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Abstract. Let G be a rank two finite group, and let H denote the family of all rank
one p-subgroups of G for which rankp(G) = 2. We show that a rank two finite group
G which satisfies two explicit group-theoretic conditions admits a finite G-CW-complex
X ' Sn with isotropy in H, whose fixed sets are homotopy spheres. Our construction
provides an infinite family of new non-linear G-CW-complex examples for many of the
rank two finite simple groups.

1. Introduction

Let G be a finite group. The unit spheres S(V ) in finite-dimensional orthogonal repre-
sentations of G provide the basic examples of smooth linear G-actions on spheres. These
linear actions satisfy a number of special constraints on the dimensions of fixed sets and
the structure of the isotropy subgroups, arising from character theory. However, such
constraints do not hold in general for smooth G-actions on spheres, unless G has prime
power order (see [8]). Our goal in this series of papers is to construct new examples of
smooth non-linear finite group actions on spheres, with prescribed isotropy.

In the first paper of this series [11], we studied group actions on spheres in the setting of
geometric homotopy representations, introduced by tom Dieck (see [24, Definition 10.1]).
These are finite (or more generally finite dimensional) G-CW-complexes X satisfying
the property that for each H ≤ G, the fixed point set XH is homotopy equivalent to a
sphere Sn(H) where n(H) = dimXH . We introduced algebraic homotopy representations
as suitable chain complexes over the orbit category and proved a realization theorem for
these algebraic models.

We say that G has rank k if it contains a subgroup isomorphic to (Z/p)k, for some
prime p, but no subgroup (Z/p)k+1, for any prime p. In this paper, we use chain complex
methods to study the following problem, as the next step towards smooth actions.

Question. For which finite groups G, does there exist a finite G-CW-complex X ' Sn

with all isotropy subgroups of rank one ?

The isotropy assumption implies that G must have rank ≤ 2, by P. A. Smith theory
(see Corollary 6.3). Since every rank one finite group can act freely on a finite complex
homotopy equivalent to a sphere (Swan [21]), we will restrict to groups of rank two.

There is another group theoretical necessary condition related to fusion properties of
the Sylow subgroups. This condition involves the rank two finite group Qd(p) which is
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the group defined as the semidirect product

Qd(p) = (Z/p× Z/p) o SL2(p)

with the obvious action of SL2(p) on Z/p × Z/p. In his thesis, Ünlü [25, Theorem 3.3]
showed that Qd(p) does not act on a finite CW-complex X ' Sn with rank 1 isotropy.
This means that any rank two finite group which includes Qd(p) as a subgroup cannot
admit such actions.

More generally, we say Qd(p) is p′-involved in G if there exists a subgroup K ≤ G, of
order prime to p, such that NG(K)/K contains a subgroup isomorphic to Qd(p). The
argument given by Ünlü in [25, Theorem 3.3] can be extended easily to obtain the stronger
necessary condition (see Proposition 5.3):

(>). Suppose that there exists a finite G-CW-complex X ' Sn with rank 1 isotropy. Then
Qd(p) is not p′-involved in G, for any odd prime p.

In the other direction, the Sylow subgroups of rank two finite groups which do not
p′-involve Qd(p), for p odd (sometimes called Qd(p)-free groups), have some interesting
complex representations.

Definition. A finite group G has a p-effective character if each p-Sylow subgroup Gp of
G has a character χ : Gp → U(n) which (i) respects fusion in G, meaning that χ(gxg−1) =
χ(x) whenever gxg−1 ∈ Gp for some g ∈ G and x ∈ Gp, and (ii) satisfies 〈χ|E, 1E〉 = 0 for
each elementary abelian p-subgroup E of G with rankE = rankpG.

Jackson [15, Theorem 47] proved that a rank two group G has a p-effective character if
and only if p = 2, or p is odd and G is Qd(p)-free. We use these characters to reduce the
isotropy from p-subgroups to rank one p-subgroups.

Let F be a family of subgroups of G closed under conjugation and taking subgroups.
For constructing group actions on CW-complexes with isotropy in the family F, a good al-
gebraic approach is to consider projective chain complexes over the orbit category relative
to the family F (see [10], [11]).

Let SG denote the set of primes p such that rankp(G) = 2. Let Hp denote the family
of all rank one p-subgroups H ≤ G, for p ∈ SG, and let H =

⋃
{H ∈ Hp | p ∈ SG}. Our

main result is the following:

Theorem A. Let G be a rank two finite group satisfying the following two conditions:

(i) G does not p′-involve Qd(p) for any odd prime p ∈ SG;
(ii) if 1 6= H ∈ Hp, then rankq(NG(H)/H) ≤ 1 for every prime q 6= p.

Then there exists a finite G-CW-complex X with isotropy in H, such that XH is a homo-
topy sphere for each H ∈ H.

Theorem A is an extension of our earlier joint work with Semra Pamuk [10] where we
have shown that the first non-linear example, the permutation group G = S5 of order 120,
admits a finite G-CW-complex X ' Sn with rank one isotropy. Theorem A gives a new
proof of this earlier result, by a more systematic method: for G = S5, the set SG includes
only the prime 2 and the second condition above holds since all p-Sylow subgroups of S5

for odd primes are cyclic. More generally, we have:
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Corollary B. Let p be a fixed prime and G be a finite group such that rankp(G) = 2, and
rankq(G) = 1 for every prime q 6= p. If G does not p′-involve Qd(p) when p > 2, then
there exists a finite G-CW-complex X ' Sn with rank one p-group isotropy.

Our general construction produces new non-linear G-CW-complex examples, for certain
groups G which do not admit any orthogonal representations V with rank one isotropy
on the unit sphere S(V ). In particular, we show that the alternating groups A6 and A7

admit finite G-CW-complexes X ' Sn with rank one isotropy (see Example 6.5 and 6.7).
In fact, our methods apply to most of the rank two simple groups (see the list in [3,

p.423]). We remark that G = PSL3(q), q odd, and G = PSU3(q), with 9 | (q+1), are the
groups on the list1 which are not Qd(p)-free at some odd prime. Our next result provides
an infinite collection of new non-linear examples.

Theorem C. Let G be a finite simple group of rank two which is Qd(p)-free, for all odd
primes p. Then there exists a finite G-CW-complex X ' Sn with rank one isotropy, except
possibly for M11, and PSU3(q), for 9 - (q + 1) and (q + 1) composite.

For example, we can handle G = PSU3(q) if q + 1 = 2a, and the groups in the family
PSL2(q

2), q ≥ 3, with Theorem A. The groups PSL2(q), q ≥ 5, are covered by Corollary
B. None of the simple groups PSL2(q), q > 7, admit orthogonal representation spheres
with rank one isotropy (see Section 7), so the actions we construct provide an infinite
family of new examples of non-linear actions.

