Chapter IX

Cancellation Results for
2-Complexes and 4-Manifolds
and Some Applications

Ian Hambleton and Matthias Kreck

This is a survey chapter. The idea is to summarize some recent work which il-
lustrates in one way or another the connection between topology in dimension
2 and the study of 4-dimensional manifolds. There are almost no new results
and no result is proved completely in the paper. Instead, in each section we
collect together some related statements and motivation, and give a sketch of
some typical or important steps in the proofs.

1 A Cancellation Theorem for 2-Complexes

Any two finite 2-complexes K, K’ with isomorphic fundamental groups be-
come stmple homotopy equivalent after wedging with a sufficiently large (fi-
nite) number of S*’s (see chapter I, (40)). Furthermore, if a : m (K, xo) =
m(K',2'¢) is a given isomorphism and K, K’ have the same Euler character-
istic, then there is a simple-homotopy equivalence f : KV rS? = K'v rS?
inducing a on the fundamental groups. For a given group =, the minimal
number r with the property above for all finite 2-complexes with this funda-
mental group is called the stable range.

It is known that for finite fundamental groups the stable range is always < 2
([Dy81], Theorem 3). The main result of this section is the following.
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Theorem 1.1 ([HaKr92,)) Let K and K’ be finite 2-complexes with the same
Euler characteristic and finite fundamental group. Let a : m(K,z9) —
m(K',xy) be a given isomorphism and suppose that K o~ KoV S%. Then
there is a simple-homotopy equivalence f : K — K' inducing a on the funda-
mental groups.

The analogous result for “homotopy type” instead of “simple-homotopy type”
was proved by W. Browning ([Br78], 5.4; see also Chapter III, §2).

This is the best possible result in general ([Me76]; see also Chapter III, §2
and this chapter, §4); but for special fundamental groups like cyclic groups
[Me76], [DySi73] or more generally finite subgroups of SO(3) ([HaKr92,]; see
also [La91] for the groups D(4n)) it can sometimes be improved (see Theorem
1.3).

Proof: Let h : KV rS? - K'V rS? be a simple-homotopy equivalence
as above, inducing a given isomorphism « on the fundamental groups. We
will prove the theorem inductively and thus we may assume that r = 1.
Our strategy is to construct a simple self-equivalence of K such that, after
composing with this, we obtain 4’ : KV S? — K’V 5? which fixes the element
p1 of my represented by the S? factor. Then the composition of A’ with the
inclusion and projection gives a homotopy equivalence f : K — K’, which by
the additivity formula for the Whitehead torsion is simple.

To construct such a simple self-equivalence of K, one naturally first considers
the corresponding algebraic problem of constructing an automorphism of 7
preserving m, and then realizing it by a simple self-equivalence.

We fix some notation. Let A = Z[m(K)], L = ma(Kp) and let P = Py @ P
be the A-submodule of mo(Ky V S% V S?) generated by m5(S? V S2). We note
that the A-module L has (A, Z)—free rank > 1 at all primes p not dividing
the order of m(K). This notion was introduced in [HaKr92;] and means
that there exists an integer r such that (Z" @ L), has free rank > 1 over A,,
where we consider Z as A-module via the augmentation map. In this case,
the reason that mo(Ky) has (A, Z)-free rank > 1 is that L fits into an exact
sequence

()0>L—2CoCi5CoHZ—-0

with the modules C; = C,-(f{) finitely generated free A-modules.

More generally, any lattice L with a resolution (1) by finitely generated pro-
jective A-modules C; is unique up to direct sum with projectives. The stable
class is denoted QZ. Such lattices with minimal Z-rank need not contain
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any projective direct summands over A = Z7, but rationally contain all the
representations of 7 except perhaps the trivial one. Then L has (A, Z)-free
rank > 1 at all primes not dividing the order of «.

We need the following notation. If M = M; & M; is a direct sum splitting of
an A-module, then E(M;, M2) denotes the subgroup of GL(M) generated by
the elementary automorphisms ([Ba68], p.182). This is the group generated
by automorphisms of the form 1 + f and 1 + g, where f: M; — M, and
g: My — M, are arbitrary A-homomorphisms. An element of an A-module
is called unimodular if there is a homomorphism to A mapping it to 1. The
main algebraic ingredient of our proof is the following result whose proof we
will sketch at the end of this section.

Theorem 1.2 [HaKr92)], Corollary 1.12 and Lemma 1.16) Let M = P& L
be an A-lattice, where P = ppA ® pyA= Py ® P, and L has (A, Z)-free rank
> 1. Then the group G = (E(Py,L & P,),E(P,,L & Py)) acts transitively on
unimodular elements in L & P.

To finish our proof, we have to realize elements in G by simple-homotopy self
equivalences of KoV2S? = KV S? inducing the identity on ;. It is enough to
do this for E(P,,L @ Fy). This group is generated by automorphisms of the
form 1+ f and 1 + ¢, where f: L& Py, — P, and ¢g: P, & L & P, are arbitrary
A-homomorphisms. Recall that P, = pyA and L @ Py = my(K). Consider
the map Id Vu: K v §? - KV 52, where u = (g(p1),;) € m(K Vv S?) =
ma(K) @ py A. It realizes 1 + g and its restriction to K is the identity and it
also induces the identity on (K V S2?)/K = S2. Thus the additivity formula
for the Whitehead torsion implies that the torsion of Id V u vanishes.

To realize 1 + f, we note that f : L@ P, = m(K) = Ho(K;A) 5 P =A
factors through Hy(K, K!; A), with K the 1-skeleton. The reason for this is
that we have an exact sequence

Homy(Ha(K, K'; A), A) = Homa(Ha(K; A), A) — Extl(H;(K'; A), A)

and the last group vanishes since H,(K';A) is Z-torsion free. Choose a
factorization map f: Ho(K,K';A) - A, where Hy(K,K';, A) is a free A-
module generated by the 2-cells of K (appropriately connected to the base
point). Denote this basis by ey, ..,ex. Now write K = K! UD?>U ... u D2
Pinch off the 2-cells to obtain K V rS? and denote the projection map by
p: K = K VkS?. Consider the composition map 8: K = KVkS2 -5 KV §?,
where the second map is IdV f(e1) V...V f(ex). By construction the induced
map on 7y is 1 @ f and the composition K - K vV §2 - K is homotopic to
Id. Finally, consider 8V Id: KV S?* — KV S? realizing 1 + f. Its restriction to
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S? and the induced map on K are homotopic to the identity, implying from
the additivity of the Whitehead torsion that § V Id has trivial torsion. 0O

Without proof, we state the full classification result for 2-complexes with fun-
damental group a finite subgroup of SO(3). Recall that the finite subgroups
G of SO(3) are cyclic, dihedral, A4, Sy, and As.

Theorem 1.3 Let 7 be a finite subgroup of SO(3). If K and K' are finite
2-compleres with fundamental group = and the same Euler characteristic, and
if a i m(K,zo) =& m(K',zy) is a given isomorphism, then there is a simple-
homotopy equivalence f : K = K’ inducing « on the fundamental groups.

The proof runs along the same lines as above but needs several additional
steps. For 7 cyclic or m = Z/2 x Z /2, this was proved in [Me76], [DySi73].
The result for # = D(4n), the dihedral group of order 4n, has recently been
obtained by P. Latiolais [La91]. Our methods give a new proof in these cases.

Now, we give a sketch of the proof of Theorem 1.2.

Proof of Theorem 1.2: Recall that a Jattice is a finitely generated right A-
module that is torsion free over Z. Our proof is based on an improvement
of the Bass transitivity theorem ([Ba68], pp.178-184), which assumed that
M has free rank > d + 2 where d is the Krull dimension of the ring A. In
our special case of lattices over group rings of finite groups (Krull dimension
= 1), we are able to obtain a transitivity theorem assuming only free rank > 2
when the lattice M contains a summand L which has (A, Z)-free rank > 1.
Thus, the improvement here is that a particular type of non-free modules
which occurs geometrically as m2(K) can play the role of a free module in
producing algebraic transitivity.

We denote the augmentation map by e A = B = Z. This is a surjective ring
homomorphism. If M is an A-lattice we get an induced homomorphism

€M M@,y Z.
Recall that for an element z € M, Op(z) is the left ideal in A generated by
{f(z) | f € Homa(M, A)}.

If Op(z) = A, we say that z is unimodular. We need two easy facts whose
proofs are omitted.

