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Abstract. We construct a non-abelian extension Γ of S1 by Z/3 × Z/3, and prove
that Γ acts freely and smoothly on S5 × S5. This gives new actions on S5 × S5 for an
infinite family P of finite 3-groups. We also show that any finite odd order subgroup of
the exceptional Lie group G2 admits a free smooth action on S11 × S11. This gives new
actions on S11×S11 for an infinite family E of finite groups. We explain the significance
of these families P, E for the general existence problem, and correct some mistakes in
the literature.

Introduction

In this paper we construct some new examples of smooth, free, finite group actions
on a product of two spheres of the same dimension. A necessary condition discovered
by Conner [13] is that G has rank at most two, meaning that G does not contain an
elementary abelian subgroup of order p3, for any prime p.

Question. What group theoretic conditions characterize the rank two finite groups which
can act freely and smoothly on Sn × Sn, for some n = 1 ?

It was shown by Oliver [20] that the alternating group A4 of order 12 has rank two,
but does not admit such an action, so the rank two condition is not sufficient. It was also
observed by Adem-Smith [2, p. 423] that A4 is a subgroup of every rank two non-abelian
simple group, so all these are ruled out too.

In order to answer this question, it is useful to have more examples. In this note we
present two new infinite families of such actions. Let Γ be the Lie group given by the
following presentation

Γ =
〈
a, b, z | z ∈ S1, a3 = b3 = [a, z] = [b, z] = 1, [a, b] = ω

〉
where [x, y] = x−1y−1xy and ω = e2πi/3 in S1 ⊆ C. We make an explicit equivariant
glueing construction to prove our first result.

Theorem A. The group Γ acts freely and smoothly on S5 × S5.

For a positive integer k ≥ 3, let P (k) be the group of order 3k given by the following
presentation

P (k) =
〈
a, b, c | a3 = b3 = c3

k−2

= [a, c] = [b, c] = 1, [a, b] = c3
k−3

〉
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We will write

P = {P (k) | k ≥ 3}

and note that P is a collection of subgroups of Γ (take c = e2πi/3k−2 ∈ S1). Therefore
Theorem A constructs free smooth P (k)-actions on S5 × S5 for all k ≥ 3. Note that
P (3) ∼= (Z/3× Z/3) o Z/3 is the extraspecial 3-group of order 27 and exponent 3.

We prove our second result by using equivariant surgery theory to modify a construction
based on the exceptional Lie group G2 of dimension 14.

Theorem B. All odd order finite subgroups of G2 act freely and smoothly on S11 × S11.

Information about the finite subgroups of G2 can be found in [12]. Here is a specific
family of examples. For a prime number p, let E(p) be the group of order 3p2 given by
the following presentation

E(p) =
〈
u, v, w | up = vp = w3 = [u, v] = 1, [u,w] = u−2v−1, [v, w] = uv−1

〉
.

We will write

E = {E(p) | p is an odd prime} .
The group E(2) is isomorphic to the alternating group A4 of order 12, and the group
E(3) is another presentation for the extraspecial group P (3). An explicit isomorphism
P (3) ∼= E(3) is given by the map

a 7→ w , b 7→ vu , and c 7→ v−1u .

The groups E(p) are all subgroups of SU(3), and hence contained in the exceptional Lie
group G2. For p = 3, let ω = e2πi/3 and consider the representation of P (3) as follows:

a =

 0 1 0
0 0 1
1 0 0

 , b =

 1 0 0
0 ω 0
0 0 ω2

 , and c =

 ω 0 0
0 ω 0
0 0 ω

 .

For p 6= 3, define α = e2πi/p and β = e2πi(p−2)/p and consider a representation of E(p) as
follows:

u =

 α 0 0
0 α 0
0 0 β

 , v =

 α 0 0
0 β 0
0 0 α

 , and w =

 0 1 0
0 0 1
1 0 0

 .