In Section 6, we give the motivation for condition (ii) in Theorem A on the q-rank of
the normalizer quotients NG(H)/H for all the subgroups H ∈ H. It is used in a crucial
way (at the algebraic level) in the construction of a finite G-CW-complex X ' Sn with
rank 1 isotropy in H, which is a geometric homotopy representation. However, condition
(ii) in Theorem A is actually necessary only for the subgroups H ∈ H such that XH 6= ∅
(see Remark 6.4), but not, in general, for all rank one p-subgroups (see Example 6.7).
Determining the precise list of necessary and sufficient conditions is still an open problem.

We will obtain Theorem A from a more general technical result, Theorem 5.1, which
accepts as input a compatible collection of representations defined on all p-subgroups of
G, for a given set of primes (see Definition 3.1), and produces a finite G-CW complex.
Theorem 5.1 is used to construct the action in Example 6.7 for G = A7 with rank one
p-group isotropy. In principle, it could be used to construct other interesting non-linear
examples for finite groups with specified p-group isotropy.

Here is a brief outline of the paper. We denote the orbit category relative to a family
F by ΓG = OrFG, and construct projective chain complexes over RΓG for various p-local
coefficient rings R = Z(p). To prove Theorem 5.1, we first introduce algebraic homotopy
representations (see Definition 2.3), as chain complexes over RΓG satisfying algebraic
versions of the conditions found in tom Dieck’s geometric homotopy representations (see
[24, II.10.1], [8], and Remark 2.7). In Section 2 we summarize the results of [11] which
show that the conditions in Definition 2.3 lead to necessary and sufficient conditions for
a chain complex over RΓG to be homotopy equivalent to a chain complex of a geometric
homotopy representation (see Theorem 2.6).

1This case seems to have been overlooked in [3, p.430]
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In Section 3, we construct p-local chain complexes where the isotropy subgroups are
p-groups. In Section 4, we add homology to these local models so that these modified
local complexes C(p) all have exactly the same dimension function. Results established in
[10] are used to glue these algebraic complexes together over ZΓG, and then to eliminate
a finiteness obstruction. In Section 5 we combine these ingredients to give a complete
proof for Theorem 5.1 and Theorem A. We end the paper with a discussion about the
necessity of the conditions in Theorem A. This discussion and the examples of nonlinear
actions for the groups G = A6 and A7 can be found in Section 6. We discuss the rank
two simple groups and prove Theorem C in Section 7.

Remark. One motivation for this project is the work of Adem-Smith [3] and Jackson
[15] on the existence of free actions of finite groups on a product of two spheres. There
is an interesting set of conditions related to this problem. In the following statements, G
denotes a finite group of rank two.

(i) G acts on a finite complex X homotopy equivalent to a sphere, with rank one
isotropy.

(ii) G acts with rank one isotropy on a finite dimensional complex X which has a
mod p homology of a sphere.

(iii) G does not p′-involve Qd(p), for p an odd prime.

(iv) G has a p-effective character χ : Gp → U(n).

(v) There exists a spherical fibration Y → BG, such that the total space Y has
periodic cohomology.

(vi) G acts freely on a finite complex homotopy equivalent to a product of two spheres.

The implications (i) ⇒ (i + 1) hold for this list (suitably interpreted), where (i) ⇒ (ii)
is clear (for each prime p), and (ii) ⇒ (iii) is our Proposition 5.3. The implication
(iii) ⇔ (iv) is due to Jackson [15, Theorem 47], using [15, Theorem 44] to show that G
always has a 2-effective character.

If condition (iv) holds for all the primes dividing the order of G, then condition (v)
holds. This needs some explanation. First, the existence of a spherical fibration Y → BG
classified by ϕ : BG→ BU(n), with p-effective Euler class β(ϕ) ∈ Hn(G; Z) for all primes
p, was proved by Jackson [14], [15, Theorem 16]. By construction, for each elementary
abelian p-subgoup E of G with rankE = rankpG, there exists a unitary representation
λ : E → U(n) such that ϕE = Bλ and 〈λ, 1E〉 = 0 (see [15, Definition 11]). Adem and
Smith [3, Definition 4.3] give an equivalent definition of a p-effective cohomology class
β ∈ Hn(G; Z) as a class for which the complexity cxG(Lβ ⊗ Fp) = 1 (see Benson [5,
Chap. 5]). It follows from [5, 5.10.4] that Lβ(ϕ) ⊗ Fp is a periodic module, and hence cup
product with a periodicity generator α for this module gives the periodicity of H∗(Y ;Fp)
in high dimensions. Therefore Y has periodic cohomology in the sense of Adem-Smith
[3, Definition 1.1]. Finally, (v) ⇒ (vi) follows from the main results of Adem-Smith [3,
Theorems 1.2, 3.6].

The reverse implications are mostly unknown. For example, it is not known whether
Qd(p) itself can act freely on a product of two spheres. In [15, Theorem 47] it was claimed



GROUP ACTIONS ON SPHERES WITH RANK ONE ISOTROPY 5

that (iii) ⇒ (i), but the “proof” seems to confuse homotopy actions with finite G-CW
complexes. However, we show in Corollary 3.11 that (iii) ⇒ (ii). Finding new criteria
for the implication (iii)⇒ (i) is the subject of this paper.

Acknowledgement. The authors would like to thank Alejandro Adem, Jesper Grodal,
Radha Kessar and Assaf Libman for helpful communications, and to Ron Solomon for
detailed information about the rank two simple groups.

2. Algebraic homotopy representations

In transformation group theory, a G-CW-complex X is called a geometric homotopy
representation if it has the property that XH is homotopy equivalent to the sphere Sn(H)

where n(H) = dimXH , for every H ≤ G (see tom Dieck [24, Section II.10]).
In this section we summarize the results of [11] which gives the definition and main

properties of a suitable algebraic analogue, called algebraic homotopy representations.
Let G be a finite group and F be a family of subgroups of G which is closed under

conjugations and taking subgroups. The orbit category OrFG is defined as the category
whose objects are orbits of type G/K, with K ∈ F, and where the morphisms from G/K
to G/L are given by G-maps:

MorOrF G(G/K,G/L) = MapG(G/K,G/L).

The category ΓG = OrFG is a small category, and we can consider the module cat-
egory over ΓG. Let R be a commutative ring with unity. A (right) RΓG-module M
is a contravariant functor from ΓG to the category of R-modules. We denote the R-
module M(G/K) simply by M(K) and write M(f) : M(L) → M(K) for a G-map
f : G/K → G/L. The further details about the properties of modules over the orbit
category, such as the definitions of free and projective modules, can be found in [10] (see
also Lück [16, §9,§17] and tom Dieck [24, §10-11]).