Proposition 1.4 Let M be an A-lattice and A' = AJAt for an ideal t € Z

such that the localized order A, is mazimal. Then the induced map
HomA(M, A) — HomA:(M', AI)

is surjective, where M' = M [Mt.
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Proposition 1.5 ([Ba73], (2.5.2), p.225) If C is a semisimple algebra, then
for each a, b € C there exists r € C such that C(a +rb) = Ca + Cb.

Now let £ = poa+p1b+v € M be a unimodular element, with p = ppa+p1b €
P and v € L, so that O{z) = Aa + Ab+ O(v). Since the elementary matrices
E,(Z) act transitively on unimodular elements in Z" for n > 2, we may
assume that €,(r) = e.{po). In the proof, we use the stability assumption on
L to move z so that its component in pgA & L is unimodular. Then we move
T to pg to prove the statement about unimodular elements in M. At each
step, we use only elements ¢ of G fixing €. (py).

Lemma 1.6 Let S be a finite set of (non-zero) primes inZ, and A = AfgA
where g is the product of all the primesp € S. Then after applying an element
TEE(P®L,PR) tox, O(F) = Aa = A and ¢,(x) = €,(po)-

Proof: The semi-simple quotient ring A/Rad A = C x C’, where C =
B/RadB and C’ is a complementary direct factor. Here “Rad” denotes the
Jacobson radical [CuRe62]. Since ¢,(r) = €.(po), @ projects to 1 in the C
component of the semisimple quotient. Since Aa + O(p1b + v) = A, there
exists ¢ € O(p1b + v) such that Aa + ¢ contains 1, and ¢ projects to zero in
B. By Proposition 1.5, there exists 2 € A with A(a + z¢) = A( mod g) and
amap g: P @ L — poA C M with g(p1b + v) = pozc. Extend ¢ to a map
from M to M by zero on the complement. Then 7 = 1 + ¢ is an element of
E(P, @ L, Py) and 7(x) has the desired properties. a

We apply Lemma 1.6 to the set S of primes p € Z at which A is not maximal,
or L does not have (A, B)-free rank > 1.

Lemma 1.7 If x = poa + p1b + v € M is a unimodular element for which
Aa + gA = A, then after applying an element 7 € E(P,,L) we have x =
Poa + p1b + v with poa + v unimodular and e.(x) = e.(po).

Proof: Let t C Z denote the ideal which is maximal among those such that
At C Aqa. It is not hard to see that g is relatively prime to t, and so A, is a
maximal order.

Now we project to the semilocal ring A’ = A/At. This is a finite quotient
ring of the maximal order A,, and so the projection €: A’ — B’ splits and
A" = B' x C'. Since over the B’ factor a projects to 1, we have (Aa)’ = A'.
Over the complementary factor C’' we use a suitable 7 € E(p|C’, L'), so that
after applying 7 we achieve the condition

Ad +0(W) = A’
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over both factors of A’. This is an application of Proposition 1.5 to the
component of z in L' @ piC’ using the fact that C' C L'. The necessary
homomorphism ¢ € Homy (P}, L'), which is the identity over B’, can be
lifted to Homa (P, L) since P, is projective and extended to M by zero on
DA L.

We now lift the relation above to A using Proposition 1.4 and obtain

Aa+ O(v) + At= A
But At C Aa so v + pea is unimodular. 0
We now complete the proof of Theorem 1.2 by the following:

Lemma 1.8 Letx = poa+ p1b+v and e, (x) = po. Suppose that z = ppa + v
is unimodular, and write L ® Py = 2A @& Ly. Then there exist elementary
automorphisms 1 € E(2A,P)), » € E(P\,Py), 13 € E(Py,P,) and 74 €
E(Py, L) such that T473 '137am (*) = po and the product fizes €,(po).

Proof: This is the argument of [Ba68, pp. 183-184]. Let ¢1(z) = p1(1—a—b),

with g1(Lo) = 0. Define go(p1) = po, g3(po) = p1(a — 1), and g4(po) = —v,
where the homomorphisms are extended to the obvious complements by zero.

If m =1+ gi, then
7'47'{17'37'27'1(1:) = po.
The product fixes €,(po) and lies in E(P, Py & L). 0

This finishes the proof of Theorem 1.2.

2 Stable Classification of 4-Manifolds

There is a close analogy between the stable classification of homotopy types
of 2-complexes and homeomorphism types of 4-manifolds. To indicate this
analogy, consider the thickening functor from finite 2-complexes to closed 4-
manifolds obtained by embedding a 2-complex X as polyhedron in R® and
taking the boundary of a smooth regular neighborhood (compare Chapter
I, §3). If two 2-complexes are simple-homotopy equivalent, the correspon-
ding 4-manifolds are s-cobordant (implying homeomorphic, if the fundamen-
tal groups are poly-(finite or cyclic) [Fr84]) and we denote the corresponding
s-cobordism class by M(X). If we replace the 2-complex by its 1-point uni-
fication with S2, the corresponding 4-manifold changes by connected sum
with S2 x S%2. This indicates the analogy of stable equivalence classes of
2-complexes with the following notation for 4-manifolds.
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Definition 2.1 Two smooth (topological) closed 4-manifolds My and M, are
stably diffeomorphic (homeomorphic) if the connected sums Mo#r(S? x S?)
and My#1r(S? x §?) are diffeomorphic (homeomorphic) for some integer r.

Since the smooth stable s-cobordism theorem (implying that two s-cobordant
4-manifolds are stably diffeomorphic) holds [Qu83], the stable diffeomorphism
class of M(X) is determined by the stable simple-homotopy class of X and
so (see §1) by m(X).

Compared to the 2-complexes, it is not true that for 4-manifolds the stable
classification needs only the fundamental group and the Euler characteristic
as invariants. At least one has to control basic properties like orientability
and existence of a spin-structure and in addition for oriented manifolds the
signature.

The following definition turns out to be very useful for coding the fundamental
group together with orientability and spin-structure information. Let M be
a topological 4-manifold. Abbreviate m{M) =n. Let u: M — K(m,1) be a
classifying map of the universal covering M. Then we have an isomorphism
u* : HY(m;Z/2) - H'(M;Z/2) and an exact sequence 0 = H2(m,Z/2) —
H%*(M;,Z/2) - H?(M;Z/2) [Br82). Thus we can pull back w; (M) by u from
a class denoted w; € H'(m,Z/2) and, if wa(M) = 0, wy(M) from a class
denoted wy € H2(m,Z/2). If wa(M) # 0, we define w, = co. There is an
obvious notion of isomorphism classes of the triple (w,w;,w;) and we denote
the isomorphism class by [m, w;, w2].

Definition 2.2 For a topological 4-manifold M, we call the isomorphism
class [m, w1, ws) the algebraic normal 1-type.

The algebraic normal 1-type determines the geometric normal 1-type , called
the normal 1-type , as follows. We begin with the smooth case. Let M be a
smooth manifold. If wy = co (corresponding to wq(M) # 0), then we define
the normal 1-type as follows. Consider the real line bundle £ — K (m, 1) with
w1 (E) = w; and the composition

Exp

K(m,1) x BSO———BO x BO—®BO,

where E: K(7,1) = BO is the classifying map of the stable bundle given by
E and @ is the H-space structure on BO given by the Whitney sum. We
denote the corresponding fibration by B[r,w;,o0]. If wa # 0o, we define the
normal 1-type as the fibration p : B(w,w;,w2) — BO given by the following



288 Hambleton/Kreck : IX. CANCELLATION RESULTS

pullback square

B(Tl',wl,wZ) g K(Tr’l)
i b X
Bo  ERmED . pz/91)x K(Z/2,2).

where w;(FO) are the Stiefel-Whitney classes of the universal bundle and we
interpret w; as maps to K(Z/2,1). The fibre homotopy type of

p: B(m,w;,w;) — BO

is determined by the isomorphism class of (m,w;,ws) and is denoted by
B[, w;, ws], the normal 1-type.

If w; =0, B[n,0,ws)] factorizes over BSO and we choose one of the possible
lifts. This way we consider B[r,0,w,] as fibrations over BSO. To deal the
oriented case (wy; = 0) and the non-oriented case simultaneously we write
p: B(m, w,ws) — B(S)O.

For topological manifolds, one can make the obvious changes (replace the lin-
ear normal bundle by the topological normal bundle given by a map
v: M — B(S)Top) to obtain from the algebraic normal 1-type the normal
1-type p : B(m,wy,ws) — B(S)Top.

