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Abstract. We use methods from the cohomology of groups to describe the finite groups
which can act freely and homologically trivially on closed 3–manifolds which are rational
homology spheres.

1. Introduction

Cooper and Long [8] have shown that every finite group can act freely and smoothly on
some closed, oriented 3-manifold M with the rational homology of the 3-sphere (for brevity
we shall call such an object a rational homology 3-sphere). However, under the natural
condition that the action must induce the identity on the integral homology of M , new
group theoretic restrictions arise. In this note, we apply group cohomology to establish
necessary conditions for such homologically trivial actions and use this information to
construct some new examples.

Theorem A. Let G denote a finite group acting freely and homologically trivially on a
rational homology 3–sphere M . Let π denote the product of precisely those primes which
divide both |G| and |H1(M ;Z)|. Then there exists an extension

1→ H → Qπ → G→ 1

where H ∼= H1(M ;Z)(π) is a central, cyclic subgroup and Qπ is a group with periodic
cohomology of period two or four.

Theorem A and more generally the results in §2 and §3 hold for finite G–CW complexes
with the cohomology ring of a rational homology sphere.

The corresponding existence statement would follow from a positive answer to the
following question:

Question. Let G be a finite group with periodic cohomology of period four. Does G act
freely and homologically trivially on some rational homology 3–sphere ?

A complete list of such groups is given in Milnor [24, §3], and those which can act
freely and othogonally on S3 were listed by Hopf [16]. Perelman [18] showed that the
remaining groups in Milnor’s list do not arise as the fundamental group of any closed,
oriented 3-manifold. For some of these we have a non-existence result in our setting.
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Theorem B. Let Q be a finite group of period four which is not the fundamental group
of a closed, oriented 3-manifold. If G is a quotient of Q by a central cyclic subgroup, and
the order of Q is divisible by 16, then G can not act freely and homologically trivially on
a rational homology 3-sphere.

Among the remaining groups in Milnor’s list, the groups Q(8n, k, l), for n odd, have
been much studied, and it is known that some (but not all) can act freely on integral
homology 3-spheres (see Madsen [22]). This work gives some new examples of existence
in the setting of Theorem A via quotients by the action of central cyclic subgroups (see
Proposition 4.5). The results of Pardon [26] provided free actions of period four groups
on rational homology 3-spheres with some control on the torsion, but did not address
the homological triviality requirement (see Proposition 4.1). More information about the
actions of the groups Q(8n, k, l) is given in Theorem 4.13.

This article is organized as follows: in §2 we apply methods from group cohomology
to actions on rational homology spheres; in §3 we consider the restrictions arising in the
homologically trivial case; in §4 we discuss the existence of homologically trivial actions,
and finally §5 deals with how our approach applies quite generally to finite quotients of
fundamental groups of closed 3–manifolds.

2. Application of cohomological methods

Let G denote a finite group acting freely, smoothly, and preserving orientation on a
closed 3–manifold M that is a rational homology sphere. In dimension three, free actions
of finite groups by homeomorphisms are equivalent to smooth actions, and the quotient
manifolds are homotopy equivalent to finite CW complexes.

We denote by Ωr(Z) the ZG module uniquely defined in the stable category (where ZG-
modules are identified up to stabilization by projectives) as the r–fold dimension–shift of
the trivial module Z. Note the isomorphism of ZG–modules H1(M ;Z) ∼= H2(M ;Z); we
may use either version depending on the context. We refer to [2] and [6] for background
on group cohomology.

Proposition 2.1. If a finite group G acts freely on a rational homology 3–sphere M , then
there is a short exact sequence of ZG–modules in the stable category of ZG–modules of
the form

(2.2) 0→ Ω−2(Z)→ Ω2(Z)→ H1(M ;Z)→ 0

Proof. We will assume that M is a G–CW complex with cellular chains C∗(M). Then we
have exact sequences of ZG–modules

0→ Z→ C3(M)→ C2(M)→ B1 → 0

0→ Z1 → C1(M)→ C0(M)→ Z→ 0

0→ B1 → Z1 → H1(M ;Z)→ 0

where B1 denotes the module of boundaries and Z1 the module of cycles respectively. The
result follows from (stably) identifying Z1 with Ω2(Z) and B1 with Ω−2(Z) respectively.

�
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Note that the stable map Ω−2(Z)→ Ω2(Z) defines an element

σ ∈ HomZG(Ω−2(Z),Ω2(Z)) ∼= HomZG(Z,Ω4(Z)) ∼= Ĥ−4(G,Z)

This class appears when applying Tate cohomology to (2.2).

Corollary 2.3. The short exact sequence (2.2) yields a long exact sequence in Tate co-
homology

· · · → Ĥ i+2(G,Z)
∪σ−−→ Ĥ i−2(G,Z)→ Ĥ i(G,H1(M ;Z))→ Ĥ i+3(G,Z)→ . . .

determined by the class σ ∈ Ĥ−4(G,Z) which is the image of the generator 1 ∈ Ĥ0(G,Z) ∼=
Z/|G|.

Next we identify the class σ geometrically.

Proposition 2.4. If [M/G] ∈ H3(M/G,Z) denotes the fundamental class of the quotient
manifold, then σ is the image of c∗[M/G] ∈ H3(BG,Z), under the natural isomorphism

H3(BG,Z) ∼= Ĥ−4(G,Z), where c : M/G→ BG is the classifying map of the covering.