We will consider chain complexes C of RΓG-modules, such that Ci = 0 for i < 0. We
call a chain complex C projective (resp. free) if for all i ≥ 0, the modules Ci are projective
(resp. free). We say that a chain complex C is finite if Ci = 0 for i > n, and the chain
modules Ci are all finitely-generated RΓG-modules.

Given a G-CW-complex X, associated to it, there is a chain complex of RΓG-modules

C(X?;R) : · · · → R[Xn
? ]

∂n−→ R[Xn−1
? ]→ · · · ∂1−→ R[X0

? ]→ 0

where Xi denotes the set of i-dimensional cells in X and R[Xi
? ] is the RΓG-module

defined by R[Xi
? ](H) = R[XH

i ]. We denote the homology of this complex by H∗(X
?;R).

If the family F includes the isotropy subgroups of X, then the complex C(X?;R) is a
chain complex of free RΓG-modules.

The dimension function of a finite dimensional chain complex C over RΓG is defined
as the function Dim C : S(G)→ Z, where S(G) denotes the family of all subgroups of G,
given by

(Dim C)(H) = dim C(H)

for all H ∈ F. If C(H) is the zero complex or if H is a subgroup such that H 6∈ F, then
we define (Dim C)(H) = −1. The dimension function Dim C is constant on conjugacy
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classes (a super class function). In a similar way, we can define the homological dimension
function hDim C : S(G)→ Z of a chain complex C of RΓG-modules.

We call a function n : S(G) → Z monotone if it satisfies the property that n(K) 6
n(H) whenever (H) ≤ (K). We say that a monotone function n is strictly monotone if
n(K) < n(H), whenever (H) < (K). We have the following:

Lemma 2.1 ([11, Lemma 2.6] ). The dimension function of a projective chain complex
of RΓG-modules is a monotone function.

Definition 2.2. We say a chain complex C of RΓG-modules is tight at H ∈ F if

Dim C(H) = hdim C(H).

We call a chain complex of RΓG-modules tight if it is tight at every H ∈ F.

We are particularly interested in chain complexes which have the homology of a sphere
when evaluated at every K ∈ F. Let n be a super class function supported on F, meaning
that n(H) = −1 for H /∈ F, and let C be a chain complex over RΓG. We say that C is
an R-homology n-sphere (see [11, Definition 2.7]) if the reduced homology of C(K) is the
same as the reduced homology of an n(K)-sphere (with coefficients in R) for all K ∈ F.
Here the reduced homology is the homology of an augmented chain complex ε : C → R,
with ε(H) surjective for all H ∈ F such that C(H) 6= 0.

In [24, II.10], there is a list of properties that are satisfied by geometric homotopy
representations. We will use algebraic versions of these properties to define an analogous
notion for chain complexes.

Definition 2.3 ([11, Definition 2.8]). Let C be a finite projective chain complex over RΓG,
which is an R-homology n-sphere. We say C is an algebraic homotopy representation (over
R) if

(i) The function n is a monotone function.
(ii) If H,K ∈ F are such that n = n(K) = n(H), then for every G-map f : G/H →

G/K the induced map C(f) : C(K)→ C(H) is an R-homology isomorphism.
(iii) Suppose H,K,L ∈ F are such that H ≤ K,L and let M = 〈K,L〉 be the subgroup

of G generated by K and L. If n = n(H) = n(K) = n(L) > −1, then M ∈ F

and n = n(M).

Under condition (iii) of Definition 2.3, the isotropy family F has an important maxi-
mality property.

Proposition 2.4 ([11, Proposition 2.9] ). Let C be a projective chain complex of RΓG-
modules, If condition (iii) holds, then the set of subgroups FH = {K ∈ F | (H) ≤
(K), n(K) = n(H) > −1} has a unique maximal element, up to conjugation.

In the remainder of this section we will assume that R is a principal ideal domain. The
main examples for us are R = Z(p) or R = Z.

Theorem 2.5 ([11, Theorem A]). Let C be a finite free chain complex of RΓG-modules
which is an R-homology n-sphere. Then C is chain homotopy equivalent to a finite free
chain complex D which is tight if and only if C is an algebraic homotopy representation.
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When these conditions hold for R = Z, then we apply [10, Theorem 8.10], [19] to obtain
a geometric realization result.

Theorem 2.6 ([11, Corollary B]). Let C be a finite free chain complex of ZΓG-modules
which is a homology n-sphere. If C is an algebraic homotopy representation, and n(K) ≥ 3
for all K ∈ F, then there is a finite G-CW-complex X such that C(X?; Z) is chain
homotopy equivalent to C as chain complexes of ZΓG-modules.

Remark 2.7. The construction actually produces a finite G-CW-complex X such that all
the non-empty fixed sets XH are simply-connected, and with trivial action of WG(H) =
NG(H)/H on the homology of XH . Therefore X will be an oriented geometric homotopy
representation (in the sense of tom Dieck).

3. Construction of the preliminary local models

Our main technical tool is provided by Theorem 5.1, which gives a method for con-
structing finite G-CW-complexes, with isotropy in a given family. This theorem will be
proved by applying the realization statement of Theorem 2.6. To construct a suitable
finite free chain complex C over ZΓG, we work one prime at a time to construct local
models C(p), and then apply the glueing method for chain complexes developed in [10,
Theorem 6.7].

The main input of Theorem 5.1 is a compatible collection of unitary representations
for the p-subgroups of G. We give the precise definition in a more general setting.

Definition 3.1. Let F be a family of subgroups of G and n be a fixed integer. We say that
V(F) is an F-representation for G of dimension n, if V(F) = {VH ∈ Rep(H,U(n)) |H ∈
F} is a compatible collection of (non-zero) unitary H-representations. The collection is
compatible if f ∗(VK) ∼= VH for every G-map f : G/H → G/K.

For any finite G-CW-complex X, we let Iso(X) = {K ≤ G |XK 6= ∅} denote the
isotropy family of the G-action on X. Note that this is the smallest family closed under
conjugation and taking subgroups, which includes all the isotropy subgroups of X. This
suggests the following notation:

Definition 3.2. Let V(F) be an F-representation for G. We let

Iso(V(F)) = {L ≤ H |S(VH)L 6= ∅, for some VH ∈ V(F)}
denote the isotropy family of V(F). We note that Iso(V(F)) is a sub-family of F.

Example 3.3. Our first example for these definitions will be a compatible collection
of representations for the family Fp of all p-subgroups, with p a fixed prime dividing
the order of G. In this case, an Fp-representation V(Fp) can be constructed from a
suitable representation Vp ∈ Rep(P,U(n)), where P denotes a p-Sylow subgroup of G.
The representations VH can be constructed for all H ∈ Fp, by extending Vp to conjugate
p-Sylow subgroups and by restriction to subgroups. To ensure a compatible collection
{VH}, we assume that Vp respects fusion in G, meaning that χp(gxg

−1) = χp(x) for the
corresponding character χp, whenever gxg−1 ∈ P for some g ∈ G and x ∈ P .