The following theorem plays a central role in the stable classification of 4-
manifolds. Given a fibration B — B(S)O, abbreviated for short as B, we
consider the B-bordism group 2, (B) consisting of bordism classes of closed
smooth n-manifolds, which are oriented, if the fibration is over BSO , together
with a lift 7 over B of the normal Gauss-map v : M — B(S)O [St68]. Such a
lift is called a normal 1-smoothing if ¥ is a 2-equivalence. It is easy to check
that, if the algebraic normal 1-type of M is [m,w;,ws], by construction of
B(n,0,ws], M admits a normal 1-smoothing in B[m,w;,ws]. Similarly, for
topological manifolds, one starts with a fibration B — B(S)Top, abbreviated
for short as BT and introduces the analogous bordism group of topological
manifolds denoted 2, (BTP).

Theorem 2.3 ([Kr85])) Two smooth (topological) 4-manifolds My and M,
with the same algebraic normal I-type [m,w;,w2] are stably diffeomorphic
(homeomorphic), if and only if they have the same Euler characteristic
and if they admit normal 1-smoothings Uy and Dy respectively such that
(Mo, o) and (M, 1) represent the same bordism class in Qq(B(m, w1, wa)) (in
Q4(BTOP[7T’wl’w2]))'
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If one wants to apply this theorem, one has to compute the bordism group
Q4 (B[m,w;, ws)) or Qq(BTP[r, w1, ws]). In general, this is not easy; but, un-
der some assumptions, it follows from the Atiyah-Hirzebruch bordism spec-
tral sequence ([CoF164]). For example, if we = oo (i.e., wo(M) # 0) and
w; = 0, then Q(B[m,wi,ws]) = Q(K(m, 1)) and Qu(BTP[r, w1, wa]) =
QﬂTop WK (m,1)), where the right side is the oriented smooth (topological)
singular bordism group in K(m,1). In this situation the choice of a nor-
mal l-smoothing is equivalent to the choice of a map v : M — K(m,1)
inducing an isomorphism on 7 or equivalently a representative of a classi-
fying map of the universal covering. The different choices are obtained by
composing with an automorphism of 7 acting as self equivalences of K (=, 1).
Now, Q; = 0for1 <7 < 3 and Qy = Q4 = Z, where in the last case
the isomorphism is given by the signature (cf [MiSt74]). In the topological
case, one has an additional term Z/2 detected by the Kirby-Siebenmann
obstruction K'S [KiSi77]. Thus, from the Atiyah-Hirzebruch spectral se-
quence, one has Q4(K(n,1)) = Z & H4(K(m,1);Z) in the smooth case, and
QTP (K (,1)) = Z & Hy(K(m,1);Z) & Z/2 in the topological case. The
isomorphism is given by the signature of M, the image of the fundamental
class u.([M]) in H(K(m,1);Z), and, in the topological case, in addition the
K S-invariant. This proves the first part of the following theorem.

Theorem 2.4 Two oriented smooth (topological) 4-manifolds My and M
with the same fundamental group and with wa(M;) # 0 are stably diffeomor-
phic (homeomorphic), if and only if they have the same Euler characteristic
and signature, if u.(Mo) = u.(My) € Hy(K(m,1);Z)/Out(r) and, in the
topological case, KS(My) = KS(M,).

Arbitrary values of the signature and the class in Hy(K(m,1);Z)/Out(r) and,
in the topological case, of KS € Z [2 can be realized.

Proof: We are left with the realization statement. This follows since by
surgery any element in the corresponding bordism group can be realized by a
manifold, such that u induces an isomorphism of n and with wo(M) # 0. 0O

One can use the same surgery method to say much more about the stable clas-
sification of 4-manifolds. For instance, if the manifolds M; are equipped with
spin-structures, they are stably diffeomorphic (homeomorphic) if and only if
they have the same Euler characteristic and (Mjy, uo) and (M, u;) represent
the same element in the singular smooth (topological) bordism group of spin-
manifolds together with maps to K(m,1). But this bordism group is much
harder to compute and a general answer is not known. In the next theorems,
we list some results for manifolds with special fundamental groups which can
easily be obtained along these lines of arguments.
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Theorem 2.5 Let My and M, be smooth (topological), oriented 4-manifolds
with wg(l\;!,-) =0 and m(M;) = n. If H(x,Z/2) =0 for 1 <1 < 3, then M,
and My are stably diffeomorphic (homeomorphic) if and only if they have the
same FEuler characteristic, signature, u.(My) = u. (M) € Hy(K(m, 1);Z)/

Out(n) and, in the topological case, if KS(My) = KS(M).

If M s smooth, then the signature, abbreviated by o, is by Rohlin’s Theorem
divisible by 16; and arbitrary values divisible by 16 of the signature and the
class in Hy(K(7,1); Z) [Out(w) and, in the topological case, of KS € Z[2 can
be realized.

Theorem 2.5 in particular covers all finite fundamental groups of odd order.

Theorem 2.6 Let My and M, be smooth (topological), oriented 4-manifolds
with w2 (M;) = 0 and cyclic fundamental group m(M;) = n. Then My and
M, are stably diffeomorphic (homeomorphic) if and only if both admit a spin
structure or both do not admit a spin structure and they have same Euler
characteristic, signature and, in the topological case, if KS(M,) = KS(M).

The signature is always divisible by 8 and in the smooth case, if wo(M) # 0,
every integer divisible by 8 can be realized and, if wo(M) = 0, all integers
divisible by 16 can be realized. In the topological case, every integer divisible by
8 can be realized and, if wo(M) # 0, one can prescribe KS € Z /2 arbitrarily,
whereas, if wa(M) =0, KS =0(M)/8 mod 2.

3 A Cancellation Theorem for Topological
4-Manifolds

In this section we prove a cancellation theorem for topological 4-manifolds
which is analogous to Theorem 1.1.

Theorem 3.1 ([HaKr92;), Theorem B) Let X and Y be closed oriented to-
pological 4-manifolds with finite fundamental group. Suppose that for some
r the connected sum X#r(S? x S?) is homeomorphic to Y#r(S? x S?). If
X = Xo#(S? x S?), then X is homeomorphic to Y .

Note that the assumption that X splits off one S? x S? cannot be omitted,
in general. There are, for example, even simply—connected closed topological
4-manifolds that are stably homeomorphic but not homeomorphic because
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they have non-isometric intersection forms. Examples of distinct but stably
homeomorphic manifolds with finite fundamental group and the same equiv-
ariant intersection form were constructed in [KrSc84]. We will discuss these
examples in the next section.

Before we prove this theorem, we formulate the following immediate corollary
to it and Theorems 2.4, 2.5 and 2.6.

Corollary 3.2 Let My and M, be closed oriented topological manifolds with
finite fundamental group m, such that one of the three conditions are fulfilled:
i) wa(M:) # 0, i) wa(M;) = 0 and 7 cyclic, i) Hi(w,Z[2) =0 for1 <i < 3.
Suppose that My = X#(S? x S?). Then M, is homeomorphic to M, if and
only if both admit a spin structure or both do not admit a spin structure and
they have same Euler characteristic, signature, Kirby-Siebenmann obstruction
and u.(Mp) = u.(My) € Hy(K(m,1);Z)[Out(r).

As in the proof of Theorem 1.1, there is an algebraic and a geometric part in
the proof of Theorem 3.1. We begin by stating the algebraic input. Asin the
last section, we set A = Z[n] and we equip A with the anti-involution a + &
mapping an element in 7 to its inverse. As common in algebra, we consider
right A-modules but note that with the help of the anti-involution one can
pass from right to left modules and vice versa. Thus, whenever the module
comes naturally with a left action, we pass to the corresponding right action.
In particular, we do this for the dual of a right module V , which we denote
by V. A quadratic A-module V is an A-module together with a hermitian
form (—, —) and a quadratic refinement ¢ in the sense of ((Wa70], Chapter 5)
with values in A/{a —a}. It has (A, Z)-hyperbolic rank > 1 at a prime p € Z
if there exists an integer r such that (H(Z") @ V'), has free hyperbolic rank
> 1 over Ap. Here the hyperbolic form H(W) of an A-module W is the form
on W @ W which is trivial on W and W and evaluation between W and W,
and where the quadratic refinement vanishes on W and W. The hyperbolic
rank is > s if the quadratic form splits off H(A®).