Therefore, Theorem B proves the existence of free smooth E(p)-actions on S11 × S11, for
all odd primes p.

We introduce one more family of 3-groups

B(k, ε) =
〈
a, b, c | a3 = b3 = c3

k−2

= [b, c] = 1, [a, c] = b, [a, b] = cε3
k−3

〉
where k ≥ 4, and ε is 1 or −1. One can check that B(k, ε) is not a subgroup of SU(3) for
k > 4 or ε = 1. However, the group B(4,−1) is a subgroup of SU(3), by the following
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representation

a =

 0 1 0
0 0 1
1 0 0

 , b =

 1 0 0
0 γ3 0
0 0 γ6

 , c =

 γ5 0 0
0 γ8 0
0 0 γ5


where γ = e2πi/9. Therefore Theorem B shows that B(4,−1) acts freely and smoothly on
S11 × S11.

In Section 3 we make some concluding remarks about finite 3-groups and the role of
the families P and E in the general existence problem.

Acknowledgement. The authors would like to thank Alejandro Adem, Dave Benson,
Jim Davis and Matthias Kreck for useful conversations and correspondence.

1. An explicit construction

The idea of the construction is to start with a non-free action of Γ on S5 × S5 and do
an equivariant “cut-and-paste” operation on it to get rid of the fixed points. This is an
equivariant surgery construction, but none of the theory of equivariant surgery is needed:
the proof of Theorem A just involves checking some explicit formulas.

For the initial action on S5 × S5, the singular set is contained in a Γ-invariant disjoint
union U of six copies of S1 ×D4 × S5. We replace this part by a new free action on U ,
which is Γ-equivariantly diffeomorphic to the original one on its boundary. We will use
the following four representations of Γ in our construction.

(1) An irreducible representation ϕ : Γ → U(3):

a 7−→

 0 1 0
0 0 1
1 0 0

 , b 7−→

 1 0 0
0 ω 0
0 0 ω2

 , z 7−→

 z 0 0
0 z 0
0 0 z


(2) Three representations that pullback from representations of Γ/S1:

(a) ψ0 : Γ → U(3) given by:

a 7−→

 ω 0 0
0 ω 0
0 0 ω

 , b 7−→

 ω 0 0
0 ω 0
0 0 1

 , z 7−→

 1 0 0
0 1 0
0 0 1


(b) ψ1 : Γ → U(3) given by:

a 7−→

 ω 0 0
0 ω 0
0 0 ω

 , b 7−→

 ω 0 0
0 ω2 0
0 0 ω2

 , z 7−→

 1 0 0
0 1 0
0 0 1


(c) ψ2 : Γ → U(3) given by:

a 7−→

 ω 0 0
0 ω 0
0 0 ω

 , b 7−→

 ω2 0 0
0 1 0
0 0 1

 , z 7−→

 1 0 0
0 1 0
0 0 1
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These representations give an action Φ: Γ× Y → Y on Y = S5 given by:

Φ(g, z) = ϕ(g)z,

where z = (z1, z2, z3) ∈ S5, with zi ∈ C and ‖z‖ = 1.

Definition 1.1 (Model actions on S5 × S5). For i = 0, 1, or 2 we obtain an action
Φi : Γ×Xi → Xi on Xi = S5 × S5 given by:

Φi(g, (z,w)) = (ϕ(g)z, ψi(g)w),

where z,w ∈ S5.

To simplify our notations, we let Φ(g, z) = g · z and Φi(g, (z,w)) = g · (z,w), for any
z ∈ Y and (z,w) ∈ Xi.

Remark 1.2. We will modify the initial action (X0,Φ0) by “equivariant Dehn surgery”
to obtain a free Γ-action on S5 × S5, with replacement pieces coming from (X1,Φ1) and
(X2,Φ2).

For i = 0, 1, or 2, we define a Γ-equivariant map

pi : Xi → Y given by pi(z,w) = z .

