre-
ducible.

Part (b) can be restated by saying that, relative to the local trivilization of (a), lo-
cally the section Ψ becomes a Cm-embedding onto an embedded Cm-submanifold of
the fiber. This is an mASD version of the familiar result for ASD connections that
gluing produces a parametrized family of connections in the ASD moduli space for a
connected sum. See Figure 3 for an illustration of the fiber bundle in (a), and Figure 4
for an illustration of the specified trivialization, as well as the map Φ.

UE
im(Ψ)

Π Ψ

G1 × G2

FIGURE 3. The above picture illustrates the fiber bundle Π|U : U → G1×
G2 obtained by restricting the projection Π : E → G1 × G2 to the open
submanifold U ⊆ E . The fibers are Cm-diffeomorphic to open subsets of
M̂reg(TΓ, Are f ).
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im(Ψ)

Π−1(V) ∩ U
V × M̂reg(TΓ, Are f ) M̂reg(TΓ, Are f )

V ⊆ G1 × G2

(5.2)

Π Ψ Φ

FIGURE 4. The horizontal arrow on the left is the Cm-diffeomorphism
(5.2) trivializing Π|U over V . This is a Cm-diffeomorphism onto the re-
gion in V × M̂reg(TΓ, Are f ) represented by the dashed lines. It takes
im(Ψ), represented by the solid arc, Cm-diffeomorphically onto the re-
gion in V × M̂reg(TΓ, Are f ) represented by the solid diagonal line. The
horizontal arrow on the right is the projection of V × M̂reg(TΓ, Are f ) to
the second factor. This takes the region represented by the dotted (resp.,
dashed) lines in the domain onto the region represented by the dotted
(resp., dashed) line in the codomain. It restricts to a Cm-diffeomorphism
from the region represented by the solid diagonal line onto the region
in the codomain represented by the solid line. The vertical arrow is the
projection of V × M̂reg(TΓ, Are f ) to the first factor. This restricts to a Cm-
diffeomorphism from the region represented by the solid diagonal line
onto V . The map Φ is a Cm-embedding and its image is represented by
the solid line in the picture on the right (despite what the picture sug-
gests, the dimension of the image of Φ may not equal the dimension of
M̂reg(TΓ, Are f ); a higher dimensional illustration would be needed to ac-
curately represent this phenomenon).

Remark 5.3. (a) We will also be interested in the case where G2 consists of a single
point (and so not necessarily an open set in the mASD space). In this case, Theorem 5.1
continues to hold verbatim; there is no significant change in the proofs to account for
this extension.

(b) Recall the fiber isomorphism ρ from the beginning of Section 3. The usual ASD
gluing results (e.g., those of [20, 19, 5]) allows ρ to vary as a “gluing parameter”.
Presumably a similar construction could be carried out in the mASD setting, with
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the expectation that a parametrized version of the map Φ from (a) would be a Cm-
diffeomorphism onto an open subset of M̂reg(TΓ, Are f ). Though we do not pursue the
details of this parametrized gluing construction here, the isomorphism ρ will play an
active role in our existence result of Section 6C.

(c) We have chosen to phrase Theorem 5.1 in terms of the reference connection Are f =
A′(A10, A20) given by the preglued connection. This is only in preparation for our
applications below, and this specific choice is by no means necessary. Indeed, the proof
will show the connection Are f can be replaced by any connection that is sufficiently
close to J (A10, A20) in the sense that the coordinates of Are f and J (A10, A20) satisfy
the estimate (5.12).

We begin by giving several technical lemmas in Section 5A, which are used to prove
that Φ is an immersion. The proof of Theorem 5.1 is given in Section 5B.

5A. Immersion lemmas. Our ultimate goal is to show that the map Φ is an immer-
sion. Recall this is made up of the maps J and K, and hence of the maps J, ξ, K, ζ
of Theorems 3.3 and 4.5. Each of the four lemmas below establishes an estimate on
the derivative of one of these latter four maps. To state the lemmas, we introduce the
following seminorms on the tangent space TAA1,p(TΓ): Fix an open subset U ⊆ X con-
taining End X and let W ∈ TAA1,p(TΓ). Using the isomorphism (2.6), we can identify
W with a pair

(η, V) ∈ Tp(A)HΓ × Lp
1,δ(Ω

1(X)).

Then set

‖W‖L(U);A := ‖η‖L2
2(N) + ‖V‖Lp

δ (U) + ‖d
+
AV‖Lp

δ (U) + ‖d
∗,δ
A V‖Lp

δ (U)

where the derivatives defining the norm ‖ · ‖L2
2(N) on Tp(A)HΓ are defined using the

connection Γ. Then ‖ · ‖L(U);A is a continuous seminorm. These seminorms are gauge-
invariant in the sense that

(5.4) ‖W‖L(U);A = ‖Ad(u−1)W‖L(U);u∗A

for all gauge transformations u ∈ G2,p
δ (Γ); here, via a slight abuse of notation, we are

writing Ad(u−1)W for the linearization in the direction of W of the map A 7→ u∗A. We
use similar notation on the Xk. We note that if U = X, then ‖ · ‖L(X);A is a norm that
induces the topology on TAA1,p(TΓ). When the metric gL,λ is relevant, we will include
it in the notation by writing ‖ · ‖L(X,gL,λ);A.

Our first lemma deals with the map (A1, A2, ξ) 7→ JA1,A2(ξ). To first order, this map
is the sum of the pregluing map (A1, A2) 7→ A′(A1, A2) together with a map that is
bounded in ξ. We now quantify this to an extent that is sufficient for our purposes.

Lemma 5.5. Fix connections Ak ∈ Gk for k = 1, 2. There are constants C, L, λ0, ε > 0 so that
the following holds for all 0 < λ < λ0 and all ξ ∈ Lp

δ (Ω
+(X), gL,λ) with ‖ξ‖Lp

δ (X,gL,λ)
< ε.
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Let DJ(A1,A2,ξ)(W1, W2, x) denote the linearization at (A1, A2, ξ) in the direction (W1, W2, x)
of the map

(A1, A2, ξ) 7−→ JA1,A2(ξ)

from Theorem 3.3 (a). Then

2

∑
k=1
‖Wk‖L(Xk);Ak

≤ C
(
‖DJ(A1,A2,ξ)(W1, W2, x)‖L(X,gL,λ),A′ + ‖x‖Lp

δ (X,gL,λ)

)
for all Wk ∈ TAk Gk and all x ∈ Lp

δ (Ω
+(X), gL,λ), where A′ := A′(A1, A2) is the preglued

connection. The constants C, L, λ0, ε can be chosen to depend continuously on the Ak ∈ Gk.

The next lemma shows that the map (A1, A2) 7→ ξ(A1, A2) depends minimally on
the connections A1, A2. In the next section, this will combine with the previous lemma
to show that the map J (A1, A2) = JA1,A2(ξ(A1, A2)) is approximately the pregluing
map (A1, A2) 7→ A′(A1, A2) for λ small; at this point it will follow that J is an immer-
sion.

Lemma 5.6. Fix Ak ∈ Gk for k = 1, 2. Then there are constants C, L, λ0 > 0 so that
the following holds for all 0 < λ < λ0. Let Dξ(A1,A2)(W1, W2) denote the linearization at
(A1, A2) in the direction (W1, W2) of the map

(A1, A2) 7−→ ξ(A1, A2)

from Theorem 3.3 (c). Then this satisfies

‖Dξ(A1,A2)(W1, W2)‖Lp
δ (X,gL,λ)

≤ b4/pC
2

∑
k=1
‖Wk‖L(Xk);Ak

for all Wk ∈ TAk Gk, where b = 4Lλ1/2. The constants C, L, λ0 can be chosen to depend
continuously on the Ak ∈ Gk.