We will now specify an isotropy family J that will be used in the rest of the paper.
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Definition 3.4. Let {V(Fp) | p ∈ SG} be a collection of Fp-representations, for a set SG
of primes dividing the order of G. Let Jp = Iso(V(Fp)) and J =

⋃
{Jp | p ∈ SG} denote

the isotropy families.

We note that J contains no isotropy subgroups of composite order, since each Jp is a
family of p-subgroups. Let ΓG = OrJG and ΓG(p) denote the orbit category OrJp G over
the family Jp. A chain complex C over RΓG(p) can always be considered as a complex of
RΓG-modules, by taking the values C(H) at subgroups H 6∈ Jp as zero complexes.

In this section we construct a p-local chain complex C(p)(0) over RΓG(p), for R = Z(p),
which we call a preliminary local model (see Definition 3.9). From this construction we
will obtain a dimension function n(p) : Jp → Z. By taking joins we can assume that these
dimension functions have common value at H = 1. In the next section, these preliminary
local models will be “improved” at each prime p by adding homology as specified by the
dimension functions n(q) : Jq → Z, for all q ∈ SG with q 6= p. The resulting complexes
C(p) over the orbit category RΓG will all have the same dimension function

n =
⋃
{n(p) | p ∈ SG} : J→ Z,

and satisfy conditions needed for the glueing method.

Proposition 3.5. Let G be a finite group, and let V(Fp) be an Fp-representation for G
for some p ∈ SG. Then there exists a finite-dimensional G-CW-complex E, with isotropy
family equal to Jp = Iso(V(Fp)), such that for each H ∈ Jp the fixed set EH is simply-
connected and p-locally homotopy equivalent to a sphere S(V ⊕kH ) for some integer k and
for some VH ∈ V(Fp).

Proof. We recall a result of Jackowski, McClure and Oliver [13, Proposition 2.2]: there
exists a simply-connected, finite dimensional G-CW-complex B which is Fp-acyclic and
has finitely many orbit types with isotropy in the family of p-subgroups Fp in G. The
quoted result applies more generally to all compact Lie groups and produces a complex
with p-toral isotropy (meaning a compact Lie group P whose identity component P0 is
a torus, and P/P0 is a finite p-group). For G finite, the p-toral subgroups are just the
p-subgroups. The property that all fixed sets BH are simply-connected is established in
the proof.

We now apply [26, Proposition 4.3] to this G-CW-complex B and to the given Fp-
representation V(Fp), to obtain a G-equivariant spherical fibration E → B with fiber
type S(V(Fp)

⊕k) for some k, such that E is finite dimensional (see [26, Section 2] for
necessary definitions). The resulting G-CW-complex E has the required properties. In
particular, since B is Fp-acyclic then for each p-subgroup H, the fixed point set BH will
be also Fp-acyclic (and BH 6= ∅). This means that the (extended) isotropy family of E
is Jp = Iso(V(Fp)) and for every H ∈ Jp, the mod-p homology of EH is isomorphic to
the mod-p homology of S(V ⊕kH ) for some k. By taking further fiber joins if necessary, we
can assume that EH is simply connected for all H ∈ Jp. Hence EH is p-locally homotopy
equivalent to a sphere. �

We now let R = Z(p), and consider the finite dimensional chain complex C(E?;R) of
free RΓG(p)-modules. By taking joins, we may assume that this complex has “homology
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gaps” of length > l(ΓG) as required for [10, Theorem 6.7], and that all the non-empty
fixed sets EH have n(H) ≥ 3 and trivial action of WG(H) on homology. Let n(p) : Jp → Z
denote the dimension function hDim C(E?;R).

The following result applies to chain complexes over RΓG with respect to any family F

of subgroups.

Lemma 3.6. Let R be a noetherian ring and G be a finite group. Suppose that C is
an n-dimensional chain complex of projective RΓG-modules with finitely generated ho-
mology groups. Then C is chain homotopy equivalent to a finitely-generated projective
n-dimensional chain complex over RΓG.

Proof. Note that the chain modules of C are not assumed to be finitely-generated, but
Hi(C) = 0 for i > n. We first apply Dold’s “algebraic Postnikov system” technique [7,
§7], to chain complexes over the orbit category (see [10, §6]).

According to this theory, given a positive projective chain complex C, there is a se-
quence of positive projective chain complexes C(i) indexed by positive integers such that
f : C → C(i) induces a homology isomorphism for dimensions ≤ i. Moreover, there is a
tower of maps

C(i)

��
C(i− 1)

��

αi // Σi+1P(Hi)

C

##

;;

DD

// C(1)

��

α2 // Σ3P(H2)

C(0)
α1 // Σ2P(H1)

such that C(i) = Σ−1C(αi), where C(αi) denotes the algebraic mapping cone of αi, and
P(Hi) denotes a projective resolution of the homology module Hi = Hi(C).

By assumption, since the homology modules Hi are finitely-generated and R is noe-
therian, we can choose the projective resolutions P(Hi) to be finitely-generated in each
degree. Therefore, at each step the chain complex C(i) consists of finitely-generated
projective RΓG-modules, and C(n) ' C has homological dimension ≤ n. Now, since
Hn+1(C(n);M) = Hn+1(C;M) = 0, for any RΓG-module M , we conclude that C(n) is
chain homotopy equivalent to an n-dimensional finitely-generated projective chain com-
plex by [16, Prop. 11.10]. �

Remark 3.7. See [16, 11.31:ex. 2] or [22, Satz 9] for related background and previous
results.

Lemma 3.8. The chain complex C(E?;R) is chain homotopy equivalent to an oriented
R-homology n(p)-sphere C(p)(0), which is an algebraic homotopy representation.

Proof. The chain complex C(E?;R) is finite dimensional and free over RΓG, but may
not be finitely-generated. However, by the conclusion of Proposition 3.5, the homology
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groups H∗(C(E?;R)) are finitely generated since C(E?;R) is an R-homology n-sphere.
The result now follows from Lemma 3.6, which produces a finite length projective chain
complex C(p)(0) of finitely-generated RΓG(p)-modules. Note that C(E?;R) satisfies the
conditions (i)-(iii) in Definition 2.3, so C(p)(0) also satisfies these conditions (which are
chain-homotopy invariant), hence C(p)(0) is an algebraic homotopy representation. �

Note that C(p)(0) is an algebraic homotopy representation, meaning that it satisfies the
condition (i), (ii), and (iii) in Definition 2.3, even though Dim C(p)(0) may not be equal
to n(p) = hDim C(p)(0).