Note that pi is in fact a Γ-equivariant sphere bundle map. Fix 0 < ε < 1
9
, and define

three subspaces V1, V2, and V0 of Y as follows:

V1 = {ak · z ∈ Y | 0 ≤ k ≤ 2, |z2|2 + |z3|2 ≤ ε}, V2 = PV1

where

P =
1√
3

 1 ω 1

1 1 ω

ω 1 1

 ∈ U(3) .

Note that Pϕ(a)P−1 = ϕ(a) and Pϕ(b)P−1 = ϕ(a2b), and let V0 be the closure of
Y − V1 ∪ V2.

Lemma 1.3. V1 ∩ V2 = ∅.

Proof. Suppose z ∈ V1 ∩ V2. Then there exists z′ ∈ V1 such that z = Pz′, since z ∈ V2.

So there exists i 6= j ∈ {1, 2, 3} such that |z′i|
2 +

∣∣z′j∣∣2 ≤ ε, since z′ ∈ V1. Let {k} =

{1, 2, 3}−{i, j}. Then for any q in {1, 2, 3} we have |zq|2 ≥ 1
3
(|z′k|

2−|z′i|
2−

∣∣z′j∣∣2) ≥ 1
3
− ε.

Therefore any sum |zq|2 + |zr|2 ≥ 2
3
−2ε > ε, in contradiction to the condition z ∈ V1. �

Lemma 1.4. The inclusions ti : Vi → Y give Γ-equivariant subspaces of Y .

Proof. Assume 1 ≤ i ≤ 2. Take any w in Vi, there exists unique k ∈ {0, 1, 2} and z in V1

with |z2|2 + |z3|2 ≤ ε such that
w = P i−1ϕ(ak)z .

Hence ϕ(a)w = P i−1ϕ(ak+1)z is in Vi and for λ ∈ S1, ϕ(λ)w = P i−1ϕ(ak)ϕ(λ)z is in Vi

as |λz2|2 + |λz3|2 ≤ ε. We have

(1.5) ϕ(b)P i−1ϕ(ak) = P i−1ϕ(a−2(i−1))ϕ(b)ϕ(ak) = P i−1ϕ(ak+i−1)ϕ(b)ϕ(ω−k)
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Hence for i = 1, ϕ(b)w = ϕ(ak)ϕ(b)ϕ(ω−k)z is in Vi as
∣∣ω−k+1z2

∣∣2 +
∣∣ω−k+2z3

∣∣2 ≤ ε. For

i = 2, ϕ(b)w = Pϕ(ak+1)ϕ(b)ϕ(ω−k)z is in Vi as above. Hence the lemma is proved for
i = 1 and i = 2. For i = 0, it follows from the definition of V0. �

Remark 1.6. Observe that each of the subspaces V1 or V2 is diffeomorphic to the disjoint
union of three copies of S1 ×D4, since the subset {z ∈ S5 : |z2|2 + |z3|2 ≤ ε} = S1 ×D4.

Now define a subpace Ui ⊂ Xi for i = 0, 1, or 2 by the following Γ-equivariant pulback
diagram:

Ui
//

��

Xi

pi

��
Vi

ti // Y

Lemma 1.7. The Γ–action on Ui is free for i ∈ {0, 1, 2}.

Proof. Take two subsets of Γ as follows:

A1 =
{
bkz | 1 ≤ k ≤ 2, z ∈ S1

}
A2 =

{
akb−kz | 1 ≤ k ≤ 2, z ∈ S1

}
All elements of Γ except A1∪A2 act freely on X0. But all the fixed point sets of elements
of Ai are in p−1

0 (Vi−∂Vi) for i ∈ {1, 2}. Hence Γ acts freely on U0. Now for any i ∈ {1, 2},
all elements of Γ except Ai act freely on Vi, but all the elements of Ai act freely on Xi.
Hence Γ acts freely on Ui. �

Remark 1.8. Since Ui is an S5-bundle over Vi, the subspace U = U1 ∪ U2 is diffeomorphic
to a disjoint union of six copies of S1 ×D4 × S5.