Proof. To see this, recall that the description due to MacLane [19, Chap. V.8] of

TorZG3 (Z,Z) ∼= H3(G;Z)

via chain complexes, shows that the image of the fundamental class

c∗[M/G] ∈ H3(G;Z)

is represented by the chain complex C∗(M) of finitely-generated free ZG-modules. We
can apply dimension-shifting in the “complete” Ext-theory to the formula:

TorZG3 (Z,Z) = Ĥ−4(G;Z) = Ext−4ZG(Z;Z) = HomZG(Z,Ω4Z)

to identify c∗[M/G] with the extension class of the sequence (2.2) (see Wall [30, §2] for
more background). �

In a similar way the map Ω2(Z)→ H1(M,Z) defines an extension class

EM ∈ H2(G,H1(M ;Z))

which appears in the long exact sequence from Corollary 2.3 as the image of the generator
under the map

(2.5) Ĥ0(G,Z)→ Ĥ2(G,H1(M ;Z)).

This algebraic map arises geometrically as folllows. Let X ⊂ M denote a connected
one dimensional G − CW sub–complex such that π1(X) → π1(M) is onto. If we denote
F = π1(X), then we have a diagram of extensions

(2.6)

1 // R //

����

F //

����

G // 1

1 // π1(M) // π1(M/G) // G // 1

Abelianizing kernels gives rise to the diagram
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(2.7)

1 // Rab
//

����

Φ //

����

G // 1

1 // H1(M ;Z) // Q // G // 1

where Φ is the associated free abelianized extension. This extension realizes the universal
class of highest exponent in Ĥ2(G,Ω2(Z)); note that Rab is a free abelian group which
as a ZG–module is stably equivalent to Ω2(Z). By construction, the bottom extension
represents the class EM ∈ H2(G,H1(M,Z)) (see [15] page 207).

It is known (see [5]) that free group actions can be fruitfully analyzed using exponents.
For actions on rational homology 3–spheres the analysis can be done quite explicitly.

Corollary 2.8. If G acts freely on a rational homology 3–sphere M , then

|G| = exp {σ} · exp {EM}.
G has periodic cohomology with periodicity induced by σ if and only if the extension Q
representing EM is split. In particular, if |G| is relatively prime to |H1(M ;Z)|, then σ is
a periodicity class for the cohomology of G.

Proof. Look at the exact sequence in Corollary 2.3 at i = 2:

· · · → Ĥ4(G;Z)
∪σ−−→ Ĥ0(G;Z)→ Ĥ2(G;H1(M ;Z))→ . . .

and let exp(σ), respectively exp(EM), denote the order of the image, respectively cokernel,
of the map induced by ∪σ. Recall that by Tate duality (see Brown [6, Chap.VI.7]) there

is an element σ∗ ∈ Ĥ4(G,Z) such that

σ ∪ σ∗ = |G|/expσ ∈ Z/|G|,
and the exponent expression follows. A finite group has periodic cohomology if and
only if it has an element of positive degree with exponent equal to |G| (for example,
combine Swan [29, Corollary 2.2 and Lemma 4.2]). This element is invertible in Tate
cohomology. Hence if the class σ has this highest exponent, then it must be a periodicity
class, inducing isomorphisms throughout the long exact sequence, and this occurs if and

only if Ĥ2(G;H1(M ;Z)) = 0 and the extension Q is split. �

Remark 2.9. On the other extreme, if σ is trivial, then the extension class EM has
highest exponent equal to |G|. Using the stable isomorphism

HomZG(Ω2(Z), H1(M,Z)) ∼= HomZG(Z,Ω−2(H1(M,Z)))

we can represent EM by a rank one trivial submodule in Ω−2(H1(M,Z)) (note that
any finitely generated ZG–module is stably equivalent to a Z–torsion free module via
dimension–shifting). By [1, Theorem 1.1] and its proof, the short exact sequence

0→ Z→ Ω−2(H1(M,Z))→ Ω−5Z→ 0

in the stable category is split exact. After shifting back, we obtain a stable decomposition
H1(M,Z) ∼= Ω2(Z) ⊕ Ω−3(Z). This will occur for rational homology spheres with a free
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G–action where H4(G,Z) = 0. An example of this phenomenon is given by the Mathieu
group M23 (see [23]).

Remark 2.10. For G = (Z/p)r, we have p · Ĥk(G,Z) = 0 for k 6= 0, so we see that
the exponent of EM is at least pr−1, and in particular the module H1(M ;Z) must have
pr−1–torsion.

Remark 2.11. It is also an interesting problem to determine which groups can act ho-
mologically trivially on higher dimensional rational homology spheres. Using exponents
it can be shown that if G acts freely and homologically trivially on a simply–connected
rational homology n–sphere, then the rank of G can be at most n − 2. We expect that
further group theoretic restrictions will play a role.

3. Restrictions in the homologically trivial case

In this section we focus on the special case when the G–action on M is trivial in
homology. This imposes some drastic restrictions.

Proposition 3.1. If G acts freely and homologically trivially on a rational homology
3–sphere M , then every elementary abelian subgroup of G has rank at most two.