By taking joins, we may assume that there exists a common dimension N = n(p)(1), at
H = 1, for all p ∈ SG. Moreover, we may assume that N + 1 is a multiple of any given
integer mG (to be chosen below). We now obtain the “global” dimension function

n =
⋃
{n(p) | p ∈ SG} : J→ Z,

where n(p) = hDim C(p)(0), for all p ∈ SG, and n(1) = N .

Definition 3.9 (Preliminary local models). Let SG = {p | rankpG ≥ 2}, and let mG

denote the least common multiple of the q-periods for G (as defined in [21, p. 267]), over
all primes q for which rankq G = 1. We assume that n(1) + 1 is a multiple of mG.

(i) We will take the chain complex C(p)(0) constructed in Lemma 3.8 for our prelim-
inary model at each prime p ∈ SG.

(ii) If rankq G = 1, we take Jq = {1} and C(q)(0) as the RΓG-chain complex E1P
where P is a periodic resolution of R as a RG-module with period n(1) + 1 (for
more details, see the proof of Theorem 4.1 below, or [10, Section 9B]).

This completes the construction of the preliminary local models at each prime dividing
the order of G, for a given family of Fp-representations. In the next section we will
modify these preliminary models to get p-local chain complexes C(p) over RΓG which are
R-homology n-spheres for the dimension function n described above.

Example 3.10. In the proof of Theorem A we will be using the setting of Example 3.3.
Suppose that G is a rank two finite group which does not p′-involve Qd(p), for any odd
prime p. We let SG be the set of primes p where rankpG = 2. Under this condition, a
result of Jackson [15, Theorem 47] asserts that G admits a p-effective character Vp. Recall
that “p-effective” means that the restriction ResE Vp to a rank two elementary abelian
p-subgroup E has no trivial summand. This guarantees that the set of isotropy subgroups
Jp = Iso(S(Vp)) consists of the rank one p-subgroups. In this setting, our preliminary
local models arise from the following special case:

Corollary 3.11. Let G be a finite rank two group with rankpG = 2. If G does not
p′-involve Qd(p) when p > 2, then there exists a simply-connected, finite-dimensional G-
CW-complex E with rank one p-group isotropy, which is p-locally homotopy equivalent to
a sphere.

Note that when G is a p-group of rank two, then it has a central element c of order
p in G. Using the subgroup generated by c, we can define the induced representation
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V = IndG〈c〉 χ where χ is a nontrivial one dimensional complex representation of 〈c〉. Then,
the G-action on S(V ) will satisfy the conclusion of the above corollary. It is proved by
Dotzel-Hamrick [8] that all p-group actions on mod-p homology spheres resemble linear
actions on spheres.

4. Construction of the local models: adding homology

Let G be a finite group and let SG = {p | rankpG ≥ 2}. We recall the notation
Jp = Iso(V(Fp)), for p ∈ SG, from Definition 3.4. For p 6∈ SG set Jp = {1}. We will
continue to work over the orbit category ΓG = OrJG where J =

⋃
{Jp | p ∈ SG}, or over its

full subcategory ΓG(p) with respect to the family Jp. For each prime p dividing the order
of G, let C(p)(0) denote the preliminary p-local model given in Definition 3.9, and denote
the homological dimension function of C(p)(0) by n(p) : Jp → Z for all primes dividing the
order of G.

We now fix a prime q dividing the order of G, and let R = Z(q). In Theorem 4.1, we will

show how to add homology to the preliminary local model C(q)(0), to obtain an algebraic
homotopy representation with dimension function n(p) ∪ n(q) for any prime p ∈ SG such
that p 6= q. After finitely many such steps, we will obtain our local model C(q) over RΓG
with dimension function

hDim C(q) = n =
⋃
{n(p) | p ∈ SG}.

The main result of this section is the following:

Theorem 4.1. Let G be a finite group and let R = Z(q). Suppose that C is an algebraic
homotopy representation over R, such that

(i) C is an (oriented) R-homology n(q)-sphere of projective RΓG(q)-modules;
(ii) If 1 6= H ∈ Jp, then rankq(NG(H)/H) ≤ 1, for every prime p 6= q.

Then there exists an algebraic homotopy representation C(q) over R, which is an (oriented)
R-homology n-sphere over RΓG.

Remark 4.2. Note that if there exists a q-local model C(q) with isotropy in Jp∪Jq, where
p ∈ SG, then for every p-subgroup 1 6= H ∈ Jp, the RNG(H)/H complex C(q)(H) is a
finite length chain complex of finitely generated modules which has the R-homology of
an n(H)-sphere.

Since R = Z(q), if we take a q-subgroup Q ≤ NG(H)/H with H 6= 1, and restrict

C(q)(H) to Q, we obtain a finite dimensional projective RQ-complex (see [10, Lemma 3.6]).
This means Q has periodic group cohomology and therefore it is a rank one subgroup.
So, the condition (ii) in Theorem 4.1 is a necessary condition.

In order to carry out the construction in Theorem 4.1, we also assume that n(H) + 1
is a multiple of the q-period of WG(H), for every 1 6= H ∈ Jp, and that the gaps between
non-zero homology dimensions are large enough: more precisely, for all K,L ∈ J with
n(K) > n(L), we have n(K)−n(L) ≥ l(ΓG), where l(ΓG) denotes the length of the longest
chain of maps in the category ΓG. We can easily guarantee both of these conditions by
taking joins of the preliminary local models we have constructed.
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The proof of Theorem 4.1. We obtain the complex C(q) by adding homology specified by
the dimension function n(p) step-by-step for each prime p ∈ SG with p 6= q. Let p be a
fixed prime with p 6= q. Assume that we have already added homology to the preliminary
model and obtained a complex C such that

hDim C = n(q) ∪
⋃
{n(r) | r < p and r ∈ SG}.

Now we will add more homology to C specified by the dimension function n(p) at the
prime p. We will add these homologies by an inductive construction using the number of
nonzero homology dimensions. Here is an outline of the argument:

(i) The starting point of the induction is the given complex C. Let n1 > n2 > · · · >
ns denote the set of dimensions n(H), over all H ∈ Jp. Note that, since the
dimension function n comes from a unitary representation, we have ns ≥ 1. Let
us denote by Fi, the collection of subgroups 1 6= H ∈ Jp such that n(H) = ni.

(ii) Suppose that we have already added some homology to the given complex so that
at this stage we have a finite projective chain complex C over RΓG, satisfying the
conditions (i)-(iii) of Definition 2.3, which has the property that hDim C(H) =
n(H) for all H ∈ F≤k where F≤k =

⋃
i≤k Fi. Our goal is to construct a new finite

dimensional projective complex D which also satisfies the conditions (i)-(iii) of
Definition 2.3, and has the property that hDim D(H) = n(H) for all H ∈ Fi with
i ≤ k + 1.