We need various subgroups of the isometries on a quadratic module. If P =
PoA @ p1 A is A-free of rank 2, we denote by E(P) the group generated by
elementary triangular matrices having 1 on the diagonal and by H(E(P) the
induced isometries on the hyperbolic space H(P). A transvection ([Ba73],
p.91) of V is a unitary automorphism ¢ = 0,4, : V — V given by

o(@) = = + u(v,2) - v(u, ) — ualu, ),

where 1, v € V and a € A satisfy the conditions
g(u) = 0 € A/{a —a},(u,v) = 0,q(v) = a € A/{a—a}.
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For any submodule L C V,

L' ={z e V|(z,y)=0forall ye L}

If V = V' L V" is an orthogonal direct sum, with L' C V' a totally isotropic
submodule (i.e. h{z,y) = 0 (mod {a — a}) for all z, y € L), and L”" C V",
then we define

EU(WV' L';L") = (0yep|u € L' and v e L")
and in the special case V.= P L P
EU(H(P)) = EU(P, P, P).

A hyperbolic plane is a quadratic module isomorphic to H(A). A hyperbolic
pair consists of two vectors u and v with ¢(u) = ¢(v) =0 and < w,v >=1.

Theorem 3.3 ([HaKr92,], Theorem 1.20 and Lemma 1.21) Let V be a quad-
ratic module which has (A, Z)-hyperbolic rank > 1 at all but finitely many
primes, and put M =V L H(P), where P = pgA ® p1A is A-free of rank 2.
Then

G = (BU(H(P),@;V), H(E(P)) - EU(H(P)))

where Q = P or P, acts transitively on the set of g-unimodular elements of
a fized length, and the set of hyperbolic pairs and hyperbolic planes in M.

Here an element x € M is g-unimodular if there exists y € M such that
(z,y) = L.

This theorem is the quadratic analogue of Theorem 1.2 and the proof uses
the same philosophy. We will apply this algebraic cancellation theorem to
prove Theorem 3.1. We need some preparations.

Proposition 3.4 Let X be a closed oriented topological 4-manifold with fi-
nite fundamental group, and let A = Z[n1(X)]. There is an A-submodule V
of m(X) which supports a quadratic refinement of the intersection form on
X. In addition, V has (A, Z)~hyperbolic rank > 1 at all but finitely many
primes.

Proof: Since our algebraic result uses quadratic modules and the intersection
form on m3(X) does in general not admit a quadratic refinement, we take the
submodule V' = ker ({wg, —) : m2(X) — Z/2) on which the intersection form
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Sx has a quadratic refinement ¢ : V — A/{v — i’} defined as in [Wa70,
Chapter §).

Next we check that V' has (A, Z)-hyperbolic rank > 1 at all odd primes not
dividing the order of m(X). Since X is a closed manifold, the components of
the multi-signature of Sx are all equal (compare [Le77]). On the other hand,
from [HaKr88, 2.4] we know that m3(X) ) is isomorphic to the localization of
I & I" @ A, where I denotes the augmentation ideal of A. It follows that the
components of Sx are indefinite at all non-trivial characters of m1(X). Since
Sx is unimodular when restricted to V,, for p as above, we conclude that V
has (A,Z) hyperbolic rank > 1 at all odd primes not dividing the order of
o) (X) . a

We need the following result of Cappell-Shaneson. In the statement a stan-
dard basis for the summand Hy(S? x 52, Z) of Hy(X#(S?x S?),Z) is denoted

by {po, go}-

Theorem 3.5 ([CaSh71],1.5) Let X be a compact, connected smooth (to-
pological) manifold of dimension four, and suppose X = Xo#(S? x S?)
for some manifold Xo. Let w € Ha(X;A) = ma(X) with we(w) = 0 and
let a € A = Z[m(X)] be any element such that ¢(w) = a(mod {a — a}).
Then there is a base point preserving diffeomorphism (homeomorphism) ¢ of
X#(S? x S?) with itself which preserves local orientations and induces the
identity on m (X #(S? x S?)), so that ¢.(po) = Po, é«(g0) = go+w — poa, and
6a(6) = € — (€ w)po for £ € Hy(X; A).

In order to prove Theorem 3.1, we need to realize transvections by homeo-
morphisms of X#7r(S? x S2). For the rest of this section, we fix the notation

Kmy(X) = ker ((wa, =) : m2(X) = Z/2)

for the submodule of the intersection form on H>(X; A) on which a quadratic
refinement is defined. We denote by H(P,), where Py = pgA, the summand
of Ha(X#(S2 x 52); A) given by Hy(S? x S%; A). As further copies of 52 x 52
are added to X by connected sum, we denote all these hyperbolic factors of
the intersection form by H(P). Note that Theorem 3.5 allows us to realize
the transvections o, 4. by self-homeomorphisms of X#(S? x S2%) for any
v € Kma(Xy), in the case when X = X #(S? x S?). Cappell and Shaneson
use this to realize many isometries (see [CaSh71, Theorem AZ2]), but the
conclusions given are not in the exact form we need.

Corollary 3.6 Suppose that Kmo(X) = V3 L Vi with Vy non-singular
under the intersection form Sx. Then, for any transvection Gpq, on
Kno(X) L H(P,) withp € Vo L Py and v € Kma(X), the stabilized isometry
Opaw ® Ido(s2x 52y can be realized by a self-homeomorphism of X #3(5% x §2).
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Proof: First, we consider a unimodular isotropic element p € Vy L Py. Since
Vo L H(PR,) is non-singular, p is automatically a hyperbolic element and
thus by Freedman [Fr84] we can re-split X#(S? x S2) = X'#(S? x S?) such
that p is represented by S? x *. Thus 04, ® Idg2xs2 can be realized by a
self-homeomorphism on (X'#(S? x S%))#(S? x S?) for all v € Kmy(X) with

(v,p) =0.

Next, we consider the transvection ¢, for an arbitrary p € Vy L Py, but
assume that v € Kme(X) is isotropic. Then we write p = ¥ p; with p; € Vp L
Py unimodular and (v, p;) = 0. This uses the fact that A = Z[m;(X)] and Py =
A. We obtain: gp 0 = 0y,0-p = 000 = I16p:0,0- Thus 0400 ® Idszxse
is realizable by a self-homeomorphism on (X#(S? x S?))#(S? x S2), since
Opi0v#lds2x 52 is Tealizable.

Finally, we realize an arbitrary transvection 0p e #/das2xs2), of the form
required, by a homeomorphism on (X#(S? x §2))#(S? x S2?). We use the
fact that v can be expressed as v = ¥ v; with v; € Kmy(X) L Ho(S? x S% A)
isotropic and (v;,p) = 0. Thus 0,4 ® Idy(s2x52) = [10p0,5; ® Idg2x 52 Which
by the considerations above is realizable. a

Corollary 3.7 Let X, be a topological {-manifold, V = Kn2(X,) and con-
sider an element p € EU(H(P),Q;V), for Q = P,P, as an isometry of
the intersection form of Xo#2(S? x S?). Then the stabilized isometry ¢ &
Idy(s257) can be realized by a self-homeomorphism of Xo#4(S* x S2).

Proof: By definition, the group EU(H(P),Q;V) is generated by transvec-
tions op, a, v with p € P or P and v € V fulfilling the conditions of a transvec-
tion. It is enough to consider the case p € P. Now Corollary 3.6 applies with
the splitting Knp(X) =V L H(A) with H(A) the first summand of H(P).
This shows that for each ¢ € EU(H(P),Q;V), the isometry ¢ @ Idys2xs2)
can be realized by a self-homeomorphism on (Xo#2(S? x §2))#2(S? x §?).

a

Proof of Theorem 3.1: By induction, it is enough to consider the case r =
1. Let f: X#(S? x S?) = Y#(S? x S2) be a homeomorphism. We will apply
Theorem 3.3 and Corollary 3.6 to show that there is a self-homeomorphism g
of X#3(5? x S?) such that (f#1Id) - g induces the identity on the hyperbolic
form corresponding to # 3(S? x S?) in Ha(X#3(S? x S?); A). Then it follows
that X and Y are s-cobordant ([Kr85], Theorem 3.1). By Freedman [Fr84],
X and Y are homeomorphic.