Proof. From Corollary 2.8 and the fact that Ĥr(G,L) has exponent p when L has trivial
action and r 6= 0, we see that if (Z/p)r acts freely and homologically trivially on M , then
pr divides p2 and the result follows. �

Let us write the trivial ZG–module H1(M ;Z) as a direct sum of finitely generated,
finite abelian p–groups Ap = H1(M ;Z)(p). Then we have

Lemma 3.2. If p is a prime number dividing the order of G, then H1(M ;Z)(p) is either
trivial or cyclic.

Proof. Consider a cyclic C ∼= Z/p in G. Since H7(C;Z) = 0, from the sequence 2.3 for
C at i = 4, we see that H4(C,H1(M ;Z)) is a homomorphic image of H2(C,Z) = Z/p. It
follows that

H4(C,H1(M ;Z)) ∼= H4(C,Ap) ∼= Ap/pAp
is either trivial or Z/p, which proves the result. �

A well–known example of a free action on a rational homology sphere is given by the
free action of Z/2×Z/2 on RP3, which comes from the free action of the quaternions on
the 3–sphere. Associated to it there is a central extension of the form

1→ Z/2→ Q(8)→ Z/2× Z/2→ 1.

Next we will show that all groups acting freely and homologically trivially on rational
homology spheres can be modeled in this way.

Theorem 3.3. Let G denote a finite group acting freely and homologically trivially on
a rational homology 3–sphere M . Let π = p1 . . . pr denote the product of precisely those
primes which divide both |G| and |H1(M ;Z)|. Then there exists an extension

1→ H → Qπ → G→ 1
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where H ∼= H1(M ;Z)(π) is a central, cyclic subgroup and Qπ is a group with periodic
cohomology.

Proof. Suppose that G acts freely on a rational homology 3-sphere M and consider the
group extension

1→ π1(M)→ π1(M/G)→ G→ 1.

Let L denote the kernel of the map π1(M) → H1(M ;Z)(π); then it is normal in both
π1(M) and π1(M/G) and we can consider the associated central quotient extension:

0→ H1(M ;Z)(π) → Qπ → G→ 1.

Note that H2(G,H1(M ;Z)) ∼= H2(G,H1(M ;Z)(π)) and our construction is the obvious
quotient of the extension Q representing the class EM apprearing in Corollary 2.8.

Suppose p is a prime that divides |G| but which is relatively prime to |H1(M ;Z)|. Then
H2(Sylp(G), H1(M ;Z)) = 0 and so Sylp(G) = Sylp(Qπ) is periodic by Corollary 2.8. Now
suppose that p is a prime which divides π, and let C ⊂ G denote a cyclic subgroup of order
p. By naturality we have a commutative diagram, where the rows are exact sequences:

Ĥ0(G,Z) //

��

Ĥ2(G,H1(M ;Z)) //

��

Ĥ5(G,Z)

��
Ĥ0(C,Z)

≈ // Ĥ2(C,H1(M ;Z)) // 0

The isomorphism in the lower row of this diagram comes from the rest of the sequence

0→ Ĥ1(C;H1(M ;Z))→ Ĥ4(C;Z)→ Ĥ0(C;Z)→ Ĥ2(C,H1(M ;Z))→ 0

since

Ĥ1(C;H1(M ;Z)) ∼= Z/p ∼= Ĥ4(C;Z).

By Lemma 3.2 the p–component of H1(M ;Z) is a finite cyclic p–group with a trivial

C–action. Hence Ĥ i(C,H1(M ;Z)) 6= 0 for all i. The map Ĥ0(G,Z) → Ĥ0(C,Z) sends
a generator to a generator so the extension class EM ∈ H2(G,H1(M ;Z)) restricts non–
trivially on all such subgroups C, and hence the corresponding restricted extensions of
the form

0→ H1(M ;Z)(π) → Qπ|C → C → 1

are all non–split.
If we take H = H1(M ;Z)(π), which we know to be cyclic by Lemma 3.2, then the

extension expresses G as the quotient Qπ/H where H is a central, cyclic subgroup and
every restricted group of the form Qπ|C is non–split, where C ∼= Z/pZ, and p divides π.

Let u ∈ Qπ denote an element of order p; if the subgroup generated by H and u is not
cyclic, then it must be split abelian, a contradiction. Therefore all elements of order p in
Qπ lie in H, a cyclic subgroup, and so Qπ has no rank two p–elementary abelian subgroups.
We have already established this for the primes which do not divide π, whence we infer
that Q has periodic cohomology. �

Proposition 3.4. The period of Qπ is two or four.
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Proof. Consider the central group extension

1→ H → Q→ G→ 1

where H := H1(M,Z)(π) and Q := Qπ. By Swan [28], the period of Q is the least common
multiple of the p-periods of Q taken over all primes p dividing |Q|. The p-periods are
determined by group cohomology with p-local coefficients. By [28, Theorem 1], the 2-
period of Q is 2 or 4. Moveover, by [28, Theorem 2], the p-period of Q for p odd is twice
the order of Φp(Q) ∼= NQ(Sylp(Q))/CQ(Sylp(Q)), the group of automorphisms of Sylp(Q)
induced by inner automorphisms of Q. Note that as Sylp(Q) is cyclic, its automorphism
group is also cyclic and hence Φp(Q) is cyclic of order prime to p.

As explained in [28, Lemma 3], the action on Ĥ2i(Sylp(Q),Z(p)) is given by multiplica-

tion by ri, where r is an integer prime to p that is a multiplicative generator of Φp(Q).