(iii) We will construct the complex D as an extension of C by a finite projective chain
complex, whose homology is isomorphic to the homology that we need to add.
Note that since the constructed chain complex D must satisfy the conditions (i)-
(iii), the homology we need to add should satisfy the condition that for every
H ≤ K with H,K ∈ Fk+1, the restriction map on the added homology module is
an R-homology isomorphism.

We will now begin the actual argument with the following useful notation.

Definition 4.3. Let Ji denote the RΓG-module which has the values Ji(H) = R for all
H ∈ Fi, and otherwise Ji(H) = 0. The restriction maps rKH : Ji(K) → Ji(H) for every
H,K ∈ Fi such that H ≤ K, and the conjugation maps cg : Ji(K) → Ji(

gK) for every
K ∈ F and g ∈ G, are assumed to be the identity maps (see [11, §2] for more details on
these maps).

In this notation, the chain complex D must have homology isomorphic to Ji in dimen-
sion ni for all i ≤ k+1, and in dimension zero the homology of D should be isomorphic to
R restricted to Fk+1. It is in general a difficult problem to find projective chain complexes
whose homology is given by a block of R-modules with prescribed restriction maps. But
in our situation we will be able to do this using some special properties of the poset of
subgroups in Fi coming from condition (iii) of Definition 2.3. Observe that we have the
following property by Corollary 2.4:

Lemma 4.4. For 1 ≤ i ≤ s, each poset Fi is a disjoint union of components where each
component has a unique maximal subgroup up to conjugacy.
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Proof. Follows from Corollary 2.4. �

For everyK ∈ Jp, the q-Sylow subgroup of the normalizer quotientWG(K) = NG(K)/K
has q-rank equal to one, hence it is q-periodic. By our starting assumption, the q-period
of WG(K) divides n(K) + 1. So by Swan [21], there exists a periodic projective resolution
P with

0→ R→ Pn → · · · → P1 → P0 → R→ 0

over the group ring RWG(K) where n = n(K). Note that this statement includes the
possibility that q-Sylow subgroup of WG(K) is trivial since in that case R would be
projective as a RWG(K)-module, and we can easily find a chain complex of the above
form by adding a split projective chain complex.

Now suppose that K ∈ Jp is such that (K) is a maximal conjugacy class in Fk+1.
Consider the RΓG-complex EKP where EK denotes the extension functor defined in [10,
Sect. 2C]. By definition

EK(P)(H) = P⊗R[WG(K)] R[(G/K)H ]

for every H ∈ F. We define the chain complex Ek+1P as the direct sum of the chain com-
plexes EKP over all representatives of isomorphism classes of maximal elements in Fk+1.
Let N denote the subcomplex of Ek+1(P) obtained by restricting EK(P) to subgroups
H ∈ F≤k. Let Ik+1P denote the quotient complex Ek+1(P)/N. We have the following:

Lemma 4.5. The homology of Ik+1P is isomorphic to Jk+1 at dimensions 0 and nk+1

and zero everywhere else.

Proof. The homology of Ik+1P at H ∈ Fk+1 is isomorphic to⊕
{R⊗R[WG(K)] R[(G/K)H ] : (K) maximal in Fk+1}

at dimensions 0 and nk+1 and zero everywhere else (since N(H) = 0 for H ∈ Fk+1). Note
that (G/K)H = {gK : Hg ≤ K}. If gK is such that Hg ≤ K, then H ≤ gK. Now by
condition (iii), we must have 〈K, gK〉 ∈ Fk+1. But (K) was a maximal conjugacy class
in Fk+1, so we must have K = gK, hence g ∈ NG(K). This gives 1 ⊗ gK = 1 ⊗ 1 in
R⊗R[WG(K)] R[(G/K)H ]. Therefore

R⊗R[WG(K)] R[(G/K)H ] ∼= R

for every H ∈ Fk+1. In addition, H can not be included in two non-conjugate maximal
subgroups in Fk+1, and therefore Ik+1(P)(H) ∼= R for all H ∈ Fk+1. Since the restriction
maps are given by the inclusion map of fixed point sets (G/H)U ↪→ (G/H)V for every
U, V ∈ Fk+1 with V ≤ U , we can conclude that all restriction maps are identity maps.
This completes the proof of the lemma. �

The above lemma shows that the homology of Ik+1P is exactly the RΓG-module Jk+1

that we would like to add to the homology of C. To construct D we use an idea similar
to the idea used in [10, Section 9B]. Observe that for every RΓG-chain map f : N → C,
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there is a push-out diagram of chain complexes

0 // N

f

��

// Ek+1P

��

// Ik+1P // 0

0 // C // Cf
// Ik+1P // 0 .

The homology of N is only nonzero at dimensions 0 and nk+1 and at these dimensions
the homology is only nonzero at subgroups H ∈ F≤k. At these subgroups the homology
of N(H) is isomorphic to the direct sum of modules of the form R ⊗RWG(K) R[(G/K)H ],
over (K) maximal in Fk. Note that for every H ∈ F≤k, there is an augmentation map

εHK : R⊗RWG(K) R[(G/K)H ]→ R

which takes r ⊗ gK to r for every r ∈ R. The collection of these maps over all H ∈ F≤k
gives a map of RΓG-modules denoted

εK : (EKR)≤k → R≤k

where the subscript ≤ k means the modules in question are restricted to F≤k. Taking the
sum over all conjugacy classes of maximal subgroups, we get a map

εk+1 :=
∑
K

εK :
⊕
K

(EKR)≤k → R≤k.

In this notation, we have isomorphisms H0(N) ∼=
⊕

K (EKR)≤k and H0(C) ∼= R≤k
which we will use to identify the homology groups in dimension zero.

Lemma 4.6. If f : N→ C is a chain map such that the induced map f∗ : H0(N)→ H0(C)
agrees with the map εk+1 after the identifications above, then H0(Cf ) ∼= R≤k+1.

Proof. This follows from a commuting diagram argument which was also used in [10,
Section 9B] for a similar result. Applying the zero-th homology functor, we obtain

0 // H0(N)

f

��

// H0(Ek+1P)

��

// H0(Ik+1P) // 0

0 // H0(C) // H0(Cf ) // H0(Ik+1P) // 0 .

The rows are still exact because H1(Ik+1P)(H) is non-zero only when H ∈ Fk+1, and
both H0(N)(H) and H0(C)(H) are zero for H 6∈ F≤k. So the connecting homomorphisms
on the long exact homology sequences are zero maps. Putting the modules we calculated
before, we obtain

ker εk+1

��

ker εk+1

��
0 // ⊕K(EKR)≤k

εk+1

��

// ⊕KEKR

��

// Jk+1
// 0

0 // R≤k // H0(Cf ) // Jk+1
// 0 .
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Now consider the RΓG-modules in the middle vertical sequence. We claim that the re-
striction map rLH from a subgroup L ∈ Fk+1 to a subgroup H ∈ F≤k is the identity map in
the module H0(Cf ). Note that the restriction maps rLH in the modules appearing in the
middle vertical sequence are given as follows (for each summand K of maximal subgroups
in Fk+1):

0 // 0

rLH
��

// R⊗RWG(K) R[(G/K)L]

rLH
��

∼= // R

rLH
��

// 0

0 // ker εHK
// R⊗RWG(K) R[(G/K)H ]

εHK // R // 0 .