Lemma 1.9. There is a Γ-equivariant isomorphism α : ∂U0 → ∂U1 ∪ ∂U2 as Γ-equivariant
5-dimensional sphere bundles over ∂V0 = ∂V1 ∪ ∂V2 with structure group U(3).

Proof. For m = 1 and 2 we have:

∂Vm = {Pm−1ϕ(ak)z ∈ Y | 0 ≤ k ≤ 2, |z2|2 + |z3|2 = ε},

and ∂V0 = ∂V1 ∪ ∂V2. This means that there is a unique way to write every element of
∂U0 in the following standard form

(Pm−1ϕ(ak)z,w)

where m ∈ {1, 2}, k ∈ {0, 1, 2}, and |z2|2 + |z3|2 = ε. In addition, ∂Un = ∂Vn × S5,
for n = 0, 1, and 2, with Γ-action given by g · (z,w) = (ϕ(g)z, ψi(g)w). We define an
isomorphism

α : ∂U0 → ∂U1 ∪ ∂U2

given by

α(Pm−1ϕ(ak)z,w) =
(
Pm−1ϕ(ak)z,Θm(z)w

)
,
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where

Θ1(z) =
1√

ε(1− ε)

 1 0 0

0 z̄1z2 −z̄1z3

0 z1z̄3 z1z̄2

 ∈ SU(3)

Θ2(z) =
1√

ε(1− ε)

 z̄1z2 −z1z̄3 0
z̄1z3 z1z̄2 0

0 0 1

 ∈ SU(3)

Now it is clear that α is an isomorphism. We just have to check that it is Γ-equivariant.

First, check that α is equivariant under a:

α
(
a ·

(
Pm−1ϕ(ak)z,w

))
= α

(
ϕ(a)Pm−1ϕ(ak)z, ψ0(a)w

)
= α

(
Pm−1ϕ(ak+1)z, ψ0(a)w

)
=

(
Pm−1ϕ(ak+1)z,Θm(z)ψ0(a)w

)
=

(
ϕ(a)Pm−1ϕ(ak)z, ψm(a)Θm(z)w

)
= a · α

(
Pm−1ϕ(ak)z,w

)
Second, check that α is equivariant under b:

α
(
b ·

(
Pm−1ϕ(ak)z,w

))
= α

(
ϕ(b)Pm−1ϕ(ak)z, ψ0(b)w

)
= α

(
Pm−1ϕ(ak+m−1)ϕ(b)ϕ(ω−k)z, ψ0(b)w

)
, by formula (1.5),

= α

Pm−1ϕ(ak+m−1)

 ω−kz1

ω−k+1z2

ω−k+2z3

 , ψ0(b)w

 = (?)

For m = 1 we have

(?) =

ϕ(ak)

 ω−kz1

ω−k+1z2

ω−k+2z3

 , 1√
ε(1−ε)

 1 0 0
0 z̄1ωz2 −z̄1ω

2z3

0 z1ωz̄3 z1ω
2z̄2

ψ0(b)w


=

ϕ(b)ϕ(ak)z,Θ1(z)

 1 0 0
0 ω 0
0 0 ω2

ψ0(b)w

 =
(
ϕ(b)ϕ(ak)z,Θ1(z)ψ1(b)w

)
=

(
ϕ(b)ϕ(ak)z, ψ1(b)Θ1(z)w

)
= b · α

(
ϕ(ak)z,w

)
For m = 2 we have

(?) =

Pϕ(ak+1)

 ω−kz1

ω−k+1z2

ω−k+2z3

 , 1√
ε(1−ε)

 z̄1ωz2 −z1ωz̄3 0
z̄1ω

2z3 z1ω
2z̄2 0

0 0 1

ψ0(b)w


=

ϕ(b)Pϕ(ak)z,

 ω 0 0
0 ω2 0
0 0 1

 Θ2(z)ψ0(b)w


=

ϕ(b)Pϕ(ak)z,

 ω 0 0
0 ω2 0
0 0 1

ψ0(b)Θ2(z)w
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=
(
ϕ(b)Pϕ(ak)z, ψ2(b)Θ2(z)w