Hence this action has invariants only when i is a multiple of |Φp(Q)|, and Ĥ∗(Q,Z(p)) 6= 0
only in degrees which are multiples of 2|Φp(Q)|.

If p doesn’t divide |G| but does divide |Q|, then the p–period of Q is equal to that of
the central cyclic subgroup H and thus equal to two. If p divides |G| then the projection
Q → G induces an isomorphism Φp(Q) ∼= Φp(G), and hence the p-periods of Q and G
are equal. Consider now the following portion of the p–local version of the long exact
cohomology sequence from Corollary 2.3:

(3.5) Ĥ4(G;Z(p))→ Ĥ0(G;Z(p))→ Ĥ2(G;Hp)

where Hp = Sylp(H) = H1(M ;Z(p)). As |G| is divisible by p, the middle term is non-

zero. Now if Ĥ2(G;Hp) = 0, then Ĥ4(G;Z(p)) 6= 0 and we conclude that G has p-period
dividing four (a p–local version of Corollary 2.8). However, by the universal coefficient

theorem applied to the trivial G–module Hp, we see that Ĥ2(G,Hp) = 0 if the p–period
of G is four or higher. Hence we conclude that the p-periods of G and Q must both be
either two or four. �

The structure of G is more explicit for p-groups.

Corollary 3.6. A finite p–group G acts freely and homologically trivially on some rational
homology 3–sphere M with non–trivial p–torsion in H1(M ;Z) if and only if (1) G is cyclic
or (2) p = 2, H1(M ;Z)(2) ∼= Z/2Z and G is a dihedral group.

Proof. The finite groups of the form Q/H where Q is a periodic p–group and H is a
non–trivial central cyclic subgroup are precisely the cyclic groups and Q2n/Z(Q2n), where
Q2n is a generalized quaternion group of order 2n, n ≥ 3, with centre isomorphic to Z/2Z
and quotient a dihedral group of order 2n−1. Conversely all the groups Q appearing above
act freely on S3, hence all the quotients G = Q/H act freely on a rational homology
sphere. �

Corollary 3.7. Let G act freely and homologically trivially on a rational homology 3–
sphere M .

(i) If both |G| and |H1(M ;Z)| are even, then Syl2(G) is either cyclic or dihedral.
(ii) If p is an odd prime dividing |G|, then Sylp(G) is cyclic.
(iii) If (|H1(M ;Z)|, p) = 1 then Sylp(G) is either cyclic or generalized quaternion.
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4. Existence of homologically trivial actions

As mentioned in the Introduction, any finite group can act freely on some rational
homology 3-sphere if there is no homological triviality assumption. This was first proved
by Pardon [26] using local surgery theory, extending a result of Browder and Hsiang [4,
p. 267]. The direct 3-dimensional argument of Cooper and Long [8] avoids the surgery
formalism, but does not give any control on the torsion in H1(M ;Z).

Proposition 4.1. Let G be a finite group, and p a prime such that (p, |G|) = 1. Then G
acts freely on some p-local homology 3-sphere.

Proof. This statement is a special case of Pardon [26, Theorem B], together with the
standard remark that high-dimensional surgery existence results in dimensions 4k+3 ≥ 7,
imply existence results in dimension three up to homology. �

It appears to be much more difficult to solve the existence problem for a given rational
homology 3-sphere M . For example, what if we consider only the space form groups but
do not require homologically trivial actions ?

Question. If G acts freely on S3, can it act freely on a given rational homology 3-sphere
M with (|G|, |H1(M ;Z)|) = 1 ?

We will now use the information in Theorem A to make some remarks about the
existence of homologically trivial actions on rational homology 3-spheres.

The finite groups which can act freely on S3 are now known (by the work of Perelman
[18]): they are precisely the periodic groups in Hopf’s list [16]. For any of these groups
we can obtain examples of homologically trival actions by quotients S3/H, where H is
a central cyclic subgroup. Of the remaining period four groups, we first consider those
which do not satisfy Milnor’s 2p-condition.

Proposition 4.2. Let G be a finite group with periodic cohomology of period four con-
taining a non-cyclic subgroup of order 2p, for some odd prime p. Then G is a the product
of a dihedral group by a cyclic group of relatively prime order. Any quotient of G by a cen-
tral cyclic subgroup can act freely and homologically trivially on some rational homology
3-sphere.

Proof. This follows by checking the list of periodic groups, taking into account our period
four assumption. A convenient reference is Wall [31, Theorem 4.5], which states that G
is an extension of a normal subgroup G0 of odd order by a group G1 isomorphic to one
of the form C(2k), Q(2k), T ∗v , O∗v, SL2(p) or TL2(p). The periods of these groups are
listed in [31, Corollary 5.6]. In our case, G0 must be cyclic (the only odd order group
with period ≤ 4), and G1 = C(2k) since there is an unique element of order two in the
other cases. The action of G1 on G0 must be faithful to violate the 2p condition, and G
of period four implies the claimed structure for G.

Since any quotient of G by a central subgroup is again of the same form, the required
actions arise by quotients of a free action of a binary dihedral group Q(4n) on S3. �



FREE FINITE GROUP ACTIONS ON RATIONAL HOMOLOGY 3–SPHERES 9

Milnor [24, §3] listed the period four groups which do satisfy the 2p conditions, and
identified two families of such group which (by Perelman [18]) can not act freely on S3.
These are:

(i) Q(8n, k, l), with n > k > l ≥ 1, and 8n, k, l pairwise relatively prime;
(ii) O(48, k, l), with l odd, 3 - l and 48, k, l pairwise relatively prime.