These next two lemmas are analogues of the previous two, but for the map K(A) =
KA(ζ(A)) in place of J (A1, A2) = JA1,A2(ξ(A1, A2)).

Lemma 5.7. Fix a regular connection Are f ∈ A1,p(TΓ). Then there are constants C, ε′ > 0 so
that the following holds for all connections A ∈ M̂reg(TΓ, Are f ) satisfying (4.6) with respect
to any 0 < ε < ε′. Let DK(A,ζ)(W, z) denote the linearization at (A, ζ) in the direction (W, z)
of the map

(A, ζ) 7−→ KA(ζ)

from Theorem 4.5 (a). Then this satisfies

‖W‖L(X),A ≤ C
(
‖DK(A,ζ)(W, z)‖L(X),A′ + ‖z‖Lp

δ (X)

)
for all W ∈ TAM̂reg(TΓ, Are f ) and all z ∈ Lp

δ (Ω
+(X)). The constants C, ε can be chosen to

depend continuously on A and Are f .
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Lemma 5.8. Fix a regular connection Are f ∈ A1,p(TΓ). Then there are constants C, ε′ > 0 so
that the following holds for all connections A ∈ M̂reg(TΓ, Are f ) satisfying (4.6) with respect
to any 0 < ε < ε′. Let DζAW denote the linearization at A in the direction W of the map

A 7−→ ζ(A)

from Theorem 4.5 (b). Then this satisfies

‖DζAW‖Lp
δ (X) ≤ C‖d∗,δAre f

(V −Vre f )‖Lp
δ (X)‖W‖L(X),A

for all W ∈ TAM̂reg(TΓ, Are f ). The constants C, ε can be chosen to depend continuously on
Are f .

Now we give the proofs of Lemmas 5.5, 5.7, 5.6, and 5.8, in that order.

Proof of Lemma 5.5. The tangent space TAk Gk is cut out by linear elliptic equations. In
particular, unique continuation holds for the elements of this tangent space, and so the
assignment

Wk 7−→ ‖Wk‖L(Xk\BLλ1/2(xk)
);Ak

defines a norm on TAk Gk. Since TAk Gk is a finite-dimensional vector space, any two
norms are equivalent and so there is a constant C1 so that

‖Wk‖L(Xk);Ak
≤ C1‖Wk‖L(Xk\BLλ1/2(xk)

);Ak

for all Wk ∈ TAk Gk. A simple contradiction argument shows that this constant can be
taken to be independent of L, λ, provided L ≥ 1 and λ is sufficiently small.

Now fix tangent vectors Wk ∈ TAk Gk for k = 1, 2. Since Ak is regular, we can
find a Cm-smooth path Ak(τ) of Ak-regular mASD connections with Ak(0) = Ak and
d

dτ |τ=0Ak(τ) = Wk. Let W ′ = d
dτ |τ=0A′(A1(τ), A2(τ)). Note that the construction of

the preglued connection A′(A1, A2) implies there is a uniform constant C2 so that

∑
k
‖Wk‖L(Xk\BLλ1/2 (xk));Ak

≤ C2
∥∥W ′

∥∥
L(X);A′(A1,A2)

provided λ > 0 is sufficiently small. Thus we have

(5.9) ∑
k
‖Wk‖L(Xk);Ak

≤ C1C2
∥∥W ′

∥∥
L(X);A′ .

The next claim ties this in with the linearization of the map J at (A1, A2, ξ) when
ξ = 0.

Claim 1: DJ(A1,A2,0)(W1, W2, x) = W ′ + (Dι)ι−1(A′)Px ∀x ∈ Lp
δ (Ω

+(X)).

Here P is the right-inverse from the proof Theorem 3.3. This depends on A1, A2, so
to emphasize this, we will temporarily write PA1,A2 := P. Consider the map

(5.10) (A, ξ) 7−→ ι ◦ expι−1(A)

(
PA1,A2ξ

)
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where A ranges over all connections near A′ = A′(A1, A2) and ξ ranges over all self-
dual 2-forms near 0. The linearization of (5.10) at (A′, 0) is the operator

(W, x) 7−→W + (Dι)ι−1(A′)
(

PA1,A2 x
)
.

Recall from the proof of Theorem 3.3 that

JA1,A2(ξ) = ι
(

expι−1(A′(A1,A2))

(
PA1,A2ξ

))
.

That is, (A1, A2, ξ) 7→ JA1,A2(ξ) is the map (5.10) precomposed with A′(A1, A2) in the
A-component. Then Claim 1 follows from the chain rule and the fact that we are dif-
ferentiating at ξ = 0, which kills off all terms involving the Ak-derivatives of PA1,A2 .

In summary, we have

∑
k
‖Wk‖L(Xk);Ak

≤ C1C2 ‖W ′‖L(X);A′(A1,A2)

≤ C1C2

(
‖W ′ + (Dι)ι−1(A′)Px‖L(X);A′ + ‖(Dι)ι−1(A′)Px‖L(X);A′

)
= C1C2

(
‖DJ(A1,A2,0)(W1, W2, x)‖L(X);A′ + ‖(Dι)ι−1(A′)Px‖L(X);A′

)
.

We will discuss each term on the right individually.
The first term on the right is almost satisfactory, except we linearized at (A1, A2, 0)

instead of (A1, A2, ξ). To account for this, note that it follows from our regularity as-
sumptions and Theorem 3.3 that J is Cm-smooth. In particular, Taylor’s theorem gives

‖(DJ(A1,A2,ξ) − DJ(A1,A2,0))(W1, W2, x)‖L(X);A′

≤ C3‖ξ‖Lp
δ (X)

(
‖x‖Lp

δ (X) + ∑
k
‖Wk‖L(Xk);Ak

)
for some constant C3 that depends continuously on the Ak and λ.

Claim 2: The constant C3 can be taken to be independent of λ, provided λ is sufficiently small.

To see this, recall that the proof of Taylor’s theorem shows that C3 can be taken to be
a constant multiple of the supremum of the operator norm of the second derivative of J
at (A1, A2, 0). By the chain rule, it therefore suffices to uniformly estimate the first two
derivatives of ι, expι−1(A′(A1,A2))

and P = PA1,A2 . Obtaining such estimates for ι and the
exponential map follow readily because the gluing region is in the complement of the
cylindrical end (e.g., ι is affine-linear over this gluing region). That the derivatives of P
are uniformly bounded is addressed in Remark 3.19 (a), above.

With this claim in hand, we have

∑
k
‖Wk‖L(Xk);Ak

≤ C1C2

(
‖DJ(A1,A2,ξ)(W1, W2, x)‖L(X);A′ + ‖(Dι)ι−1(A′)Px‖L(X);A′

)
+C1C2C3‖ξ‖Lp

δ (X)

(
‖x‖Lp

δ (X) + ∑
k
‖Wk‖L(Xk);Ak

)
When ‖ξ‖Lp

δ (X) < ε := 1/2C1C2C3 this implies that ∑
k
‖Wk‖L(Xk);Ak

is bounded by

2C1C2

(
‖DJ(A1,A2,ξ)(W1, W2, x)‖L(X);A′ + ‖(Dι)ι−1(A′)Px‖L(X);A′

)
+ ‖x‖Lp

δ (X)
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The lemma now follows from the next claim.

Claim 3: There are constants C4, L, λ0 > 0 so that

‖(Dι)ι−1(A′)Px‖L(X,gL,λ);A′ ≤ C4‖x‖Lp
δ (X,gL,λ)

for all x and all 0 < λ < λ0. These constants can be chosen to depend continuously on the
Ak ∈ A1,p(Tk,Γk

).