It is easy to see from this diagram that the restriction map on the right most vertical line
is the identity map because the restriction map in the middle is the linearization of the
inclusion map (G/K)L ⊂ (G/K)H of fixed sets. �

The above lemma shows that the complex Cf has the correct homology if we take
f : N → C as the chain map inducing εk+1 on H0. Unfortunately, we can not take D
as Cf since the complex Ik+1P is not projective in general, and neither is N. We note
that finding a chain map f : N → C satisfying the given condition is not an easy task
without projectivity (compare [10, Section 9B], where this complex was projective). So
we first need to replace the sequence 0→ N→ Ek+1P→ Ik+1P→ 0 with a sequence of
projective chain complexes.

Lemma 4.7. There is a diagram of chain complexes where all the complexes P′,P′′,P′′′

are finite projective chain complexes over RΓG and all the vertical maps induce isomor-
phisms on homology:

0 // P′

��

// P′′

��

// P′′′

��

// 0

0 // N // Ek+1P // Ik+1P // 0 .

Proof. Since EKP is a projective chain complex of length n, Ek+1P is a finite projective
chain complex. So, by [16, Lemma 11.6], it is enough to show that N is weakly equivalent
to a finite projective complex. For this first note that N =

⊕
NK is a direct sum of

chain complexes NK where NK is the restriction of EKP to subgroups H ∈ F≤k. So
it is enough to show that NK is weakly equivalent to a finite projective chain complex.
To prove this, we will show that for each i, the RΓG-module Ni := (NK)i has a finite
projective resolution. The module Ni is nonzero only at subgroups H ∈ F≤k and at each
such a subgroup, we have

Ni(H) = (EKPi)(H) = Pi ⊗RWG(K) R[(G/K)H ].

So, as an RWG(H)-module Ni(H) is a direct summand of R[(G/K)H ] which is isomorphic
to ⊕

{R
[
WG(H)/WgK(H)

]
: K-conjugacy classes of subgroups Hg ≤ K}
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as an RWG(H)-module. Since K is a p-group, these modules are projective over the
ground ring R because R is q-local. So, for each H ∈ F≤k, the RWG(H)-module Ni(H)
is projective. Now consider the map

π : ⊕H EHNi(H)→ Ni

induced by maps adjoint to the identity maps at each H. We can take ⊕HEHNi(H) as the
first projective module of the resolution, and consider the kernel Z0 of π : ⊕HEHNi(H)→
Ni. Note that Z0 has smaller length and it also have the property that at each L, the
WG(L) modules Z0(L) are projective. This follows from the fact that R[(G/H)L] is
projective as a WG(L)-module by the same argument we used above. Continuing this
way, we can find a finite projective resolution for Ni of length ≤ l(Γ ). �

Now it remains to show that there is a chain map f : P′ → C, such that the induced
map f∗ : H0(P

′) ∼= H0(N) → H0(C) is given by εk+1. Recall that εk+1 =
∑

K εK is the
sum of augmentation maps over the conjugacy classes of maximal subgroups K in Fk+1.
Then the complex D will be defined as the push-out complex that fits into the diagram

0 // P′

f
��

// P′′

��

// P′′′ // 0

0 // C // D // P′′′ // 0 .

Since both C and P′′′ are finite projective chain complexes, D will also be a finite projec-
tive complex. The fact that D has the right homology follows from Lemma 4.6.

To construct f : P′ → C, first note that the reduced homology of the chain complex
C is zero below dimension nk. By assumption on the gaps between nonzero homology
dimensions, we have nk ≥ nk+1 + l(ΓG) ≥ l(P′). So, starting with the map εk+1 at H0,
we can obtain a chain map as follows:

// 0 // P ′m

fm
��

∂P
′

m // · · · // P ′0

f0
��

// H0(N)

εk+1

��

// 0

// Cm+1
// Cm

∂Cm // · · · // C0
// H0(C) // 0

where m = l(P′). This completes the proof of Theorem 4.1. �

5. The Proof of Theorem A

In this section we establish our main technique for constructing actions on homotopy
spheres, based on a given collection of Fp-representations, for the primes p ∈ SG, where
Fp denotes the family of all p-power order subgroups of G (see Definitions 3.1 and 3.4).
Theorem A stated in the introduction will follow from this theorem almost immediately
once we use the family of p-effective characters constructed by M. A. Jackson [15]. The
main technical theorem is the following:

Theorem 5.1. Let G be a finite group and let SG = {p | rankpG ≥ 2}. Suppose that

(i) V(Fp) is a Fp-representation for G, with Iso(V(Fp)) = Jp, for each p ∈ SG;
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(ii) If p ∈ SG and 1 6= H ∈ Jp, then we have rankq(NG(H)/H) ≤ 1 for every q 6= p.

Then there exists a finite G-CW-complex X ' Sn, with isotropy in J =
⋃
{Jp | p ∈ SG},

which is a geometric homotopy representation for G.

Remark 5.2. The construction we give in the proof of Theorem 5.1 gives a simply-
connected homotopy representation X, with dimXH ≥ 3, for all H ∈ J, whenever XH 6=
∅. It also relates the dimension function of X to the linear dimension functions DimS(VH),
for VH ∈

⋃
{V(Fp) | p ∈ SG} in the following way: for every prime p ∈ SG, there exists an

integer kp > 0 such that for every H ∈ Fp, the equality dimXH = dimS(V
⊕kp
H )H holds.

As we discussed in the previous section (see Remark 4.2), the condition on the q-rank
of NG(H)/H is a necessary condition for the existence of such actions. Recall that this
condition is used in an essential way in the proof of Theorem 4.1.

The proof of Theorem 5.1. By the realization theorem (Theorem 2.6), we only need to
construct a finite free chain complex of ZΓG-modules satisfying the conditions (i), (ii) and
(iii) of Definition 2.3. If we apply Theorem 4.1 to the preliminary local model constructed
in Section 3, we obtain a finite projective complex C(p), over the orbit category Z(p)ΓG
with respect to the family J, for each prime p dividing the order of G. In addition, C(p) is
an oriented Z(p)-homology n-sphere, with the same dimension function n = hDim C(p)(0)

coming from the preliminary local models. By construction, the complex C(p) satisfies
the conditions (i), (ii) and (iii) of Definition 2.3 for R = Z(p).