One can also take the product of any one of these groups with a cyclic group of relatively
prime order. We will refer to these as type A if n is odd, type B if n ≥ 2 is even, or type
C for O(48, k, l). The groups of type B or C have order divisible by 16.

Proposition 4.3. Suppose that G is a period four group of type A, B or C. If G acts freely
and homologically trivially on a rational homology 3-sphere M , then H1(M ;Z) = Z/d,
where (d, |G|) = 1.

Proof. From diagram (2.7), we have short exact sequence:

1→ H1(M ;Z)→ Q→ G→ 1

where Q is a period four group. Since both Q and G are period four groups, and G
has type A, B or C, it follows that d must be odd. Since H1(M ;Z) is central, it follows
that Q has the same type as G. In particular, this implies that H1(M ;Z) = Z/d, with
(d, |G|) = 1. �

This results allows us to rule out types B and C. Note the condition (d, |G|) = 1 implies
that d is an odd integer, so M would have to be a Z(2)-homology sphere for such an action
to exist. Theorem B follows from the following result.

Proposition 4.4. Let G be the quotient of a type B or C period four group by a cen-
tral cyclic subgroup. Then G can not act freely and homologically trivially on a rational
homology 3-sphere.

Proof. The period four groups of type B or C themselves can not act freely on any Z(2)-
homology 3-sphere (see Ronnie Lee [17, Corollary 4.15, Corollary 4.17]), so they are ruled
out by Proposition 4.3.

Now suppose that some non-periodic quotient G of a type B or C group acts freely
and homologically trivially on a rational homology 3-sphere M . We then have a covering
space

M →M/G→ BG.

From (2.7), we have an exact sequence

1→ H1(M ;Z)→ Q→ G→ 1

where Q is a period four group and H1(M ;Z) = Z/2d is a central cyclic subgroup of Q. It
follows that Q must again be of type B or C, d must be odd, and H1(M ;Z) must contain
the unique central subgroup T = Z/2 of order two in Q.

The group Q is constructed by a pushout from π1(M), and we can form a further
pushout over the projection H1(M ;Z)→ T = Z/2 to obtain the group extension

1→ T → Q′ → G→ 1

in which Q′ is again a period four group of type B or C.
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The 2-fold covering M ′ → M given by the quotient π1(M) → T , followed by the
G-covering M →M/G, is just the Q′-covering M ′ →M/G.

To obtain a contradiction, we will now show that M ′ is a Z(2)-homology sphere. From
the structure of M ′ →M as a 2-fold covering, we have an exact sequence

0→ H0(Z/2;H1(M
′;Z))→ H1(M ;Z)→ Z/2→ 0

and H1(M ;Z) = Z/2d, with d odd. It follows that the co-invariants

H0(Z/2;H1(M
′;Z)) = Z/d

are of odd order, and hence H1(M
′;Z) has no 2-torsion. We have an exact sequence of

Z/2-modules of the form:

0→ H1(M
′;Z)odd → H1(M

′;Z)→ Zr → 0

and by applying group homology H∗(Z/2;−) to the sequence, we conclude that r = 0 and
H1(M

′;Z) is all odd torsion. In other words, M ′ is a Z(2)-homology 3-sphere and the free
Q′-action can not exist. �

The remaining existence question concerns central quotients of the period four groups
of type A. It is enough to consider the period four groups themselves.

Proposition 4.5. Let G be the quotient of a type A period four group Q by a central
cyclic subgroup T ≤ Q. If Q acts freely and homologically trivially on a rational homology
3-sphere M , then G acts freely and homologically trivially on M/T , which is again a
rational homology 3-sphere.

Proof. Let G be the quotient of a type A period four group Q by a central cyclic subgroup
T ≤ Q. If Q acts freely and homologically trivially on a rational homology 3-sphere M ,
then G acts freely on the rational homology 3-sphere M/T .

It remains to show that and the G-action on M/T is homologically trivial. Since T is
central, the covering space M →M/T is preserved by Q, and we have an exact sequence:

0→ H1(M ;Z)→ H1(M/T ;Z)→ H1(T ;Z)→ 0

since H2(T ;Z) = 0 and T acts homologically trivially on M . By applying group coho-
mology to this sequence, we obtain:

0→ H1(M ;Z)Q → H1(M/T ;Z)Q → H1(T ;Z)Q → H1(Q;H1(M ;Z) .

However, by Proposition 4.3 we have H1(M ;Z) = Z/d, with (d, |Q|) = 1, and hence
H1(Q;H1(M ;Z) = 0, Therefore H1(M/T ;Z)Q = H1(M/T ;Z), and the G-action on M/T
is homologically trivial. �

The period four groups G = Q(8n, k, l) of type A can not act freely on S3 (by Perelman),
but some members of this family do act freely on integral homology 3-spheres. For the
existence of such actions, there are two obstacles: a finiteness obstruction and a surgery
obstruction. Swan [29] showed that for every period four group, there exists a finitely

dominated Poincaré 3-complex X with π1(X) = G and universal covering X̃ ' S3. Such
a complex is called a Swan complex of type (G, 3).
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We recall that the homotopy types of (G, 3)-complexes are in bijection (via the first

k-invariant) with the invertible elements in Ĥ4(G;Z) ∼= Z/|G|.