We briefly sketch the proof, leaving the details to the reader. Use the fact that P
is uniformly bounded to control the zeroth order terms appearing in the definition
of ‖ · ‖L(X);A′ . The term involving d∗,δA′ vanishes because P takes values in the slice. To
control the d+A′ term use the fact that P is a right inverse to an operator that is essentially
d+A′ plus lower order terms. �

Proof of Lemma 5.7. Fix A and W as in the lemma. Let A(τ) be a path in M̂reg(TΓ, Are f )

that is Cm-smooth and satisfies A(0) = A and d
dτ |τ=0A(τ) = W. Let µτ = µ(A(τ), Are f )

be the 0-form from Proposition 4.3 associated to A(τ) and Are f . Set

uτ := exp(µτ), A′ := u∗0 A, W ′ :=
d

dτ

∣∣∣
τ=0

u∗τ A(τ).

By the product rule, we have

W ′ = Ad(u−1
0 )W + dA′

( d
dτ

∣∣∣
τ=0

µτ

)
.

Now the gauge invariance (5.4) and the definition of our norms give

‖W‖L(X);A = ‖Ad(u−1
0 )W‖L(X);A′

≤ ‖W ′‖L(X);A′ +
∥∥∥dA′

(
d

dτ

∣∣∣
τ=0

µτ

)∥∥∥
L(X);A′

= ‖W ′‖L(X);A′ +
∥∥∥dA′

(
d

dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ (X)

+
∥∥∥ [F+

A′ ,
(

d
dτ

∣∣∣
τ=0

µτ

)] ∥∥∥
Lp

δ (X)
+
∥∥∥d∗,δA′ dA′

(
d

dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ (X)
.

Focusing on the second term on the right, we note that the operator d∗,δA′ is injective on
im(dA′) so there is a bound of the form∥∥∥dA′

( d
dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ (X)
≤ C1

∥∥∥d∗,δA′ dA′
( d

dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ (X)
.

As for the third term on the right, the fact that A is mASD implies that F+
A is uniformly

bounded in C0; the same is therefore true of F+
A′ = Ad(u−1

0 )F+
A . Combining this with

the fact that the operator d∗,δA′ dA′ is injective on 0-forms, we obtain∥∥∥ [F+
A′ ,
(

d
dτ

∣∣∣
τ=0

µτ

)] ∥∥∥
Lp

δ (X)
≤ C2

∥∥∥ d
dτ

∣∣∣
τ=0

µτ

∥∥∥
Lp

δ (X)

≤ C3

∥∥∥d∗,δA′ dA′
(

d
dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ (X)
.
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In summary, we have

‖W‖L(X);A ≤ ‖W ′‖L(X);A′ + (1 + C1 + C3)
∥∥∥d∗,δA′ dA′

(
d

dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ (X)

Our hypotheses imply that A′ and Are f differ by a term that is controlled by the C0-
norm of µ. This implies we have an estimate of the form∥∥∥d∗,δA′ dA′

( d
dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ

≤ C4

∥∥∥d∗,δAre f
dA′
( d

dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ

.

To estimate this further, differentiate the defining identity 0 = d∗,δAre f
(u∗τ Aτ − Are f ) at

τ = 0 to get

d∗,δAre f
dA′
( d

dτ

∣∣∣
τ=0

µτ

)
= −d∗,δAre f

W.

Thus ∥∥∥d∗,δAre f
dA′
(

d
dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ

=
∥∥∥d∗,δAre f

W
∥∥∥

Lp
δ

≤
∥∥∥d∗,δA W

∥∥∥
Lp

δ

+ C5‖W‖Lp
δ

=
∥∥∥d∗,δA′ W

′
∥∥∥

Lp
δ

+ C5‖W ′‖Lp
δ

≤ max(1, C5)‖W ′‖L(X);A′ .
Hence

‖W‖L(X);A ≤ C6‖W ′‖L(X);A′

where C6 = 1 + (1 + C1 + C3)C4 max(1, C5). To finish the proof of the lemma, argue
exactly as we did in the proof of Lemma 5.5, starting after the estimate (5.9). �

Proof of Lemma 5.6. Let Ak(τ) be a Cm-smooth path in Gk satisfying Ak(0) = Ak and
d

dτ |τ=0Ak(τ) = Wk. Set ξτ := ξ(A1(τ), A2(τ)). Note that the τ-derivative

d
dτ

∣∣∣
τ=0

ξτ = Dξ(A1,A2)(W1, W2)

is the term that we are looking to bound.
The regularity hypotheses and Theorem 3.3 (c) imply that ξτ satisfies 0 = s(Jτ(ξτ))

for all τ, where Jτ := JA1(τ),A2(τ) is the map from Theorem 3.3 (a). Continuing to use
a subscript τ for any term defined in terms of the Ak(τ) (and hence dependent on τ),
we recall the definition of s̃ from the proof of Theorem 3.3; in particular, this satisfies
s(Jτ(·)) = s̃(Pτ(·)). The Taylor expansion of s̃ therefore gives

0 = s(Jτ(ξτ)) = s̃(Pτ(ξτ)) = s̃τ(0, 0) + ξτ + Sτ(ξτ).

Differentiate the right-hand side at τ = 0 and rearrange to get

(5.11)
d

dτ

∣∣∣
τ=0

ξτ = − d
dτ

∣∣∣
τ=0

s̃τ(0, 0)− d
dτ

∣∣∣
τ=0

Sτ(ξ0)− (DS0)ξ0

( d
dτ

∣∣∣
τ=0

ξτ

)
where (DS0)ξ0 is the linearization at ξ0 of S0. We will return to this after we estimate
each term on the right individually.
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For the first term on the right of (5.11), note that s̃τ(0, 0) = s(A′τ) depends on τ only
through the preglued connection A′τ := A′(A1(τ), A2(τ)). Moreover, the proof of (3.1)
shows that s(A′τ) is equal to a product of a cutoff function supported in the gluing
region, times the connection form for A′τ in this region. In particular, differentiating
this in τ, the same argument used for (3.1) allows us to conclude a uniform bound of
the form ∥∥∥ d

dτ

∣∣∣
τ=0

s̃τ(0, 0)
∥∥∥

Lp
δ (X,gL,λ)

≤ C1b4/p
∥∥∥ d

dτ

∣∣∣
τ=0

A′τ
∥∥∥
L(X,gL,λ),A′0

≤ C2b4/p ∑
k

∥∥∥Wk

∥∥∥
L(X);Ak

where the second inequality follows by differentiating the defining formula for the
preglued connection A′(A1, A2). This is the desired bound on the first term.

The second term on the right of (5.11) is similar, albeit a little more involved. The
point here is that the quadratic estimates on Sτ give a uniform bound of the form∥∥∥ d

dτ

∣∣∣
τ=0

Sτ(ξ0)
∥∥∥

Lp
δ (X,gL,λ)

≤ C3‖ξ0‖Lp
δ (X,gL,λ) ∑

k

∥∥∥Wk

∥∥∥
TAk
A

.

Theorem 3.3 (c) gives ‖ξ0‖Lp
δ (X,gL,λ)

≤ C4b4/p, so the desired estimate for this term
follows.

Turn now to the last term on the right of (5.11). By the estimate (3.8), the linearization
(DS0)ξ0 satisfies

‖(DS0)ξ0ξ ′‖Lp
δ (X,gL,λ)

≤ 2κ‖ξ0‖Lp
δ (X,gL,λ)

‖ξ ′‖Lp
δ (X,gL,λ)

for all ξ ′. Since ‖ξ0‖Lp
δ (X,gL,λ)

≤ C4b4/p, we may assume that ‖ξ0‖Lp
δ (X,gL,λ)

< 1/4κ,
which gives

‖(DS0)ξ0ξ ′‖Lp
δ (X,gL,λ)

≤ 1
2
‖ξ ′‖Lp

δ (X,gL,λ)
.