To begin, we apply Theorem 3.3 to

V & H(P) C Ha(Xo#2(S? x S%); A),
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where P = A® A and V = Kmo(Xj). This gives an isometry
¢ € G=(EU(H(P),Q;V),H(E(P)) - EU(H(P))),

where Q = P or P, such that f, - induces the identity on H(2(S%x S2); A) C
Hy(Xo#2(S? x S%); A). We finish the proof by showing that for each ¢ € G,
© @ Id can be realized by a self-homeomorphism on Xo#4(S? x S2). Note
that by definition G C Aut(Ha(Xo#2(S? x S%); 4)).

The elements of EU(H(P),Q;V) are handled by Corollary 3.7. In addition,
we have to realize an arbitrary element in H(E(P))- EU(H (P)), stabilized by
the identity, by a self-homeomorphism of (Xo#4(S?x S2)). This follows again
from Corollary 3.6 and the considerations above since this group is generated
by transvections 0,4, with p € Py or P, ([Ba73], p.142-143). o

As in the case of 2-complexes we want to finish this section by stating without
proofs two classification results for oriented 4-manifolds with special funda-

mental groups which follow from more refined cancellation results and Theo-
rems 2.5 and 2.6.

We begin with the complete classification for finite cyclic fundamental groups.
The following notation is useful for encoding the different possibilities of the
vanishing of the second Stiefel-Whitney class. The wa-type is I, if wa(M) # 0,

IL, if wo(M) =0, or IIL, if wo(M) = 0 and wa(M) # 0.

Theorem 3.8 ([Fr84], 1-connected case; [HaKr92;), general case) Let M be
a closed, oriented 4-manifold with finite cyclic fundamental group. Then M
is classified up to homeomorphism by the fundamental group, the intersection
form on Hyo(M,Z)[Tors, the we-type, and the Kirby-Siebenmann invariant.
Moreover, any isometry of the intersection form can be realized by a homeo-
morphism. All invariants can be realized except in the case of wy-type II,
where KS is determined by the intersection form.

Next we give an explicit bound for the difference between the Euler charac-
teristic e and the absolute value of the signature ¢ for odd order fundamental
groups guaranteeing cancellation. Combined with Theorem 2.5, this gives
a homeomorphism classification under these stability assumptions. For any
finite group 7, let d(m) denote the minimal Z-rank for the abelian group
Z ®z, Z. Here we minimize over all representatives of °Z, obtained from
a free resolution of length three (see section 1) of Z over the ring Zn. Let
ba(M) denote the rank of Hy(M;Z).

Theorem 3.9 [HaKr92;]) Let M be a closed oriented manifold of dimension
four, and let ny(M) = 7 be a finite group of odd order. When wo(M) =
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0 (resp. wa(M) # 0), assume that by(M) — |o(M)| > 2d(x), (resp. >
2d(w)+2). Then M is classified up to homeomorphism by the signature, Eu-
ler characteristic, type, Kirby-Siebenmann invariant, and fundamental class
in Hy(m,Z)[Out(n).

The type is the parity (even or odd) of the intersection form on M.

4 A Homotopy Non-Cancellation Theorem
for Smooth 4-Manifolds

In the case of 2-complexes, it was not easy to give non-cancellation examples,
e.g., of 2-complexes X and Y such that X V 52 is (simple-) homotopy equiv-
alent to Y V S% but X not (simple-) homotopy equivalent to Y. The first
examples were only published in 1976 (see references in Chapter I, following

(40)).

In the case of topological 4-manifolds, the existence of closed topological 4-
manifolds X and Y such that X#(S? x S2) is homeomorphic to Y#(S? x
52) but X not homeomorphic or equivalently not homotopy-equivalent to Y’
follows easily from Freedman’s classification of 1-connected 4-manifolds (see
Theorem 3.8). There are for instance 1-connected topological 4-manifolds X
with intersection form Eg @ E3 and Y with intersection form Eyg, where Fy
and Fg4 are the indecomposable even negative definite unimodular forms over
Z with signature 8 and 16, respectively. These forms become isometric after
adding a hyperbolic plane [Se73] and thus by Theorem 3.8, X #(S? x S?) is
homeomorphic to Y #(S? x S2) but X is not homeomorphic to Y.

In the case of smooth 4-manifolds with finite fundamental group, it is not so
easy to find non-cancellation examples, which here means manifolds X and
Y such that X#(S? x S?) is diffeomorphic to Y#(S? x S?) but X is not
diffeomorphic to Y. The method used above in the topological category find-
ing manifolds with non-isometric definite intersection form which are stably
homeomorphic cannot work in the smooth category since by Donaldson’s The-
orem [Do83] the only definite forms realized as intersection forms of smooth
4-manifolds are up to sign the standard Euclidean forms.

In this situation it is natural to try to make use of the non-cancellation
examples of 2-complexes by applying the thickening construction (see the
beginning of §2). This was carried out in [KrSc84] and we summarize these
examples.
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Here is the main result. Recall that we denote the boundary of a thickening
of a 2-complex X in R by M (X).

Theorem 4.1 ([KrSc84], Theorem II1.3) Suppose G = (Z [p)* is elementary
abelian where p is a prime congruent to 1 mod 4 and s > 1 is odd. Then
there exist finite 2-dimensional CW complezes X andY such that M(X) and
M(Y) are not homotopy equivalent but M(X)#r(S? x S?) is diffeomorphic
to M(Y)#r(S%? x S?) forr > 0.

Remark: The homotopy type of 4-manifolds with odd order fundamen-
tal group is determined by the quadratic 2-type consisting of the quadru-
ple (my,mo,k,s), where w2 has to be considered as module over m, k €
H3(m; ma) is the first k-invariant and s is the equivariant intersection form on
m2 ([HaKr88], [Ba88). In the examples that we will describe in the following,
the triple (m, 72, s) is isomorphic for M(X) and M(Y) ([KrSc84], p.21) and
thus the manifolds are distinguished by the k-invariant, but this is not the
way we prove our result.

The simplest examples for our theorem are derived from Metzler’s theorem,
a special case of which is stated below (see also Chapter III, §§1 and 2).
Note, that a presentation of a group defines a 2-complex with this group
as fundamental group by attaching to a wedge of r circles, r the number of
generators, 2-cells according to the relations.

Theorem 4.2 ([Me76]) For s > 2 and (g, p) = 1, the presentations

< ala'"aas;a? = 1,[0,(1’,0,2] = 1,[0,,',0,]'] =1,1<i<j<s,(4,7) # (1,2) >

of (Z[p)* determine 2-complezes X(q). X(q) and X(¢') are not homotopy-
equivalent, if ¢ # +k*"1q' mod p for all k.

If one considers the boundary M(X(q)) of a thickening of X(g) one gets
examples of non-cancellation examples of smooth 4-manifolds, if Metzler’s
invariant or some weakening of it survives as invariant of the thickening. We
don’t know, if the full invariant survives but some partial information does.
Theorem 4.1 is a consequence of the following Proposition.

Proposition 4.3 Let X(q) be as in Theorem 4.2. Then, if s > 1 is odd and
p is a prime congruent to 1 mod 4, M(X(q)) and M(X(¢'}) are not homotopy
equivalent if q¢ ™! is not a square mod p.
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Since M(X(q)) and M(X(q'}) are stably diffeomorphic, Theorem 4.1 follows.

Proof: In the following, we give a sketch of the proof of Proposition 4.3. For
the details see [KrSc84].

Since m(X(q)) = m(M(X(q)) and m(X(¢'})) = m(M(X(¢')) are isomorphic
we choose an isomorphism, a polarization, between them and denote the
group by 7.

Denote the cellular chain complex over A = Z[n] of the universal covering of
M(X(q)) and M(X(¢')) by C and C’. Then it is easy to show by standard
homological algebra that there is a chain map h : C — C’ inducing the
identity on Ho(..;Z) and Hy(..;Z). Denote the Oth Tate cohomology of an
A-module M by H%(M) = M™/N(M), where M™ is the fixed point set and
N(M) consists of the norm elements. If f is an A-module homomorphism we
denote the induced map between the Tate cohomologies by HO(f). If h is a
chain map as above, then ﬁo(h*) is an isomorphism.

Consider the equivariant intersection form on the middle homology of the
universal covering. This induces an equivariant symmetric bilinear form on
HZ(X' (¢))" = Hz(C)™. Any orientation preserving homotopy equivalence
which induces the given isomorphism on m induces a map respecting this

bilinear form.

Thus, if M(X(g)) and M(X(¢')) are orientation preserving homotopy equiv-
alent inducing the given isomorphism on 7y, then H%(h,) is induced by an
isometry from Hy(C)"™ to Ha(C')"™.