Lemma 4.6. Let G be a period four group which acts freely and homologically trivially
on a rational homology 3-sphere M . Then there exists a (G, 3)-complex X, unque up to
homotopy, and a degree 1 map f : M/G→ X compatible with the classifying maps of the
G-fold coverings.

Proof. The classifying map c : M/G → K(G, 1) of the covering M → M/G gives a class
c∗[M ] ∈ H3(G,Z). By Proposition 2.4, this class corresponds to a generator

σ∗ ∈ Ĥ4(G;Z) ∼= Ĥ−4(G;Z) ∼= H3(G;Z).

Let X be the (G, 3)-complex defined (up to homotopy) by this k-invariant. Since the
classifying map c : M/G→ K(G, 1) is surjective on fundamental groups, it follows that c
lifts to a map f : M/G → X. Since the images of the fundamental classes of M/G and
X agree in H3(G;Z), it follows that f has degree 1. �

Remark 4.7. Any degree 1 map f : N → X from a closed oriented 3-manifold to a
(G, 3)-complex provides a degree 1 normal map by pulling-back a framing of the trivial
bundle over X.

The Wall finiteness obstruction σ(X) ∈ K̃0(ZG) vanishes if and only if there exists a
finite Swan complex of type (G, 3). This is the first obstruction to existence. By varying
the homotopy type of X, Swan defined defines an invariant

σ(G) ∈ K̃0(ZG)/S(G),

depending only on G, where S(G) ⊆ K̃0(ZG) is the Swan subgroup generated by projective
ideals of the form 〈r,Σ〉 ⊂ ZG, where (r, |G|) = 1 and Σ denotes the norm element. Then
σ(G) = 0 if and only if σ(X) ∈ S(G) for every Swan complex X of type (G, 3).

Proposition 4.8. Let G = Q(8n, k, l), with n odd, be a period four group of type A. If
G acts freely and homologically trivially on a rational homology 3-sphere, then σ(G) = 0.

Proof. Under the given assumptions, G acts freely and homologically trivially on a rational
homology 3-sphere M , such that H1(M ;Z) = Z/d, where (d, |G|) = 1. By Lemma 4.6.
the classifying map M/G → K(G, 1) of the covering M → M/G lifts to a degree 1
map f : M/G → X, to a uniquely defined (G, 3)-complex X. Since the map f induces a
surjection on fundamental groups, the argument of Mislin [25, Theorem 3.3] shows that

σ(M/G) = σ(X) + 〈d,Σ〉 ∈ K̃0(ZG),

and hence σ(X) ∈ S(G). Since varying the homotopy type of X changes σ(X) only by an
element of the Swan subgroup (see Swan [29, Lemma 7.3]), we conclude that σ(G) = 0. �

The secondary obstruction comes from surgery theory (and is defined only if the finite-
ness obstruction is zero). It can be computed in some cases to show existence (see Mad-
sen [22]). For the type A groups, a (G, 3)-complex X has almost linear k-invariant
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e0 ∈ H4(G;Z) if the restriction of e0 to each Sylow subgroup of G is the k-invariant of a
standard free orthogonal action on S3 (see [22, p. 195]).

Definition 4.9. We will say that a free homologically trivial action of a type A group
G on a rational homology 3-sphere M has almost linear k-invariant if there exists a
degree 1 map f : M/G → X to a finite (G, 3)-complex with almost linear k-invariant
e0 ∈ H4(G;Z).

Remark 4.10. If G acts freely and smoothly on an integral homology 3-sphere Σ, then
the quotient manifold Σ/G = X is a finite (G, 3)-complex with almost linear k-invariant
(see [13, Corollary C] and the discussion of [22, Conjecture D]). By Proposition 4.5, any
quotient of such a group G by a central cyclic subgroup would act freely and homologically
trivially on a rational homology 3-sphere.

Conversely, we expect that the following existence statement holds:

Conjecture 4.11. Let G = Q(8n, k, l), with n odd, be a period four group of type A. Then
G acts freely and homologically trivially on a rational homology 3-sphere with almost linear
k-invariant if and only if G acts freely on an integral homology 3-sphere.

In the remainder of this section, we prove this conjecture under some additional as-
sumptions. If f : N → X denotes a degree 1 normal map to a finite (G, 3)-complex,
with π1(X) = G, then there is weakly simple surgery obstruction λ′(f) ∈ L′3(ZG). This
is defined since every finite Poincaré 3-complex with finite fundamental group is weakly
simple (meaning that its Poincaré torsion lies in SK1(ZG)). We let λh(f) ∈ Lh3(ZG),
the image of λ′(f) under the natural map, denote the obstruction to surgery on f up to
homotopy equivalence.

Let H = Q(4ab) denote the index two subgroup of G, containing the subgroup C(4) ≤
Q(8) which acts by inversion on the normal subgroup of order ab.

Theorem 4.12 (Madsen [22]). Suppose that G = Q(8n, k, l), with n odd, is a period
four group of type A such that σ(G) = 0. Let f : N → X be a degree 1 normal map
to a finite (G, 3)-complex with almost linear k-invariant. Then λ′(f) = 0 if and only
if ResH(λ′(f)) = 0 for each subgroup H ≤ G of the form H = Q(4ab). Furthermore,
λh(f) = 0 if and only if ResK(λh(f)) = 0 for each subgroup K ≤ G of the form K =
Q(8a, b).