To see that the above estimates imply the lemma, take the norm of each side of (5.11)
and use the estimates just established to obtain∥∥∥ d

dτ

∣∣∣
τ=0

ξτ

∥∥∥
Lp

δ (X,gL,λ)
≤ (C2 + C3C4)b4/p ∑

k

∥∥∥Wk

∥∥∥
TAk
A
+

1
2

∥∥∥ d
dτ

∣∣∣
τ=0

ξτ

∥∥∥
Lp

δ (X,gL,λ)
.

The corollary follows by subtracting the last term from both sides, and using the iden-

tity Dξ(A1,A2)(W1, W2) =
d

dτ

∣∣∣
τ=0

ξτ. �

Proof of Lemma 5.8. This follows from the same type of argument given for Lemma 5.6.
�

5B. Proof of Theorem 5.1. Let ε > 0 be small enough so that Theorem 4.5 holds with
this value of ε. Define U to be the set of triples (A1, A2, A) with Ak ∈ Gk and A ∈
M̂(TΓ,J (A1, A2)), and so that

(5.12) ‖h− h0‖L2
2(N) + ‖V −V0‖Lp∗

δ (X)
+ ‖d∗,δA0

(V −V0)‖Lp
δ (X) < ε/3
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where A = ι(h, V) and A0 = ι(h0, V0) := J (A1, A2). Since all elements of the Gk are
regular, it follows from Theorem 3.3 that J (A1, A2) is regular, so any connection A
satisfying (5.12) is automatically A0-regular. Thus U ⊆ E .

To show that Π|U : U → G1 × G2 is locally trivial, fix (A10, A20) ∈ G1 × G2, and
set Are f := A′(A10, A20). By (3.14) and the fact that J (A10, A20) takes values in the
Are f -slice, by choosing λ sufficiently small, it follows that the coordinates of Are f and
J (A10, A20) satisfy the estimate (5.12); in fact, this estimate is uniform in λ, in the sense
that it holds for all sufficiently small λ. Fix any such λ; we will refine this choice in the
next paragraph. Take V ⊆ G1 × G2 to be a neighborhood of (A10, A20) that is small
enough so that if (A1, A2) ∈ V , then the components of Are f and A′(A1, A2) satisfy
(5.12). Though we do not use this observation presently, we note that the set V can
also be chosen to be uniform in λ, provided λ > 0 is sufficiently small; this is due to
the scaling properties the Lp∗-norm of 1-forms [5, p.293]. Use two applications of the
triangle inequality to conclude that, for any triple (A1, A2, A) ∈ Π−1(V) ∩ U , the pair
A, Are f satisfies the hypotheses of Theorem 4.5. Thus the map (5.2) is well-defined and
indeed provides a local trivialization of Π|U .

To finish the proof, it suffices to show that the map Φ = K ◦J : V → M̂reg(TΓ, Are f )
is a Cm-immersion; it can then be made into an embedding by further shrinking V , if
necessary. Since Φ = K ◦ J , it suffices to show that J and K are immersions for all
λ > 0 sufficiently small. For J , note that the linearization at (A1, A2) is the map

(W1, W2) 7−→ DJ(A1,A2,ξ(A1,A2))(W1, W2, Dξ(A1,A2)(W1, W2)).

Suppose this vanishes at some (W1, W2). Then by Lemmas 5.5 and 5.6, we would have

∑
k
‖Wk‖L(Xk);Ak

≤ Cb4/p ∑
k
‖Wk‖L(Xk);Ak

By taking λ > 0 sufficiently small, we may assume Cb4/p < 1 and so Wk = 0. Thus J
is an immersion. A similar argument, but using Lemmas 5.7 and 5.8, shows that K is
an immersion for small λ.

The irreducibility claims follow from the analogous claims appearing in Theorems
3.3 and 4.5. �

6. EXISTENCE RESULTS

Let X be an oriented cylindrical end 4-manifold with b+(X) = 0 or 1. In this section,
we will show how to use the above framework to prove the existence of families of
mASD connections on X; the cases b+(X) = 0 and b+(X) = 1 are treated in Sections
6B and 6C, respectively. The ASD existence result Theorem A is proved in Section 6D.

Part of our existence results state that the connections we construct are topologi-
cally non-trivial in a certain sense. In the case of closed 4-manifolds, this non-triviality
is captured by the non-vanishing of a characteristic class of the bundle supporting the
connections. In the present cylindrical end setting, we will use a certain relative charac-
teristic class to measure this non-triviality. The details of this are carried out in Section
6A.
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6A. Relative characteristic classes and adapted bundles. This section reviews topo-
logical quantities associated to 4-manifolds with cylindrical ends. We begin with a
review of characteristic classes in the closed (compact with no boundary) setting.

Suppose Z is a closed, oriented 4-manifold and P → Z is a principal G-bundle. We
define

κ(P) := − 1
8π2

∫
Z
〈FA ∧ FA〉

where A ∈ A(P) is any connection and 〈FA ∧ FA〉 is obtained by combining the wedge
and the inner product on g defined via the immersion (2.1). Then κ(P) is independent
of the choice of A by the Bianchi identity. Topologically, κ(P) = c2(P ×G Cr) [Z] is
the second Chern number of the Cr-bundle associated to P via the map (2.1) and the
standard action of SU(r) on Cr. In particular, κ(P) ∈ Z is an integer representing an
obstruction to P being trivializable.

Now consider the bundle Q → N over the 3-manifold N, and fix a gauge transfor-
mation u ∈ G(Q). We can form the mapping torus Qu = [0, 1]× Q/(0, u(q)) ∼ (1, q)
which is a principal G-bundle over S1 × N. Then we define the degree of u to be the
integer

deg(u) := κ(Qu).

This depends only on the homotopy type of u and so descends to a group homomor-
phism

deg : π0(G(Q)) −→ Z

from the group of components of G(Q). The degree is an obstruction to extending u
to a gauge transformation on X0 (or equivalently X). We denote by G0(Q) the sub-
group of degree-zero gauge transformations. When G is simply-connected, the degree
deg : π0(G(Q)) → Z is injective, and so G0(Q) is exactly the identity component of
G(Q).

Since the cylinder End X deformation retracts to the 3-manifold N, we have a natu-
ral isomorphism π0(G(End X)) ∼= π0(G(N)) and so the degree provides a homomor-
phism deg : π0(G(End X))→ Z. We denote by G0(End X) the degree-zero elements of
G(End X).

We will be working with principal G-bundles on the cylindrical end 4-manifold
X. Bundle isomorphism is too course of an equivalence relation to be useful in the
cylindrical-end setting (e.g., when G is simply-connected, all principal G-bundles are
trivializable since H4(X) = 0). A more useful relation for our purposes deals with
adapted bundles, which are pairs (E, AEnd), where E → X is a principal G-bundle, and
AEnd is a connection on the cylindrical end End X. Then we say that (E, AEnd) is equiv-
alent to (E′, A′End) if there is a bundle isomorphism from E to E′ that carries AEnd to
A′End. See Donaldson’s book [4, Section 3.2] for more details; note that Donaldson only
treats flat connections AEnd, but our applications require that we extend the discussion.

By the above discussion, it follows that G0(End X) consists of gauge transformations
on End X that have extensions to E→ X. Thus, any adapted bundle (E, AEnd) depends
on AEnd only through its G0(End X)-equivalence class. The next example illustrates an
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interplay between the degree and the equivalence classes of adapted bundles; it will
be relevant to our gluing discussion below.

Example 6.1. Fix an adapted bundle (E, AEnd) and a point x ∈ X. Suppose E` → S4

is a principal G-bundle with κ(E`) = ` ∈ Z. Taking the connected sum of X and S4

at x, we recover the same manifold back X ∼= X#S4, up to diffeomorphism. At the
bundle level, we can carry out a similar connected sum procedure to obtain a bundle
E′ = E#E` over X. Provided x ∈ X0 is not on the end, the connection AEnd can be
viewed as a connection on E′. Then the adapted bundles (E, AEnd) and (E′, AEnd) are
equivalent if and only if ` = 0. More generally, there is a gauge transformation u on
End X with deg(u) = `, and so that the adapted bundle (E, u∗AEnd) is equivalent to
(E′, AEnd).