)
= b · α

(
Pϕ(ak)z,w

)
Third, check that α is equivariant under λ ∈ S1:

α
(
λ ·

(
Pm−1ϕ(ak)z,w

))
= α

(
ϕ(λ)Pm−1ϕ(ak)z, ψ0(λ)w

)
= α

(
Pm−1ϕ(ak)λz,w

)
=

(
Pm−1ϕ(ak)λz,Θm(z)w

)
=

(
ϕ(λ)Pm−1ϕ(ak)z, ψm(λ)Θm(z)w

)
= λ · α

(
Pm−1ϕ(ak)z,w

)
. �

The proof of Theorem A. Define a new space X by the following pushout diagram

∂U0
∼= ∂U1 ∪ ∂U2

//

��

U1 ∪ U2

��
U0

// X

where the isomorphism α from Lemma 1.9 is used to make the identification ∂U0
∼=

∂U1 ∪ ∂U2. The above pushout diagram can be considered in the category of Γ-equivariant
5-dimensional sphere bundles with the structure group U(3). Hence we see that Γ acts
freely on X because the action of Γ on U1 ∪ U2 and U0 are both free. In addition, the
base spaces of these bundles is given by the following pushout diagram

∂V0 = ∂V1 ∪ ∂V2
//

��

V1 ∪ V2

��
V0

// Y

Hence X is a 5-dimensional sphere bundle over Y = S5 with structure group U(3). But
π4(U(3)) = 0. Hence X = S5 × S5. �

2. Proof of Theorem B

Let E denote any finite odd order subgroup of the exceptional Lie group G2. To
construct a free E-action on S11 × S11, we start with the free E-action on G2 given by
left multiplication. Now consider the principal fibre bundle

S3 = SU(2) → G2 → G2/SU(2) = V2(R7)

with structure group SU(2) over the Stiefel manifold V2(R7). This fibre bundle can be
identified with the sphere bundle of an associated 2-dimensional complex vector bundle
ξ. By construction, the space

Z(ξ) = G2 ×SU(2) C2

is the total space of the vector bundle ξ, where SU(2) acts on C2 via the standard
representation, and freely off the zero-section. It follows that the group G2 acts on Z(ξ)
through left multiplication, and freely off the zero section. We therefore obtain a free
smooth G2-action on the total space Y of the sphere bundle

S11 → Y → V2(R7)
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of the complex vector bundle ξ ⊕ ξ ⊕ ξ. This action can be restricted to any finite
subgroup of G2, but the equivariant surgery construction given below to obtain a free
action on S11 × S11 is valid only for the odd order subgroups E of G2.

Lemma 2.1. Y is a smooth, closed, parallelisable manifold diffeomorphic to S11×V2(R7).

Proof. Consider the fibre bundle

SU(3)/SU(2) → G2/SU(2) → G2/SU(3)

which is equivalent to

S5 → V2(R7) → S6 .

By [8, Prop. 7.5], the tangent bundle along the fibers of the total space V2(R7) is equiv-
alent to ξ after adding a trivial line bundle. It is known that the total space V2(R7) is
parallelisable (see [9, Corollary]), and the tangent bundle of the base S6 is stably trivial.
Therefore ξ is stably trivial over V2(R7), which means that the 12-plane bundle ξ ⊕ ξ ⊕ ξ
is trivial over V2(R7) as the dimension of V2(R7) is 11. This proves Y is diffeomorphic
to S11 × V2(R7). We also know that the tangent bundle of S11 is stably trivial, hence Y
parallelisable. �

Lemma 2.2. Y is 4-connected and has the integral homology of S11 × S11, except for the
groups H5(Y ;Z) = H16(Y ;Z) = Z/2.