Thus we get an invariant of polarized oriented homotopy types by the set of
all isomorphisms H°(h,) modulo those induced by isometries from Ha(C )T
to Hy(C')". Dividing out the different choices of polarizations equivalently
of automorphisms of 7 and using the fact that M(X) always admits an ori-
entation reversing diffeomorphism (M (X) can be described as a double of a
4-dimensional thickening and interchanging the two halves gives the orienta-
tion reversing diffeomorphism}, one gets a homotopy invariant.

The main work of [KrSc84] is to show that this invariant is non-trivial if g¢'~!
is not a square mod p. For this one can rather easily compute a representa-
tive of this invariant but it is not so easy to decide when it is non-trivial. We
get our result by weakening the invariant, namely we pass to an L-theoretic
invariant. More precisely, it is not difficult to show that the restriction of the
intersection form to Hy(C)™ is up to scaling by a constant a hyperbolic form
over Z. It induces the hyperbolic form over Z /p on H°(H,(C)). After appro-
priately identifying H,(C) with H,(C') our invariant given by HO(h,) gives
an automorphism of determinant 1 of H%(H,(C)), which turns out to be an
isometry. Stable equivalence classes of isometries of determinant 1 represent
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elements in the Wall group LY(Z/p) [Wa70]. If M(X(q)) and M(X(q')) are
homotopy equivalent, this element in LY(Z /p) is induced from an isometry of
H>(C). Since an isometry of a scaled hyperbolic form over Z is an isometry of
the hyperbolic form itself it is in the image of the reduction map from LY(Z)

to L?(Z/p).

For the manifolds M(X(q)) and M(X(¢')), H(H(C)) is isometric to the
hyperbolic form on Z/p and the invariant in LY(Z/p) is represented by a
diagonal matrix of rank 2 over Z/p with entries (¢¢~!) and (¢¢"~!)~!. The
different choices of a polarization of the fundamental groups correspond to an
action of Aut(w). It turns out that Aut(w) acts on H°(H2(C)) by diagonal
matrices of rank 2 over Z/p with entries r*~!,r!=* for some r prime to p.
Thus, if s is odd, the action is trivial.

To finish the proof, we need the following information from [Wa76]. The
Wall group LY(Z) is isomorphic to Z/2 generated by the diagonal matrix of
rank 2 with entries (—1, —1). The Wall group LY(Z/p) is isomorphic to Z/2
generated by a diagonal matrix of rank 2 with entries (r,r~!), where r is a
non-square mod p. Thus, if p is congruent to 1 mod 4, the reduction map is
trivial finishing the argument. a

Remark: Comparing Theorem 4.2 and Proposition 4.3 one sees that the in-
variant used there is considerably weaker than Metzler’s. It would be interest-
ing to know if one actually is losing information by passing from 2-complexes
to boundaries of 3-dimensional thickenings.

5 A Non-Cancellation Example for Simple-

Homotopy Equivalent Topological 4-Mani-
folds

The non-cancellation examples in Section 4 were non-homotopy equivalent
but stably diffeomorphic smooth 4-manifolds. As mentioned before one can
get other examples from exotic structures on closed smooth oriented 4-mani-
folds. They are homeomorphic, not diffeomorphic but stably diffeomorphic.
Such examples are much more complicated than the ones described in Section
4 since the only known way to distinguishing them is by Donaldson invariants.
We will describe many exotic structures in Section 6.

The most delicate question one can ask in the topological category in connec-
tion with non-cancellation examples is whether there are simple- homotopy
equivalent non-homeomorphic but stably homeomorphic topological closed
4-manifolds. Recently, in joint work with Peter Teichner, we found the first
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examples of this type. We will describe them here. The examples constitute
another link between 2-dimensional topology and 4-manifolds since they are
distinguished by a codimension 2 invariant.

We begin with a notation. According to Freedman there exists a unique
non-smoothable 4-manifold which is homotopy-equivalent to CP?, the Chern
manifold denoted CH. We will see that there is a similar manifold corres-
ponding to RP*, a unique non-smoothable 4-manifold homotopy equivalent
to RP*, denoted RH.

Theorem 5.1 ([HaKrTe92]) The simple-homotopy equivalent closed 4-mani-
folds RP*#CP? and RH#CH are not homeomorphic but homeomorphic after
connected sum with r copies of S? x S2.

Remark: In [HaKrTe92] it is actually shown that » = 1 works, but we
don’t need this to get our non-cancellation examples. We don’t know whether
RH#CH admits a smooth structure. The only known obstruction, the Kirby-
Siebenmann obstruction vanishes, since it is non-trivial on both summands
and is additive under connected sum. If a smooth structure exists, then one
gets examples of stably diffeomorphic simple-homotopy equivalent smooth
4-manifolds that are not homeomorphic.

Proof: We begin with the construction of RH. According to Freedman
[Fr84], there exists a unique simply connected topological 4-manifold with
intersection form isomorphic to Ejg, the unique negative definite form with
signature —8. We denote this manifold by M(Es). The Kirby-Siebenmann
obstruction of M(Eg) is KS(M(Es)) = 1. This follows since the Kirby Sie-
benmann obstruction of a T'opSpin-manifold (i.e. w; and w, vanish) is equal
to 1/80(M) mod 2. Consider RP*# M (E;). The quadratic intersection form
of this manifold is Es ®z A, where A = Z[Z/2] equipped with the anti-
involution which here in the non-oriented case maps the nontrivial element
7 in Z/2 to —7. This form is stably (i.e. after adding a hyperbolic form)
isomorphic to a hyperbolic form. This follows for instance from the fact that
the map of Wall groups Lo(Z) — Lo(Z[Z/2)) is trivial [Wa70]. By Freedman
[Fr84], one can decompose the manifold as the connected sum of some to-
pological manifold M’ and # r(S? x S?), if the quadratic intersection form
of a manifold M splits off a hyperbolic form of rank 2r. Applying this to
RP*# M (Eg)#r(S? x S?) one can decompose this as the connected sum of
(r + 8)(S? x S?) and some manifold which we will denote by RH. By con-
struction this manifold has fundamental group Z /2 and Euler characteristic
1. Thus the manifold is homotopy equivalent to RP*. One can prove that this
manifold is unique up to homeomorphism but for our context we don’t need
this and call any manifold constructed this way by the same name. Since
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KS(M(Eg)) = 1 and the Kirby-Siebenmann obstruction is additive under
connected sum, K'S(RH) = 1.

Next we show that RP*#CP? and RH#CH are stably homeomorphic. For
this we apply Theorem 2.3. Obviously, both manifolds have the same normal
1-type: [Z/2,z,00), where x generates H'(Z/2;Z/2). The geometric normal
1-type is the trivial fibration Id : BO — BO. Thus the relevant bordism
group is the non-oriented topological bordism group ‘ﬂf"”, which is isomorphic
to Z/2® Z/2 & Z/2, detected by w}, wy and KS. This follows, since, if
KS = 0, the manifold is bordant to a smooth manifold ([Fr84], [FrQu90]) and
the smooth non-oriented bordism group is detected by w} and w4 [Th54]. By
construction, all these invariants agree for RP*#CP? and RH#CH. Thus, by
Theorem 2.3, they are stably homeomorphic.

To finish, we have to show that they are not homeomorphic. This will fol-
low from the construction and computation of an invariant which roughly
speaking is defined as follows. Let M be one of the manifolds we want to dis-
tinguish. H?(M;Z) = Z & Z/2. Let c € H*(M;Z) be a class which reduces
to wov(M) and which generates H2(M;Z)/Tors. Such a class is unique up
to sign. Now, represent ¢ by a map to CP" for some large N. After making
this map transversal to CP”~!, the inverse image of CP"-! is a surface ¥ in
M (transversality holds in the topological category, see e.g. [FrQu90]) and
it inherits from M a so called normal Pin*-structure, which is unique up
to sign in the corresponding bordism group (for details see [HaKrTe92], §2).
Here Pin™ is the central extension

0 —Z/2 — Pin*(n) — 0 — 0
classified by wy + w?. We obtain a fibration
p: BPint — BO.

A normal Pint-structure is a lift of the normal Gauss map to Pin*. Accord-
ing to Brown [Br72], a Pin*-structure on a surface ¥ determines a quadratic
refinement with values in Z/4 of the intersection form on H2?(3;Z/2). The
Witt group of such forms is isomorphic to Z /8 and the corresponding element
represented by the quadratic refinement on ¥ is denoted by *arf (M) € Z/8.