Proof. This a a summary statement of the calculations in [22, §4-5]. See in particular [22,
Theorems 4.19, 4.21 and Corollary 5.12]. �

For the groups G = Q(8a, b) = Q(8a, b, 1), the top component S(ab) ⊆ S(G) ⊂ K̃0(ZG)
of the Swan subgroup is defined as the the kernel of the restrictions to all odd index
subgroups. For example, Bentzen and Madsen [3, Proposition 4.6] computed S(Q(8p, q)),
for p, q odd primes, almost completely, and showed that S(pq) = 0 in a many cases (e.g
(p, q) ≡ (±3,±3) mod 8; or (p, q) ≡ (1,±3) mod 8, and 2 has odd order mod p.

Theorem 4.13. Let G = Q(8p, q), for odd primes p > q, and assume that S(pq) = 0.
Then G acts freely and homologically trivially on a rational homology 3-sphere with almost
linear k-invariant if and only if G acts freely on an integral homology 3-sphere.
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Proof. Remark 4.10 explains the sufficiency part. For the converse, suppose that G =
Q(8p, q) with S(pq) = 0 acts freely and homologically trivially on a rational homology
3-sphere M with almost linear k-invariant. Then there exists a finite (G, 3)-complex X
with almost linear k-invariant, and a degree 1 normal map f : M/G→ X = X(G). by [12,
Theorem 3.1], we may assume that the covering space X(H) is homotopy equivalent to
an orthogonal spherical space form, for H = Q(4pq) ≤ G, and that the normal invariant
restricts to the normal invariant of an orthogonal spherical space form over the 2-Sylow
covering X(Q(8)). In particular, since H1(M ;Z) = Z/d for d odd, we must have

σ(X(Q(8)) = 〈d,N〉 = 0 ∈ K̃0(ZQ(8).

Hence d ≡ ±1 (mod 8), and ResQ(8)(λ(f)) = 0 by [9, Theorem 5.1(ii)]). This information
about the normal map f : M/G → X was extracted from the work of Madsen, Thomas
and Wall (see [20, 21]).

Now we consider the restriction of the surgery obstruction ResH(λh(f) ∈ Lh3(ZH).
Since X(H) is homotopy equivalent to an orthogonal space form, ResH(λh(f)) is the
surgery obstruction of a normal map between closed manifolds. Therefore, ResH(λh(f)) is
detected by further restriction to the 2-Sylow subgroup C(4), and hence ResH(λ(f)) = 0.
It follows that H1(M ;Z) = Z/d stably supports a hyperbolic linking form, and hence

d ≡ r2 mod (8ab) is a square. Since S(pq) = 0, it follows that 〈r,N〉 = 0 ∈ K̃0(ZG).
Now by [9, Theorem 5.1(ii)] applied to λh(f) ∈ Lh3(ZG), we see that λh(f) = 0. Therefore
G acts freely on an integral homology 3-sphere. �

Remark 4.14. By taking full advantage of Madsen’s results as summarized in Theo-
rem 4.12, we could give a statement for the groups Q(8a, b), under the assumption that
S(a′, b′) = 0 for all divisors 1 6= a′ | a, and 1 6= b′ | b.
Remark 4.15. We would like to remove the almost linear k-invariant assumption. How-
ever, the group G = Q(8) acts freely and homologically trivially on M = RP 3 with
H1(M ;Z) = Z/3, since Q(8) × Z/3 acts freely on S3. This action has non-linear k-
invariant in our sense. Indeed, by the proof of Proposition 4.8, there is a degree 1 map
f : M/G → X, where X is a Swan complex for Q(8) with non-trivial finiteness obstruc-
tion.

5. Finite quotients of fundamental groups of 3-manifolds

In this section we consider closed 3–manifolds with finite coverings which are rational
homology spheres. The associated finite covering groups act freely on rational homology 3-
spheres, so they afford examples to which our methods will apply. Note that according to
[8, Theorem 2.6] every finite group in fact acts freely on some hyperbolic (hence aspherical)
closed rational homology sphere In such cases the fundamental group determines the
topology, and we are really just considering finite index subgroups of Poincaré duality
groups with vanishing first Betti number.

Recall that for any group Q and integer n ≥ 0 we define the n–th term of its derived
series as Q(n) = [Q(n), Q(n)], where Q(0) = Q. The derived series for a finite group
stabilizes at a perfect normal subgroup, but may not terminate for an infinite group. In
fact an interesting open question is whether or not the derived series for the fundamental
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group Γ of a closed orientable 3–manifold stabilizes if Γ/Γ(n) is finite for all n. If it does
stabilize then Γ/Γ(i) is a solvable group with periodic cohomology (of period four), as it
acts freely on an integral homology 3–sphere. Independently of the stability question, one
can ask (as in [7]) about possible restrictions on the finite quotient groups Γ/Γ(n).