Assume that the connection AEnd converges on the end in the sense that

lim
t→∞

AEnd|{t}×N = Γ

for some connection Γ on N, where the limit is in L2
1(N), say. Let A be any connection

on E that restricts on End X to AEnd. Then the quantity

κ(E, AEnd) := lim
T→∞

− 1
8π2

∫
X0∪[0,T]×N

〈FA ∧ FA〉

is well-defined and independent of the choice of A. We will call κ(E, AEnd) the relative
characteristic number of the adapted bundle (E, AEnd). It depends on AEnd only through
the value of Γ and the topological type of E. Indeed, if E′ = E#E` is as in Example 6.1,
then

κ(E′, AEnd) = κ(E, AEnd) + `.
Moreover, if AEnd is asymptotic to Γ, then working modulo Z, we recover

8π2κ(E, AEnd) = CS(Γ) mod Z

the Chern–Simons value of Γ as defined in [17, Section 2.1] (here one should interpret
the trace in [17] as the one induced from (2.1)).

6B. Existence when b+(X) = 0. Let Etriv → X be the trivial bundle, Atriv the trivial
connection on Etriv, and Γtriv the trivial connection on the end. Fix thickening data
TΓtriv . Here we assume δ and β are chosen as in the beginning of Section 5. We recall
from Section 2B that the thickening data also includes the choice of ε0 > 0 so that any
two points in the center manifold have Chern–Simons values differing by ε0/2. For
each 0 < ε < ε0, we will write T (ε) for the same set of thickening data as TΓtriv , but
with ε in place of ε0.

Let E` → S4 be a principal G-bundle with κ(E`) = ` ∈ Z, where κ is the characteristic
number of Section 6A. We will write

M`(S4, G) :=
{

A ∈ A(E`) | F+
A = 0

} /
G(E`)

for the moduli space of ASD connections on E`; here we are working relative to the
standard metric on S4. Let M∗

` (S
4, G) ⊆ M`(S4, G) denote the subset of irreducible
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ASD connections. The existence of irreducible ASD connections on S4 was studied
extensively in [1, Section 8]. For example, when G = SU(r) and the embedding (2.1)
is the identity, then the spaceM∗

` (S
4, SU(r)) is nonempty if and only if ` ≥ r/2. The

most famous situation is when G = SU(2) and ` = 1, in which caseM1(S4, SU(2)) =
M∗

1(S
4, SU(2)) and this is diffeomorphic to the open unit ball in R5. The dimension of

M∗
` (S

4, G) for general simple, simply-connected G is given in [1, Table 8.1].
The following is the first of our main existence results for mASD connections; Theo-

rem C with b+(X) = 0 from the introduction is an immediate consequence.

Theorem 6.2 (Existence of mASD-connections when b+ = 0). Assume b+(X) = 0 and
A` is an irreducible ASD connection on E` → S4 for some ` ∈ Z. Then for every 0 < ε < ε0,
there is

(a) a neighborhood V ⊆ M`(S4, G) of [A`] ∈ M`(S4, G);
(b) a trivializable principal G-bundle E→ X that is canonically trivial on the end;
(c) a connection A′ on E that is flat in the complement of a compact set, asymptotic to Γ

on the end, and satisfies κ(E, A′|End X) = `; and
(d) a Cm-embedding

Φ : V −→ M̂reg(T (ε), A′).

The image of Φ consists of irreducible connections. In particular, there exist an irreducible,
regular mASD connection A on E with |κ(E, A|End X)− `| < ε/2.

For ` 6= 0 and 0 < ε < 2|`|, the condition |κ(E, A|End X)− `| < ε/2 implies that A is
not flat. (The analogous statement in the case where X is closed and G = SU(r) is that
A is supported on a bundle P with c2(P) [X] = `.)

Proof of Theorem 6.2. View S4 as a cylindrical end 4-manifold with no ends, and let T∅
be the empty set of thickening data as in Section 2C.3. Form the connected sum of S4

and X at any point in S4 and any point in X lying in the interior of the compact part.
Note that all ASD connections on S4 are regular (e.g., use the Weitzenböck formula [5,
(7.1.23)]). In particular, since A` is irreducible and regular, there is a neighborhood V ⊆
M∗

` (S
4, G) of [A`] that is diffeomorphic to a precompact open set G1 ⊆ M̂reg(T∅, A`)

containing A`; that is, V consists of gauge equivalence classes of regular, irreducible
ASD connections on S4, and G1 consists of their lifts to the Coulomb slice through A`.
Using this diffeomorphism, we identify V and G1.

By Proposition 2.15, the assumption b+(X) = 0 implies that Atriv is regular; see also
Remark 2.19. Then the singleton set G2 := {Atriv} plainly consists of regular connec-
tions. By Remark 5.3 (a), we can apply Theorem 5.1 with this G2. Define E := Etriv#E`
to be the connected sum bundle as in Section 6A, equipped with thickening data T (ε).
Take A′ to be the preglued connection, which is plainly asymptotic to Γtriv. In partic-
ular, κ(E; A′|End X) = ` due to the discussion of Section 6A. By possibly shrinking V ,
if necessary, we define Φ to be the Cm-embedding of the same name from Theorem 5.1
(b) (here we are using the identifications V ∼= G1

∼= G1 × G2). If A is any connection
in the image of Φ, then |κ(E, A|End X) − `| < ε/2 follows from the definition of ε as
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a parameter in the set of thickening data and the fact that κ(E; A|End X) recovers the
Chern–Simons value of the asymptotic limit of A. �

6C. Existence when b+(X) = 1. Here we consider the case where b+(X) = 1 and
G = SU(2). We assume (2.1) is the identity (so r = 2); then the characteristic number
κ from Section 6A is the second Chern number. Fix thickening data TΓtriv and assume
δ and β are chosen as in the beginning of Section 5. Define T (ε) as in Section 6B. The
following is the second of our main existence results for mASD connections. Theorem
C with b+(X) = 1 is an immediate consequence.

Theorem 6.3 (Existence of mASD-connections when b+ = 1). Assume b+(X) = 1 and
fix an integer ` ≥ 2. Then for every 0 < ε < ε0, there is

(a) a trivializable principal SU(2)-bundle E→ X that is canonically trivial on the end;
(b) a connection A′ on E that is flat in the complement of a compact set, asymptotic to Γ

on the end, and satisfies κ(E; A′|End X) = `; and
(c) an irreducible mASD connection A ∈ M̂(T (ε), A′) on E satisfying

|κ(E, A|End X)− `| < ε/2.

Proof. Our proof follows that of [20, Section 7] and [3, pp. 327—334]. The assump-
tion that b+ = 1 implies that the cokernel of the operator d+ : Lp

1,δ(Ω
1(X, R)) →

Lp
δ (Ω

+(X, R)) is one-dimensional. As in Section 2C.1, this cokernel can be realized
as the space H+(X, R) of closed self-dual 2-forms in L2(Ω+(X, R)) that restrict on
each slice {t} × N to be orthogonal to the space of harmonic forms on N. Fix a non-
zero element ω0 ∈ H+(X, R); this is unique up to scaling. By unique continua-
tion for solutions of elliptic equations, it follows that the set of points in X where
ω0 does not vanish is open and dense. In particular, we can find two distinct points
x1, x2 ∈ int(X0) with ω0(x1) 6= 0 and ω0(x2) 6= 0. When ` > 2, choose additional
points x3, . . . , x`−2 ∈ int(X0); these can be arbitrarily chosen, provided the xi are all
distinct. The gluing Theorem 3.3 has a straightforward extension to handle gluing for
multiple connected sums that we briefly describe now.