This is our invariant and it is obviously a homeomorphism invariant. Note
that one can define the same sort of invariant on M#r(S? x S?) after choosing
a cohomology class ¢ reducing to wy. But, if r > 0, this invariant depends on
the choice of ¢ (not only up to sign) and loses all its information (to indicate
the dependence on ¢ we denote the invariant by arf (M, ¢}}. But it turns out
that it takes different values for RP*#CP? and RH#CH.

The reason for this is the following. The class ¢ is the sum ¢; +¢; corresponding
to the connected sum decomposition of our manifolds. The arf-invariant is
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additive under connected sum. For oriented manifolds, one has the following
formula ([KiTa89], Cor.9.3):

2-arf (M,c)=coc—o(M)+8- KS(M)mod 16,

where 0(M) is the signature of M. Thus, arf (CP?, ¢;) = 0 and arf (CH) = 4
(mod )8. By construction of RH we see that (RH, ¢;)#(4(S? x §?),0) =
(RP*,c;)#(Es,0). Thus, from the formula above, zarf (RP? c;)
tarf (RH, ¢;).

oo

6 Application of Cancellation to Exotic Struc-
tures on 4-Manifolds

In this section, we study the existence of exotic structures on many algebraic
surfaces with finite fundamental group. From the point of view of cancella-
tion problems for 4-manifolds the construction of exotic structures on oriented
closed 4-manifolds is equivalent to the construction of homeomorphic smooth
manifolds which are stably diffeomorphic but not diffeomorphic. The reason
for this is that homeomorphic oriented smooth closed 4-manifolds are auto-
matically stably diffeomorphic, a result that can rather easily be derived from
Theorem 2.3 by comparing the topological and the smooth bordism group of
the corresponding normal 1-type ([Kr84,)], for another proof see [Go84]). To
distinguish stably diffeomorphic smooth oriented closed 4-manifolds, one has
to find rather delicate invariants. These are provided by the Donaldson poly-
nomials [Do90], which are defined for closed oriented smooth 4-manifolds
with some additional restrictions. For instance, these restrictions are fulfilled
for all 1-connected algebraic surfaces. We will base our examples of exotic
structures on the following result of Donaldson.

Theorem 6.1 ([Do90]) Let X be a I-connected compact algebraic surface
without singularities. Then X ts not diffeomorphic to a connected sum My# M,
unless My or My have negative definite intersection form.

To apply this theorem to the construction of exotic structures on closed 4-
manifolds, it is sufficient to find an algebraic surface with finite fundamental
group X and a smooth 4-manifold M, such that X and M are homeomorphic
but the universal covering M is diffeomorphic to a connected sum M;# M,
where M; and M, do not have negative definite intersection form.

The following result is an application of this method showing the existence
of an exotic structure on surfaces where the sum of the signature ¢ and the
Euler characteristic e is sufficiently large.
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Theorem 6.2 ([HaKr90]) Let  be a finite group. Then there is a constant
c(n) such that a compact non-singular algebraic surface X with m(X) = =
and o(X) + e(X) 2 ¢(w) has at least two smooth structures.

Note that by a construction of Shafarevic ([Sh74, p. 402 ff]) for each finite
group 7 there are algebraic surfaces with fundamental group 7 and arbitrarily
large 0(X) + e(X) (compare, [HaKr90, p. 109] and the following remark).

Remark: In [HaKr90], we used instead of 6(X )+ e(X) > ¢(n) the condition
(X) > 0 and e(X) sufficiently large. We thank Stefan Bauer for pointing
out that our proof works under this slightly better condition.

Proof: The first ingredient in the proof is the following Proposition. We
say that two closed topological 4-manifolds My and M, are weakly stably
homeomorphic if there exists a natural number r and and integers s¢ and s,
such that Mo#r(S? x S?)#soK is homeomorphic to My#r(S? x S*)#5 K.
Here K is the Kummer surface (K3-surface), the quartic in CP?, and for s
negative we mean by s K the connected sum of —s copies of K with its negative
orientation. Recall that K is a 1-connected 4-manifold with signature —16
and Euler characteristic 24.

Proposition 6.3 Let n be a finite group. Then the set of weakly stable ho-
meomorphism classes of closed smooth oriented 4-manifolds with fundamental
group T s finite.

With this proposition we proceed as follows. For each weakly stable ho-
meomorphism class a, choose a representative M, with e(M,) minimal and
—8 < 6(M,) < 8 and suppose M, = M, #S5? x S?, if m is trivial. Then, for
each closed oriented smooth 4-manifold X with fundamental group isomor-
phic to 7, there exist & and s such that X is stably homeomorphic to M,#sK.
If e(X) > e(Ma#sK), then Theorem 3.1 implies that X is homeomorphic
to Y = M,#r(S? x S?)#sK for some r > 0. Now, Donaldson’s Theorem
6.1 implies that, if X is an algebraic surface, then X and Y are not diffeo-
morphic, since X is again a compact algebraic surface and for 7 non-trivial
Y =Y'#52 x 52 decomposes as the connected sum of two smooth manifolds
with indefinite intersection forms, and for # trivial we assumed that the same
holds for Y. Now the proof of Theorem 6.2 is finished if we can find a number
¢(m) such that e(X) > e(M,#sK) for any algebraic surface X with funda-
mental group 7 and ¢(X) + e(X) 2> c¢(n). It is actually enough to do this
for minimal surfaces X since the condition ¢(X) + e(X) > ¢(n) is invariant
under blow ups and also X#k .CP” and Y+#k .CP” remain non-diffeomorphic
by Donaldson’s Theorem.



304 Hambleton/Kreck : IX. CANCELLATION RESULTS

To compare for a minimal surface X, e(X) with e(M,#s - K), we express
e(My#s - K) in terms of e(M,), 0(M,) and o(X):

e(Mo#s-K)=e(My)+22|s|
and
0(X) = o(Ma#s - K) = o(M,) — 16s.
This implies
e(Ma#s - K) = e(M,) +(11/8) | 0(X) — o(M,) | -
We have the following inequality for algebraic surfaces:
e(X) —(11/8) | o(X) |> (1/12)e(X).

If 6(X) < 0, this is an immediate consequence of the signature theorem

(0(X) = w) and the fact that a minimal surface has ¢ > 0. If
o(X) 2 0, the signature theorem implies

e(X) — (11/8) | o(X) |2 (1/12)e(X) + (11/24)(4e(X) — (X))

Thus we are finished for surfaces fulfilling (4e — ¢?) > 0. For surfaces of gen-
eral type, this is a consequence of the inequality of Miyaoka-Yau ([BaPeVa84],
p- 212). The only minimal surfaces with finite fundamental group and
#(X) > 0 are diffeomorphic to CP?, S? x S? or CP2#CP" (this follows
from the Enriques-Kodaira classification ([BaPeVa84], p. 187ff)), for which
the inequality holds.

Using this inequality together with the formula for e(Ma#s - K) above (note
that o(X) = 0(M,) mod 16 and — 8 < 0(M,) < 8) we get:

e(X) — e(Ma#s - K) e(X) — (11/8) | o(X) | —e(Ma) £ (11/8)a(Ma)
1

; (1/12)e(X) — e(M,) — 11.

Since 2e(X) > o(X) + e(X), we see that if 6(X) + e(X) > 24(e(M,) + 11)
we have e(X) > e(M.#s - K).

As there are only finitely many M,’s, we can define
¢(m) := 24 - max{e(M,) + 11},
finishing the proof of our theorem. a

Proof: (of Proposition 6.3) The proof is an application of Theorem 2.3. First,
we note that for a fixed algebraic normal 1-type [7, w;, ws], the bordism group
Q4(BTP[nr, wy, w2]) ® Q is isomorphic to @, the isomorphism is given by the
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signature. This is an easy consequence of the Atiyah-Hirzebruch spectral
sequence. K is a 1-connected spin-manifold and thus the connected sum with
K does not change the algebraic normal 1-type. Since ¢(K) = —16, the set
of weakly stable homeomorphism classes of manifolds with fixed algebraic
normal 1-types is finite. But, if we fix 7, the set of algebraic normal 1-types
is finite since H!(m;Z/2) and H%(m;Z/2) are finite. ]

This result and stronger results for special fundamental groups led us to the
following conjecture.

Conjecture: A compact non-singular algebraic surface with finite fundamen-
tal group has at least two smooth structures.