Let L denoted a closed 3–manifold such that for some n > 0 the quotient π1(L)/π1(L)(n)

is finite. Let Γ = π1(L). From the extensions

1→ Γ(i)/Γ(i+1) → Γ/Γ(i+1) → Γ/Γ(i) → 1

for 1 ≤ i ≤ n − 1, we infer that all the groups Γ/Γ(i) and Γ(i)/Γ(i+1) are finite in that
range. Hence the corresponding covering spaces Li are rational homology spheres. The
finite groups Γ/Γ(i) act freely on them, with quotient L; note that H2(Li,Z) ∼= Γ(i)/Γ(i+1).
Applying 2.3 we obtain

Proposition 5.1. Let M denote a closed 3–manifold with Γ = π1(L) such that Γ/Γ(n) is
finite for some n > 0. Then for all 1 ≤ i ≤ n− 1 there are long exact sequences

· · · → Ĥ i+2(Γ/Γ(i),Z)
∪σi−−→ Ĥ i−2(Γ/Γ(i),Z)→ Ĥ i(Γ/Γ(i),Γ(i)/Γ(i+1))→ Ĥ i+3(Γ/Γ(i),Z)→ . . .

These sequences are determined by elements σi ∈ Ĥ−4(Γ/Γ(i),Z), which are images of the

respective generators in Ĥ0(Γ/Γ(i),Z) ∼= Z/|Γ/Γ(i)|.

Corollary 5.2. If Γ(i) is perfect, then σi ∈ Ĥ−4(Γ/Γ(i),Z) is a periodicity generator for
the cohomology of Γ/Γ(i).

As we have seen, Proposition 5.1 can be used to obtain restrictions on the finite groups
Γ/Γ(i). As an application we take the opportunity to quickly obtain some of the results
in [7] and [27].

Proposition 5.3 (Cavendish [7]). Let L denote a closed 3–manifold and q : Γ → G, a
surjective homomorphism from its fundamental group Γ = π1(L) onto a finite group G

which induces an isomorphism H1(Γ,Z) ∼= H1(G,Z). Then φ : Ĥ2(G,Z) → Ĥ−2(G,Z)
given by x 7→ σ ∪ x is an isomorphism and cup product defines a non–degenerate pairing

Ĥ2(G,Z)⊗ Ĥ2(G,Z)→ Ĥ4(G,Z).

If in addition ker(q) ⊂ Γ(2), then this pairing factors through a cyclic subgroup of Ĥ4(G,Z).

Proof. There is a covering space L̃ of L corresponding to ker(q), with a free action of G.
Consider the fibration L̃→ L→ BG and its associated 5-term exact sequence

0→ H2(BG,Z)→ H2(L,Z)→ H2(L̃,Z)G → H3(BG,Z)→ 0

where the last map is surjective because H3(L,Z) is torsion–free. On the other hand,
from 2.3 we have an exact sequence

0→ coker(φ)→ Ĥ0(G,H2(L̃,Z))→ H3(G,Z)→ 0.

As H2(BG,Z) ∼= H2(L,Z), then H2(L̃,Z)G ∼= H3(G,Z), but it factors through Tate
cohomology so we obtain that the norm map N is trivial on H2(L̃,Z),

Ĥ0(G,H2(L̃,Z)) ∼= H3(G,Z)
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and that φ is surjective. As the domain and codomain of φ have the same number of

elements this implies that it is an isomorphism. Now given y ∈ Ĥ2(G,Z) we can choose

z ∈ Ĥ2(G,Z) such that the Tate dual y∗ = σ ∪ z. Then 0 6= z ∪ y because

0 6= y∗ ∪ y = σ ∪ z ∪ y,

showing that the pairing is nondegenerate.
Let us now assume that ker(q) ⊂ Γ(2) and let J = [G,G], R = G/[G,G] and S =

[π1(L), π1(L)] = π1(L̃/J). Γ maps onto G, so S maps onto J and H1(S,Z) maps onto
H1(J,Z). The condition ker(q) ⊂ Γ(2) = S(1) means that the kernel of q|S : S → J is
contained in S(1), and so the abelianized map is an isomorphism H1(S,Z) ∼= H1(J,Z).
Given that L̃/K is a rational homology sphere,

H2(L̃/J,Z) ∼= H2(J,Z) ∼= H1(J,Z).

Using this identification and applying 2.3 to the R–action on L̃/J , we obtain the exact
sequence

0→ Ĥ1(R,H2(J,Z))
d→ Ĥ4(R,Z)→ Ĥ0(R,Z).

As before we can identify d with the differential d3 : E1,2
3 → E4,0

3 for the LHS spectral
sequence for the group extension

1→ J → G→ R→ 1.

Therefore the image of d goes to zero under the inflation map H4(R,Z) → H4(G,Z),

which therefore factors through coker d ⊂ Ĥ0(R,Z) ∼= Z/|R|, a cyclic group. Using the

isomorphism Ĥ2(R,Z) ∼= Ĥ2(G,Z) and naturality of the cup product completes the proof.
�

We apply this to obtain a quick proof of a result due to Reznikov [27], following the
approach in [7].

Corollary 5.4 (Reznikov [27]). Let L denote a closed three–manifold such that G =
π1(L)/π1(L)(n) is a finite 2–group, and H1(L,Z) ∼= Z/2 × Z/2. Then G is a generalized
quaternion group.

Proof. As G is a quotient of π1(L) mapping onto its abelianization, then

G/[G,G] ∼= Z/2× Z/2

and so G is a 2-group of maximal class and thus must be either (generalized) quaternion,
dihedral or semi-dihedral (see [11], Section 5.4). However the condition that the cup
product pairing be non–singular eliminates the semi–dihedral groups (see [10]), and the
fact that the image has rank one eliminates the dihedral groups (see [14]). Thus we
conclude that G is a generalized quaternion group. �
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