Fix scaling parameters λ1, . . . , λ` > 0, and set

λ := max(λ1, . . . , λ`).

Here we will consider ` copies of S4; denote these copies by S4
1, . . . , S4

` , and fix points
x′i ∈ S4

i . Then as we did in Section 3A, glue xi ∈ X0 to x′i ∈ S4
i over balls with radii

controlled by λi.
At the bundle level, let Etriv → X be the trivial SU(2)-bundle, and let E1 → S4 be

the SU(2)-bundle with κ(E1) = c2(E1)
[
S4] = 1. More concretely, we can take E1 to

be the frame bundle of Λ+T∗S4 (then Λ+T∗S4 is the adjoint bundle of E1). In Section
3, gluing the bundles depended on the choice of fiber isomorphism ρ identifying the
fibers of the principal bundles at the gluing points. In the present setting with ` gluing
points, this corresponds to the choice of a fiber isomorphism

ρi ∈ Gli = HomSU(2)((Etriv)xi , (E1)x′i
)



56 DAVID L. DUNCAN AND IAN HAMBLETON

for each 1 ≤ i ≤ `.
Let Atriv be the trivial connection on Etriv. Let A′ be the preglued connection on

E obtained from Atriv and the standard “one-instanton” Ast on each of the bundles
E1 → S4

i for 1 ≤ i ≤ `. Then κ(E, A′|End X) = `; note that A′ depends on the λi and
ρi. The proof of Theorem 3.3 extends to produce C, L, λ0, J, π, and ξ ∈ Lp

δ (Ω
+(X)),

satisfying the conditions of Theorem 3.3 (a)—(c) and Corollary 3.26 whenever 0 < λ <
λ0; though we suppress this in the notation, these quantities depend on the connections
Atriv and Ast, as well as the isomorphisms ρi. In particular, the connection A := J(ξ) is
irreducible and satisfies

s(A) = −σπξ and |κ(E, A|End X)− `| < ε/2.

It suffices to show that the λi and ρi can be chosen so that σπξ = 0, since this implies
that A is mASD. For this, let X′ be the complement in X of the Lλ1/2

0 -balls around the
xi; we assume λ0 is small enough so these balls do not intersect and are contained in
X0. Note that the bundles E and Etriv are canonically identified over X′, and so over X′
we can compare 2-forms on Etriv with 2-forms on E. The self-dual 2-form σπξ vanishes
if and only if the integral

(6.4)
∫

X′
〈ω ∧ σπξ〉 = 0

vanishes for all ω ∈ H+(X, ad(Atriv)) = H+(X, R)⊗ g.

Claim:

(6.5)
∫

X′
〈ω ∧ σπξ〉 = q`ω(

{
(λi, ρi)

}
i) + O(λ3)

where

q`ω(
{
(λi, ρi)

}
i) :=

`

∑
i=1

λ2
i tr(ρiω(xi)).

Here tr(ρiω(xi)) ∈ R is the pairing of ρi and ω(xi) as described in [3, Equation (5.3)].
We will prove this claim below, but first we will show how it is used to finish the proof
of the theorem. From the discussion leading up to the claim, we are interested in the
simultaneous system of equations

(6.6) q`ω(
{
(λi, ρi)

}
i) = 0 ∀ω ∈ H+(X, ad(Atriv)).

When ` = 2, the argument of [3, Section V(ii)] carries over verbatim to show that
the solutions set of the system (6.6) is non-empty and cut out transversely, whenever
max(λ1, λ2) is sufficiently small. This uses the assumption ω0(x1), ω0(x2) 6= 0. Note
that Donaldson’s argument uses b+(X) = 1. (Alternatively, the reader could follow
the original argument of Taubes [20, Prop. 7.1], but our notation is more inline with
that of [3].) When ` > 2, it was pointed out by Taubes [20, Prop. 6.2] that by taking
max(λ3, . . . , λ`) sufficiently small relative to max(λ1, λ2), any transverse zero of q2

ω

implies the existence of a transverse zero of q`ω. In summary, for each ` ≥ 2, there are
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λ′0 > 0 and µ ∈ (0, 1) so that the system (6.6) has a nonempty, transverse solution set,
for all λ1, . . . , λ` > 0 with

max(λ1, λ2) < λ′0 and max(λ3, . . . , λ`) < µ max(λ1, λ2).

For any such λ1, . . . , λ`, since q`ω is O(λ2), it then follows from the transversality of
q`ω = 0 and the identity (6.5) that the solution sets to (6.4) and (6.6) are diffeomorphic,
provided λ is sufficiently small. In particular, there is a simultaneous zero {(λi, ρi)}`i=1
of the solution set to (6.4). For this collection of gluing data, the glued connection A is
therefore mASD, as desired.

It therefore suffices to verify the above Claim. We will first unpack the notation. Note
that the preglued connection A′ restricts on X′ to equal the trivial flat connection. Let
A′(λ0) be the preglued connection defined using λ0 at every gluing site, and the same
ρi as was used to define A′ (so the only difference between A′ and A′(λ0) is that the
former uses λi at the gluing site xi, while the latter uses λ0 at all gluing sites). Define the
map i (and hence ι) using A′(λ0) as a reference connection. Write Γ = Γtriv for the trivial
connection on N. Then we can write A′ = ι(Γtriv, V′) = i(Γtriv) + V′ = A′(λ0) + V′ for
some 1-form V′. It follows that V′|X′ = 0, and we note also that A′(λ0)|X′ = Atriv.

Next, recall the map P : Lp
δ (Ω

+) → TΓH × Lp
1,δ(Ω

1) from Claim 1 in the proof of
Theorem 3.3, and write Pξ = (η, V). The definition of the map J = JAtriv,Ast gives

J(ξ) = i(expΓ(η)) + V′ + V

where expΓ : TΓH → H is the exponential. The observations of the previous paragraph
combine with the formula (2.11) to give that the restriction of s(A) takes the following
form:

s(A)|X′ = (1− β′)F+
i(expΓ(η))

+ d+i(expΓ(η))
V +

1
2
[V ∧V]+ .

Returning to the integral (6.4), we can use the defining property of ξ and the above
identity for s(A) to get

(6.7)

∫
X′
〈ω ∧ σπξ〉 = −

∫
X′
〈ω ∧ s(A)〉

= −
∫

X′
(1− β′)〈ω ∧ F+

i(expΓ(η))
〉 −

∫
X′
〈ω ∧ d+i(expΓ(η))

V〉

−1
2

∫
X′
〈ω ∧ [V ∧V]+〉.

Focus on the last term on the right. Recall from Lemma 2.20 that ω decays in C0 like
e−µ+

Γ t. In particular, ω is bounded and so∫
X′

∣∣∣〈ω ∧ [V ∧V]+〉
∣∣∣ ≤ C1‖V‖2

L2(X) ≤ C1‖V‖2
L2

δ(X)
≤ C1‖Pξ‖2

L2
δ(X)

for some constant C1. By Corollaries 3.26 and 3.30, this term decays like λ3:

−1
2

∫
X′
〈ω ∧ [V ∧V]+〉 = O(λ3).
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We can control the nonlinear parts of the other two terms in (6.7) similarly. Indeed,
use i(expΓ(η)) = Atriv + (Di)Γη +O(η2) and the expansion formulas for the curvature
and covariant derivative, to get∫

X′
〈ω ∧ σπξ〉 = −

∫
X′
(1− β′)〈ω ∧ d+(Di)Γη〉 −

∫
X′
〈ω ∧ d+V〉+ O(λ3)

where d = dAtriv . Focus on the first term on the right (there is no analogue of this
term in the standard ASD framework). It follows from the definitions of β′ and i that
(1− β′)(d+(Di)Γη) is supported on [T − 1/2, T + 1/2]× N. Using the formula (2.17),
we have

−
∫

X′
(1− β′)〈ω ∧ d+(Di)Γη〉 = −

∫
X′
(1− β′)(∂tβ

′′)〈ω ∧ (dt ∧ η)+〉 = 0

where the last equality uses the facts that (i) η ∈ H1
Γtriv

is in the harmonic space on N,
and (ii) elements of H+(X, ad(Atriv)) restrict on each slice to be orthogonal to H1

Γtriv
. In

summary, this gives ∫
X′
〈ω ∧ σπξ〉 = −

∫
X′
〈ω ∧ d+V〉+ O(λ3)

=
∫

∂X′
〈ω ∧V〉+ O(λ3).