Proof. The proof is easy using Lemma 2.1 and the fact that V2(R7) is 4-connected, with
integral homology given as follows

Hq(V2(R7)) =

 Z if q = 0 or q = 11

Z/2 if q = 5

0 otherwise

 .

�

We will now show how to perform E-equivariant framed surgery on Y to obtain a free
E-action on S11 × S11. In the successive steps, we remove the interior of an equivariant
framed embedding of E×Sk×D22−k and attach E×Dk+1×S22−k−1 along their common
boundaries.

This is an equivariant version of the original spherical modification construction of Mil-
nor [19], [16] which formed the starting point for surgery theory as developed by Browder,
Novikov, Sullivan and Wall (see [27]. or the short overview in [14, §7]). We remark that
non-simply connected surgery is carried out equivariantly in the universal covering of a
manifold, where the equivariance is with respect to the action of the fundamental group
as deck transformations.

In order to carry out E-equivariant framed surgery on Y , we will need a partial equi-
variant trivialization of the normal bundle of Y to produce the framings. Let X = Y/E
and νX be the classifying map of the stable normal bundle of X. Since Y is 4-connected
by Lemma 2.2, we can construct the classifying space BE by adding k-cells to X for
k > 5. Let B = BE(12) ∪X, where BE(12) denotes the 12-skeleton of BE, . We have a
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pullback diagram

Y � � //

��

B̃

��
X � � // B

of universal coverings. The assumption that E has odd order will now be used for the
first time.

Lemma 2.3. Since E has odd order, the normal bundle νX : X → BSO is the restriction
of a bundle ν : B → BSO.

Proof. The successive obstructions to extending the classifying map νX : X → BSO of
the stable normal bundle of X to a map from B to BSO lie in the groups

Hk(B,X; πk−1(BSO))

for k ≥ 6. We claim that these obstructions vanish since E has odd order. For 6 ≤ k ≤ 7,
we have πk−1(BSO)) = 0. For 8 ≤ k ≤ 11, by considering Lemma 2.2 and the cohomology
long exact sequence of the pair (B,X) with coefficients in any abelian group A, we get
Hk(B,X;A) = 0. Finally for k = 12, we have π11(BSO) = 0, so we may extend νX over
B. �

Let B′ = BE(11) ∪X ⊆ B, and still denote the restriction of ν to B′ by ν.

Lemma 2.4. The pullback ν̃ of ν by the map B̃′ → B′ is trivial.

Proof. The normal bundle νY of Y is trivial, hence it is enough to extend a null homotopy
of the map νY to a null homotpy of ν̃. The successive obstructions for this extension
problem lie in the groups

Hk(B̃′, Y ; πk(BSO))

for k ≥ 6. We claim that these obstructions also vanish. For 6 ≤ k ≤ 7, we have
πk(BSO)) = 0. For 8 ≤ k ≤ 10, by considering Lemma 2.2 and the cohomology

long exact sequence of the pair (B̃′, Y ) with coefficients in any abelian group A, we

get Hk(B̃′, Y ;A) = 0. Since π11(BSO) = 0 we are done. �

Let H(L) denote the standard skew-hermitian hyperbolic form on the module L⊕ L∗.
The following uses surgery below the middle dimension, a standard procedure in surgery
theory (see[16, §5], [27, Chap. 1]).

Lemma 2.5. After preliminary surgeries on X, we can obtain a smooth manifold M with
the following properties:

(1) M̃ is stably parallelisable.

(2) The classifying map c : M → BE induces an isomorphism π1(M) ∼= E.

(3) πi(M) = 0 for 1 < i < 11.
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(4) The intersection form

(π11(M), sM) ∼= H(Z) ⊥ (F, λ)

for some non-singular skew hermitian form λ on a finitely-generated free ZE-
module F .