We note that a minimal surface with finite fundamental group has >0
(this follows from the classification, e.g. [BaPeVa84], p. 188). But if ¢ >0
and o(X)+e(X) < ¢(m), the Euler characteristic can only take finitely many
values. On the other hand, there are only finitely many homeomorphism
types of closed oriented 4-manifolds with prescribed finite fundamental group
7 and fixed Euler characteristic ([HaKr88], Corollary 1.5). Thus we obtain:

Corollary 6.4 Let @ be a finite group. Then the conjecture holds for all
but perhaps a finite number of homeomorphism types of minimal algebraic
surfaces X with fundamental group «.

Based on similar arguments as above and some more delicate computations
of Donaldson invariants one gets the following result, which we state without
proof.

Theorem 6.5 ([HaKr923)) (i) The conjecture holds for all algebraic surfaces
with finite non-trivial cyclic fundamental group.

(it) The conjecture holds for all elliptic surfaces X with finite fundamental
group except perhaps if X has geometric genus 0, where the statement holds
after blowing up once replacing X by X #@2.

7 Topological Embeddings of 2-Spheres into
1-Connected 4-Manifolds and Pseudo-free
Group Actions

We finish this paper with two further applications of cancellation to 4-dimensional
topology. The first is again a link between 2- and 4-dimensional topology and
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concerns the existence and uniqueness of locally flat simple embeddings of
2-spheres in a 1-connected 4-manifold N. These problems were substantially
settled in [LeWi90] for homology classes of odd divisibility. Let € Ha(N;Z).
Then z = dy with y primitive and d is called the divisibility of x. Such em-
beddings are called simple if the fundamental group of the complement is
abelian (and hence isomorphic to G = Z/d). Denote y - y by m, and let
ba(N) and o(N) denote the rank and signature of the intersection form on
Hy(N;Z). A homology class x is called characteristic, if its reduction mod 2
is dual to ws.

Theorem 7.1 ([HaKr92;]) Let Nbe a closed 1-connected topological 4-mani-
fold.

i) Let € Hy(N;Z) be a homology class of divisibilityd # 0. Then x can be
represented by a simple locally flat embedded 2-sphere in N if and only if

KS(N)=(1/8)(¢(N)—z-z) mod 2
when x is a characteristic class, and if

_ . s 2 .
b(N) 2 max |o(N) = 2j(d = j)(1/d")z - 2|
ii) Any two locally flat simple embeddings of S? in N representing the homol-
ogy class T are ambiently isotopic if by(N) > |o0(N)| + 2 and

B(N) > max lo(V) = 24(d = §)(1/d)z -al.

The proof will be based on the original idea of V. Rochlin (as in [LeWi90]).
The embedding problem will be studied via an associated semi-free cyclic
group action which is the same as a branched covering: if f : S2 = N is

an embedding representing a homology class of divisibility d, then there is a
d-fold branched cyclic covering (M, G) over N, branched along f(S?).

This correspondence connects the embedding problem with the second topic
of this section. It is the classification of actions of finite cyclic groups on 1-
connected 4-manifolds, where we assume that the group action has a singular
set consisting of isolated points. We also assume that the singular set of
the action is non-empty: free actions, or equivalently 4-manifolds with finite
cyclic fundamental group, were classified in Theorem 3.8. For earlier work
in this direction compare [EdEw90], [Wi90]. The following result is a slight
generalization of ([HaKr92;], Corollary 4.1).

Theorem 7.2 (compare [HaKr92,], Corollary 4.1) Let M be a closed, ori-
ented, simply—connected topological 4—-manifold. Let G be a finite cyclic group
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acting locally linearly on M, preserving the orientation, with non-empty
finite singular set. Let My denote the complement of a set of disjoint open
G-invariant {-disks around the singular set, and assume that X = My/G =
W#(S? x 52), where 8W = 8(Mo/G). Then the action (M, G) is classified
up to equivariant homeomorphism by the wy-type, the local singular data, the
signature and Euler characteristic of M and the Kirby-Siebenmann invariant

Of Mo/G

The “wy—type” is I, Il or I1L, if wo (M) # 0, if wo(X) = 0 or if wo(M) = 0 and
wa(X) # 0 resp. The “local singular data” is the equivalence class of pairs
consisting of the tangential G-representations at the singular set together
with, when M is spin and |G| is even, a preferred set of spin structures on
the lens spaces bounding X = M,/G. To describe this preferred set note that
the wo-type determines the normal 1-type of X. If M is spin and |G| is even,
then a normal 1-smoothing on X determines a spin-structure on v(X) — L,
where L is a complex line bundle with wy(L) = w2(X) and both possible
spin-structures occur. Now, consider the boundary components 8;X. If the
map from H2(X;Z/2) to H*(8;X;Z/2) is non-trivial for some ¢ then it is an
isomorphism and, since 9; X is spin, X is spin. In this case we choose L the
trivial bundle and the preferred set of spin structures is the restriction of any
spin structure on X to 8X. If the map from H%(X;Z/2) to H*>(8;X;Z/2) is
trivial for all ¢, then the restriction of L to 0;X is stably trivial for all ¢ and
a normal 1-structure on X determines a spin structure on 3X. Any of these
gives the preferred set in this second case.

We also remark that KS(Mo/G) = KS(My) = KS(M) when G has odd
order, since connected sum with the Chern manifold changes the Z/2-valued
Kirby-Siebenmann invariant.

The proof of both theorems is similar in spirit but the proof of Theorem
7.1 is rather lengthy. We will prove Theorem 7.2 in detail and only give a
sketch for Theorem 7.1 and refer to [HaKr92;] for the details. Let G act
on M with fixed point set either a 2-sphere and semi-free action (Theorem
7.1, ii}) or with finite singular set with prescribed fixed point data (Theorem
7.2). Then we denote by M, the complement of an open equivariant tubular
neighborhood around the fixed point set resp. singular set. Given another
action choose a homeomorphism between the boundaries of X = My/G. We
have to show that the homeomorphism type of Mo/G rel. boundary is deter-
mined by the data. For this one first proves that the homeomorphism extends
stably. This is an application of a relative version of Theorem 2.3. This rel-
ative version says that a homeomorphism between two compact topological
4-manifolds My and M; with the same algebraic normal 1-type [7T,w1,UJ2]
extends to a stable homeomorphism, if and only if they have the same Euler
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characteristic and if they admit normal 1-smoothings # and #; resp., which
are compatible with the homeomorphism between the boundaries and such
that the union of (Mo, %) and (M, 5 ) via the homeomorphism along the
boundaries represent zero in (B[, wy, ws]) ([Kr85), Theorem 2.1). By
assumption there exist compatible normal 1-smoothings. In our situation,
the Atiyah-Hirzebruch spectral sequence implies that this bordism group is
determined by the signature and Kirby-Siebenmann obstruction. Then one
uses a relative version of Theorem 3.1 to cancel ([HaKr92,], Corollary 3.6).
For this one has to show that one can split off S? x S? from My/G, something
which is assumed in Theorem 7.2, and which follows from the inequalities in
Theorem 7.1, ii) and the existence result in Theorem 19 i). This finishes the
proof of Theorem 7.2. For Theorem 7.1, ii} one has to show that the resulting
homeomorphism of N mapping the two embedded 2-spheres into each other
is isotopic to Id. For this one carries the program above out with more care
to control the induced map on homology which has to be the identity. Then
one applies a Theorem from [Kr79] which says that a self-homeomorphism
on a l-connected 4-manifold inducing Id on homology is pseudo-isotopic to
the identity. By a theorem of Perron [Pe86], this implies the existence of an
isotopy.

To prove Theorem 7.1 i) one uses again a stabilization argument. The point
will be to construct an embedding of S? into N’ = N # r(S? x S?) for some r
representing z + 0. Now, consider the ramified covering M’ over N', ramified
over the embedded 2-sphere. One has to carry out the construction of N’
and the embedding in such a way that Hy(M';Z), considered as module over
Z[G) with equivariant intersection form splits off a hyperbolic summand of
rank r, such that the fixed point set under the G-action on this orthogonal
complement is isomorphic to Ha(N;Z) and the homology class represented
by the embedded 2-sphere is . This will follow from some purely algebraic
arguments. Then it is not difficult to cancel the hyperbolic summand geo-
metrically using Freedman’s techniques, to realize the homology class z by
an embedded 2-sphere in the original manifold V.