What remains is to estimate the integral
∫

∂X′〈ω ∧ V〉. This is an integral taking place
at the boundary of the disks centered at the gluing sites x1, . . . , x`. In particular, this
integral is identical to the analogous term that arises when gluing in the standard ASD
setting (e.g., see the top of [3, p. 328]). Then the argument of [3, pp. 328—331] carries
over verbatim to give ∫

∂X′
〈ω ∧V〉 = q`ω(

{
(λi, ρi)

}
) + O(λ3).

This proves (6.5).
�

6D. An ASD existence result and a proof of Theorem A. Recall from Section 2A the
definition of the vector field ΞΓ on the center manifold. We will be interested in the
case where the flat connection Γ satisfies the following hypothesis:

Hypothesis H. There is a neighborhood U ⊆ HΓ of Γ so that every a ∈ U flows under ΞΓ to
a flat connection in U.

Example 6.8.
(a) Recall from Section 2A that UΓ is a neighborhood of Γ in the Coulomb slice

through Γ. Suppose the set of flat connections in UΓ is smooth in a neighborhood
U′ ⊆ UΓ of Γ and has the same dimension asHΓ. Then U := U′ ∩HΓ satisfies Hypoth-
esis H.
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(b) The assumption of (a) trivially holds when Γ is non-degenerate, sinceHΓ consists
of a single point. More generally, the assumption of (a) also holds when the Chern–
Simons function is Morse–Bott in a neighborhood of Γ (though there is no assumption
in part (a) about the nondegeneracy of the Hessian in the normal directions).

(c) Suppose N = T3, and let Γ be a flat connection on the trivial SU(2)-bundle. If Γ
is not gauge equivalent to the trivial connection, then Γ satisfies the assumption in (a),
and hence Hypothesis H; see [10, Lemma 14.2(i)]. However, the trivial connection on
T3 does not satisfy Hypothesis H.

The main usefulness of Hypothesis H for us is through the following theorem.

Theorem 6.9. Consider the situation of Theorem 3.3, and assume A1 and A2 are regular. In
addition, assume that Γ1 and Γ2 each satisfy Hypothesis H. Let λ0 > 0 be the constant from
Theorem 3.3. Then there is some 0 < λ′0 ≤ λ0 so that for all λ ∈ (0, λ′0) the mASD connection
J (A1, A2) guaranteed by Theorem 3.3 (and hence by Theorems B and C) is in fact ASD.

Proof. Fix 0 < λ < λ0 and let Aλ := J (A1, A2) be the mASD connection from Theorem
3.3 associated to this value of λ. Recall that Γ = Γ1t Γ2, and so Γ satisfies Hypothesis H
since the Γk do. It follows from (3.6) that pT(Aλ) ∈ Hin converges to Γ as λ approaches
0. In particular, by taking λ sufficiently small, Hypothesis H implies that the ΞΓ-flow
line beginning at pT(Aλ) lies inHin for all positive time. This implies i(pT(Aλ)) is ASD
(see the paragraph just before the statement of Lemma 2.3), and so

F+
Aλ

= F+
Aλ
− β′F+

i(pT(Aλ))
= s(Aλ) = 0.

�

Now we can prove our application from the introduction.

Proof of Theorem A. Take Γ to be the trivial flat connection on the trivial SU(2)-bundle.
We will show that the two conditions on N stated in Theorem A each imply that Γ
satisfies Hypothesis H; it will then be immediate that the mASD connection guaranteed
by Theorem C is in fact ASD, as desired.

First assume N is a circle bundle over a surface with positive Euler class. Then [17,
Corollary 13.2.2] implies that Γ satisfies the condition of Example 6.8 (a), and thus
Hypothesis H.

Now assume that b1(N) ≤ 1. If b1(N) = 0, then H1
Γ = H1(N)⊗ g = 0 and so Γ is

nondegenerate. Thus, Γ again satisfies Hypothesis H, but this time by Example 6.8 (b).
Finally, suppose b1(N) = 1. We will show here that Γ satisfies the condition of

Example 6.8 (a). Since b1(N) = 1, there is a loop γ : S1 → N and a harmonic 1-form
η ∈ Ω1(N, R) so that

∫
γ η = 1. For each ξ ∈ g, let

aξ := Γ + ξ ⊗ η.

We claim that aξ lies in the center manifold HΓ for all sufficiently small ξ. To see this,
first note that aξ is flat, since

Faξ
= FΓ + ξ ⊗ (dη) +

1
2
[ξ, ξ]⊗ η ∧ η = 0.
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This connection also lies in the Coulomb gauge slice for Γ, since

d∗Γ(aξ − Γ) = ξ ⊗ d∗η = 0.

Recall the map Θ and the vector field ∇ fΓ from Section 2A.1. Since Faξ
= 0, we have

Θ(aξ) = 0.

Thus ∇aξ
fΓ = 0. One of the defining features of HΓ is that it contains all zeros of ∇ fΓ

that are sufficiently close to Γ, so this proves the claim.
It thus follows that there is some ε > 0 so that the map

Bε(0) ⊆ g −→ HΓ ξ 7−→ aξ

is well-defined. It is clearly an immersion, so a dimension count implies that it must be
a local diffeomorphism; this uses the fact that b1(N) = 1. This establishes the condition
of Example 6.8 (a). �

7. PARTIAL COMPACTIFICATION—THE TAUBES BOUNDARY

Here we give a more global formulation of the result of Theorem 6.2 in the case
where G = SU(2) and ` = 1. Fix a closed set X′0 contained in the interior of the
compact part X0. Let Ast be the standard one-instanton on the SU(2)-bundle E1 → S4

with c2(E1)
[
S4] = 1. For x ∈ X′0, let Xx be the connected sum of X and S4 obtained

by gluing x ∈ X to the north pole in S4. Similarly, glue the trivial SU(2)-bundle on X
to E1 → S4 and let Ex → Xx be the resulting bundle. Let A′x = A′(Atriv, Ast) be the
preglued connection on Ex, where Atriv is the trivial connection on X. Note that in the
present situation, all auxiliary gluing data can be chosen to be independent of x. For
example, the fiber isomorphism ρ of Section 3A can be taken to be independent of x
since we are starting with the trivial bundle on X.

7A. The Taubes Boundary. Fix ε > 0, and let T (ε) be thickening data with this choice
of ε, as in Section 6B. By Theorem 3.3, there are ε0, λ0 > 0 so the following holds: For
all 0 < ε < ε0 and 0 < λ ≤ λ0, there is an irreducible, regular mASD connection

A(x, λ) := J (Atriv, Ast) ∈ A1,p(T (ε))
with the property that A(x, λ)− Atriv|X\nbhd(x) goes to zero in λ in the sense of (3.6).
This ε0 depends only on the trivial flat connection on the 3-manifold N; hence ε0 is
independent of x. Since X′0 is compact, we can assume this λ0 is independent of x as
well.

We want to allow x to vary, and for this, we form the space

E ′ :=
{
(x, λ, A) ∈ X′0 × (0, λ0]×A1,p(T (ε))

∣∣∣ A ∈ M̂reg(T (ε), A(x, λ))
}

.