Proof. Lemma 2.3 gives a bundle ν : B′ → BSO. We will perform a sequence of surgeries
over (B′, ν), so that in particular the bundle ν pulls back to the stable normal bundle of
the trace of the surgeries. By Lemma 2.4, the resulting manifold M at any stage of these

surgeries has universal covering M̃ stably parallelisable.
The first step is surgery to kill a generator of π5(X) = Z/2. We use the short exact

sequence
0 → 〈2, I〉 → ZE → Z/2 → 0

of ZE-modules, where I denotes the augmentation ideal of ZE, to keep track of the effect
of the first step of the E-equivariant framed surgery on Y . The result of the first step is
a manifold M such that π6(M) = 〈2, I〉. We have a short exact sequence

0 → ZE → 〈2, N〉 → Z/2 → 0,

where the module 〈2, N〉 is projective over ZE since E has odd order (see [24, §6]). Now
Schanuel’s Lemma shows that

〈2, N〉 ⊕ 〈2, I〉 = ZE ⊕ ZE

is free over ZE, so 〈2, I〉 is a finitely-generated projective ZE-module with stable inverse

〈2, N〉. The effect of the subsequent surgeries to make M̃ highly-connected is just to
replace a projective module πi(M) = Q at each step with its stable inverse πi+1(M

′) = Q′,
for i < 10. At the last of these steps, where we eliminate π10(M), the result is an expression

(π11(M), sM) ∼= H(Z) ⊥ (P, λ′)

where (P, λ′) is a non-singular skew-hermitian form on P = Q ⊕ Q∗, and Q ∼= 〈2, N〉.
The projective modules 〈r,N〉, for r prime to |E|, generate the Swan subgroup T (ZE) ⊆
K̃0(ZE) of the projective class group. Now Swan [24, Lemma 6.1] proved that

Z⊕ 〈r,N〉 ∼= Z⊕ ZE

for any r prime to |E|, and that

〈2, N〉 ⊕ 〈r,N〉 ∼= ZE ⊕ ZE

if 2r ≡ 1 (mod |E|). After surgery on a null-homotopic 10-sphere in M , we obtain
M ′ = M#(S11 × S11), whose equivariant intersection form is

(π11(M
′), sM ′) ∼= H(Z) ⊥ (P, λ′) ⊥ H(ZE)

However note that

H(Z) ⊥ H(ZE) = H(Z⊕ ZE) ∼= H(Z⊕ 〈r,N〉) = H(Z) ⊥ H(〈r,N〉) .
Now (F, λ) := H(〈r,N〉) ⊥ (P, λ′) is a non-singular skew-hermitian form on a finitely-
generated free ZE-module. �
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We next observe that the equivariant intersection form (π11(M), sM) has a quadratic
refinement µ : π11(M) → ZE/{ν + ν̄}, in the sense of [27, Theorem 5.2]. Since E has

odd order, this follows because the universal covering M̃ has stably trivial normal bundle.
We therefore obtain an element (F, λ, µ) of the surgery obstruction group (see [27, p. 49]
for the essential definitions). In the splitting (π11(M), sM , µ) = H(Z) ⊥ (F, λ, µ) we may
assume that the Arf invariant of the summand H(Z) is zero. This follows by construction,
since the preliminary surgeries can be done away from an embedded sphere

S11 × ∗ ⊂ S11 × V2(R7) = Y

with trivial normal bundle. We need to check the discriminant of the form (F, λ, µ).

Lemma 2.6. We obtain an element

(F, λ, µ) ∈ L′
2(ZE)

of the weakly-simple surgery obstruction group.