Let Π′ : E ′ → X′0× (0, λ0] be the projection to the first two factors. Then the assignment
Ψ′(x, λ) := (x, λ, A(x, λ)) defines a section of Π′. Just as in Theorem 5.1, there is an
open neighborhood U ′ ⊆ E ′ of the image of Ψ′ so that the restriction Π′|U ′ is a locally-
trivial Cm-fiber bundle over X′0 × (0, λ0]. By construction, the fiber over (x, λ) is an
open subset of M̂reg(T (ε), A(x, λ)) containing A(x, λ).
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Remark 7.1. Here we describe a sense in which Theorem 6.2 can be viewed as a lo-
cal version of this fiber bundle construction. Fix a small neighborhood Ux ⊆ X0
around x. The gluing procedure of Section 3A identifies this with a small neighbor-
hood of the north pole in S4. The standard description [9, Ch. 6] of the ASD moduli
spaceM1(S4, SU(2)) gives an embedding S4 × (0, λ0] → M1(S4, SU(2)) with the S4-
component specifying the center of mass and (0, λ0] parametrizing the scale of the
curvature; here the energy-density of the curvature is concentrating, as λ approaches
0, to a Dirac delta measure supported at the center of mass. Combining these, we have
a diffeomorphism

f : Ux × (0, λ0] −→ V ⊆M1(S4, SU(2))

onto an open set V . It follows from this construction that there is a local trivialization
of the fiber bundle Π′|U ′ relative to which Ψ′ takes the form (y, λ) 7→ (y, λ, Φ( f (y, λ)))
where Φ is the map of Theorem 6.2. In fact, by possibly shrinking Ux further, this
local trivialization can be taken to be over the full cylinder Ux × (0, λ0]; this due to the
fact that the constructions in the proof of Theorem 5.1 can be taken to be uniform in
λ. This construction is exploiting a coupling between the parameter λ and the “scale”
parameter for the concentration of instantons on E1 → S4; see [5, p. 323] for a related
discussion.

Now we consider the behavior of this section Ψ′ near λ = 0. For this, suppose
(xn, λn) ∈ X′0 × (0, λ0] is a sequence with λn → 0; we will call Ψ′(xn, λn) a bubbling
sequence in X′0. By passing to a subsequence, we may assume the xn converge to some
x∞ ∈ X′0. It follows from a straight-forward Uhlenbeck-type compactness argument
and (3.6) that, after passing to a subsequence, the associated connections A(xn, λn)
converge weakly to the ideal connection (Atriv, x0) in the sense that the energy densities
|FA(xn,λn)|

2 converge in measure to the delta measure supported at x0, and

lim
n→∞

∥∥∥ι−1(A(xn, λn))− ι−1(Atriv)
∥∥∥

L2
2(N)×Lp

1,δ(X\Br(x0))
= 0

for all r > 0; see [5, Section 4.4.1] for the analogous ASD case.
Following the lead of [5, Section 4.4.1], the discussion of the previous paragraph can

be framed geometrically as follows. Consider the set

I(U ′) := U ′ ∪ (X′0 × {Atriv})

which we view as coupling the connections in U ′ ⊆ E ′ into the same space as the
above-mentioned ideal connections. We can extend Π′|U ′ to a map I(Π′) : I(U ′) →
X′0 × [0, λ0] by declaring it to send (x, Atriv) to (x, 0). Give I(U ′) any topology (more
below) for which the map I(Π′) is continuous and so that the notion of weak conver-
gence from the previous paragraph implies convergence in I(U ′); we assume also that
this topology is first countable. Then the observations of the previous paragraph imply
the section Ψ′ extends continuously over X′0 × {0} to a section Ψ′ of I(Π′). It is due
to this that we may view I(U ′) as a “partial compactification” for mASD connections:
The bubbling sequences in X′0 converge in I(U ′).
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7B. Compactification Issues. We end this section with several comments about the
construction of the partial compactification I(U ′), as well as some of its limitations.
This partial compactification is constructed only so that bubbling sequences in X′0
converge—our assumptions on the topology on I(U ′) do not necessarily imply sub-
sequential convergence of other types of sequences. The simple reason for this is that
we do not yet know how such sequences behave, and what additional limiting objects
we would need to include in I(Π′) to ensure their subsequential convergence. What
we are presently lacking is a sufficiently strong version of Uhlenbeck’s compactness
theorem for mASD connections. In the end, such a theorem would need to (at least)
address the following:

(a) Bubble formation on the end: To what extent is the mASD condition preserved un-
der Uhlenbeck limits where the curvature concentrates at a point in End X? More
fundamentally, is the connections spaceA1,p(TΓ) suitably closed under such lim-
its? This is related to (c) below.

From the gluing perspective, we avoided these questions altogether by only glu-
ing at points in the compact part where mASD connections are ASD; that is, I(U ′)
only corresponds to the points in the “Taubes boundary” that corresponds to
bubbles in X′0 ⊆ X\End X (and relative to a fixed gluing parameter ρ; see Remark
5.3 (b)). A more thorough investigation would require not only an understand-
ing of the mASD condition under Uhlenbeck limits, but also an understanding
of how to glue at points on End X.

(b) Energy escaping down the end: One example of this is bubbling on the end, as dis-
cussed in (a). Another example is where a non-trivial amount of energy escapes
down the end. This is familiar in the ASD setting, where compactification can
be achieved by including spaces of translationally-invariant ASD connections on
R× N (spaces of “Floer trajectories”); see [8, 4]. In the mASD setting, one would
likely need to include spaces of mASD connections on R× N to account for en-
ergy escaping. The details of this appear to be subtle, since the energy values
of such connections are not governed by topological quantities, as is the case in
the ASD setting. (In the discussion above, where we considered sequences in the
image of Ψ′, we were able to exclude non-trivial energy on the end by appealing
to (3.6).)

(c) Failure of the slice-wise gauge fixing condition: In the definition of the spaceA1,p(TΓ)
from Section 2B.1, we restricted attention to connections that restrict on each time
slice {t} × N, for t ≥ T, to be gauge equivalent to a connection in the gauge slice
UΓ. This is an open condition in the space of all Lp

1,loc connections, and we do
not see a reason why this condition should be retained through limits of mASD
connections.

It is clear from these observations that I(U ′) is by no means the end of the story when
it comes to compactification. It is due to this that we have avoided defining a specific
topology on I(U ′) above, choosing instead to axiomatize a minimal set of desirable
properties.
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Remark 7.2. A challenging problem is to establish a general “gluing theorem on the
ends” for mASD-connections (X1, A1) and (X2, A2) with “matching boundary condi-
tions” on two given 4-manifolds with cylindrical ends. Such a theorem was obtained in
[16], for ASD-connections assuming that their flat limits in the common 3-manifold N
end where irreducible smooth points in the representation variety of N. In this case, the
gluing was unobstructed. More generally, in order to glue two mASD-connections, the
matching conditions should at least include (i) an identification End X1

∼= End X2
∼=

N × [0, ∞), (ii) the same flat reference connection Γ on N and center manifoldHΓ, and
(iii) the same flow lines ω̂h in HΓ, where h = pT(A1) = pT(A2). We would expect
the glued-up connections to provide an embedded submanifold of connections on the
closed 4-manifold X = X1 ∪ X2 obtained by identifying along their cylindrical ends.
In this general mASD case, the glued-up connection would presumably satisfy some
version of the mASD equation on X that equals the ASD equation on the complement
of the neck. How do the ASD connections on X compare to these “mASD connections”
on X? For example, do these “mASD connections” on X form some sort of local thick-
ening of the ASD moduli space, as is the case for cylindrical end manifolds? Since X is
compact, it seems likely that the ASD operator differs from the “mASD operator” by
a compact operator. Can this operator be scaled in some way to show that ASD and
mASD spaces on X are, in some sense, cobordant?
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