Proof. A non-singular, skew-hermitian quadratic form (F, λ, µ) represents an element in
L′

2(ZE) provided that its discriminant lies in ker(Wh(ZE) → Wh(QE)). But the equi-
variant symmetric Poincaré chain complex (C(M), ϕ0) is chain equivalent, after tensoring
with the rationals Q, to its rational homology complex (see [21, §4]). Therefore the image
of the discriminant of (π11(M)⊗Q, sM) equals the image of the torsion of ϕ0, which van-
ishes in Wh(QE) because closed manifolds have simple Poincaré duality (see [27, Theorem
2.1]). �

The proof of Theorem B. We now have a smooth closed manifold [M, c] whose equivariant
intersection form (π11(M), sM) contains (F, λ, µ), as described above. However, since E
has odd order, an element in the surgery obstruction group L′

2(ZE) is zero provided that
its multisignature and ordinary Arf invariant both vanish (this is a result of Bak and Wall,
see [26, Cor. 2.4.3]). The multisignature invariant is trivial since M is a closed manifold

[27, 13B]. The ordinary Arf invariant of (F, λ, µ) equals the Arf invariant of M̃ , which
vanishes since 22 is not of the form 2k − 2 (a famous result of Browder [10]). We can now

do surgery to obtain a representative [M, c] which has M̃ = S11 × S11#Σ, where Σ is a
homotopy 22-sphere. Note that the p-component of πS

22 is zero for p ≥ 3 (see [22, p. 5]),
so we can get the standard smooth structure on S11 × S11. �

3. Concluding Remarks

In this final section we will make some additional remarks about the group theory, and
explain the significance of constructing actions for our families P and E of finite groups,
as a step towards answering our original question.

(I). Blackburn has given a classification of p-groups of rank 2. Here we restate his result
for 3-groups (see Theorem 4.1 in [7] and Theorem 3.1 in [17]). If G is a rank two 3-group
of order 3k then one of the following holds

(1) G is a metacyclic 3-group,
(2) G = P (k), k ≥ 3, a group in P ,



12 IAN HAMBLETON AND ÖZGÜN ÜNLÜ

(3) G = B(k, ε), k ≥ 4,
(4) G is a 3-group of maximal class.

The 3-groups listed in the first item all act freely and smoothly on a product of two
equidimensional spheres (see [18, p. 538]). An explicit construction and the proof of
Theorem A shows that the groups in the second item on this list act freely on S5 × S5.
Theorem B shows that the group B(4,−1) in the third item also acts freely on a product
of two equidimensional spheres, but of dimension S11 × S11.

(II). It was shown by Benson and Carlson (see Theorem 4.4 in [6]) that free actions of a
rank two group on a product of two equidimensional spheres could not be ruled out by
cohomological methods alone. Hence the arguments given for certain non-existence claims
in [3], [4], [25], and [28] about extraspecial p-groups are not valid. In fact, Theorems A
and B applied to the extraspecial 3-group E(3) of order 27 and exponent 3 give specific
counterexamples to the results claimed in these papers. The possible sphere dimensions
for this group E(3), not previously ruled out by cohomological methods, are of the form
S6r−1 × S6r−1, and our examples show existence in the first two cases (r = 1, 2).

(III). For any prime number p, the group E(p) is a subgroup of G2, but E(2) ∼= A4. Since
A4 is ruled out by [20], Theorem B shows that the group E(p) can act freely and smoothly
on a product of two equidimensional spheres if and only if p > 2. More information about
the odd order subgroups of G2 can be found in [12] (the finite subgroups are not all
contained in SU(3), but we don’t know about if this is true for the odd order subgroups).
The result of Oliver [20] was also proved and extended by Carlsson [11] and Silverman
[23].

(IV). Let G be a group in P or E . Let axe(G) be the minimum number of linear
representations of G required for G to act freely on a product of spheres where the action
on each sphere is induced from one of these representations. By [5, Proposition 3.3], it
easy to see that axe(G) ≥ 3. Hence G can not act freely on a product of two sphere
with a linear action on each sphere. Moreover G is not a subgroup of Sp(2), hence the
free actions constructed in [1] will not be on a product of two equidimensional spheres.
We also remark that G can not be written as a product of two groups with periodic
cohomology, while all the subgroups of G can. So the families P and E are two infinite
families of minimal new examples not included in [15].
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