We may also assume that n(H) ≥ 3 for everyH ∈ J, and that the gaps between non-zero
homology dimensions have the following property: for all K,L ∈ J with n(K) > n(L), we
have n(K) − n(L) ≥ l(ΓG) where l(ΓG) denotes the length of the longest chain of maps
in the category ΓG.

To complete the proof of Theorem 5.1, we first need to glue these complexes C(p)

together to obtain an algebraic n-sphere over ZΓG. By [10, Theorem 6.7], there exists
a finite projective chain complex C of ZΓG-modules, which is a Z-homology n-sphere,
such that Z(p)⊗C is chain homotopy equivalent to the local model C(p), for each prime p
dividing the order of G. The complex C has a (possibly non-zero) finiteness obstruction
(see Lueck [16, §10-11]), but this can be eliminated by joins (see [10, §7]).

After applying [10, Theorem 7.6], we may assume that C is a finite free chain complex
of ZΓG-modules which is a Z-homology n-sphere. Moreover, C is an algebraic homotopy
representation: it satisfies the conditions (i), (ii) and (iii) of Definition 2.3 for R = Z,
since these conditions hold locally at each prime.

We have now established all the requirements for Theorem 2.6. For the family F used
in its statement, we use F = J. For all H ∈ F, we have the condition n(H) ≥ 3. Now
Theorem 2.6 gives a finite G-CW-complex X ' Sn with isotropy J such that XH is an
homotopy sphere for every H ∈ J. �

Now we are ready to prove Theorem A.

The proof of Theorem A. Let G be a rank 2 finite group and let SG denote the set of
primes with rankpG = 2. Since it is assumed that G does not p′-involve Qd(p) for any
odd prime p, we can apply [15, Theorem 47] and obtain a p-effective representation Vp,
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for every prime p ∈ SG. We apply Theorem 5.1 to the Fp-representations V(Fp) given
by this collection {Vp} (see Example 3.3). Since Vp is p-effective means that all isotropy
subgroups in Hp are rank one p-subgroups (see Example 3.10), the isotropy is contained
in the family H of rank one p-subgroups of G, for all p ∈ SG. We therefore obtain a finite
G-CW-complex X ' Sn, with rank 1 isotropy in H, such that XH is an homotopy sphere
(possibly empty) for every H ∈ H. �

The proof of Corollary B follows easily from Theorem A since if rankq(G) ≤ 1, then for
every p-group H, we must have rankq(NG(H)/H) ≤ 1. So we can apply Theorem A to
obtain Corollary B.

Note that the condition about Qd(p) being not p′-involved in G is a necessary condition
for the existence of actions of rank 2 groups on finite CW-complexes X ' Sn with rank
one isotropy. The following argument is an easy extension of the one given by Ünlü in
[25, Theorem 3.3].

Proposition 5.3. Let p be an odd prime. If G acts with rank one isotropy on a finite
dimensional complex X with the mod-p homology of a sphere, then G cannot p′-involve
Qd(p).

Proof. Suppose that G has a normal p′-subgroup K such that Qd(p) is isomorphic to
a subgroup in NG(K)/K. Let L be subgroup of G such that K / L ≤ NG(K) and
L/K ∼= Qd(p). The quotient group Q = L/K acts on the orbit space Y = X/K via the
action defined by (gK)(Kx) = Kgx for every g ∈ L and x ∈ X.

We observe two things about this action. First, by a transfer argument [6, Theorem
2.4, p. 120], the space Y has the mod p homology of a sphere. Second, all the isotropy
subgroups of the Q-action on Y have p-rank ≤ 1. To see this, let Qy denote the isotropy
subgroup at y ∈ Y and let x ∈ X be such that y = Kx. It is easy to see that Qy =
LxK/K ∼= Lx/(Lx ∩ K). Since K is a p′-group, this shows that p-subgroups of Qy are
isomorphic to p-subgroups of the isotropy subgroup Lx. Since L acts on X with rank one
isotropy, we conclude that rankp(Qy) ≤ 1 for every y ∈ Y .

Now the rest of the proof follows from the argument given in Ünlü [25, Theorem 3.3].
Let P be a p-Sylow subgroup of Q ∼= Qd(p). Then P is an extra-special p-group of
order p3 with exponent p (since p is odd). Let c denote a central element and a a non-
central element in P . Since the P -action on Y has rank 1 isotropy subgroups, we have
Y E = ∅ for every rank two p-subgroup E ≤ P . Therefore Y 〈c〉 = ∅ by Smith theory, since
otherwise P/〈c〉 ∼= Z/p×Z/p would act freely on Y 〈c〉 which is a mod p homology sphere.
Now consider the subgroup E = 〈a, c〉. Since 〈a〉 and 〈c〉 are conjugate in Q, all cyclic
subgroups of E are conjugate. In particular, we have Y H = ∅ for every cyclic subgroup
H in E. This is a contradiction, since E cannot act freely on Y . �

Remark 5.4. A shorter proof can be given using more group theory. For a finite group L,
and a normal p′-subgroup K of L, there is an isomorphism2 between the p-fusion systems
FL(S) and FL/K(SK/K), where S is a p-Sylow subgroup of L. So if L/K ∼= Qd(p), then
L has an extra-special p-group P of order p3 with exponent p such that a central element

2We thank Radha Kessar for this information.
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c ∈ P is conjugate to a non-central element a ∈ P . This leads to a contradiction in the
same way as above.

6. Discussion and examples

We first discuss the rank conditions in the statement of Theorem A. Suppose that X
is a finite G-CW-complex. Recall that Iso(X) = {H |H ≤ Gx for some x ∈ X} denotes
the minimal family containing all the isotropy subgroups of the G-action on X. We call
this the isotropy family. Note that H ∈ Iso(X) if and only if XH 6= ∅. We say that X
has rank k isotropy if rankGx ≤ k for all x ∈ X and there exists a subgroup H with
rankH = k and XH 6= ∅.
Lemma 6.1. Let G be a finite group, and let X be a finite G-CW-complex with X ' Sn.

(i) If H is a maximal p-subgroup in Iso(X), then rankp(NG(H)/H) ≤ 1.
(ii) If X has prime power isotropy and 1 6= H ∈ Iso(X) is a p-subgroup, with XH an

integral homology sphere, then rankq(NG(H)/H) ≤ 1, for all primes q 6= p.

Proof. This follows from two basic results of P. A. Smith theory [6, III.8.1]), which state
(i) that the fixed set of a p-group action on a finite-dimensional mod p homology sphere
is again a mod p homology sphere (or the empty set), and (ii) that Z/p × Z/p can not
act freely on a finite G-CW-complex X with the mod p homology of a sphere.

For any prime p dividing the order of G, let H ∈ Iso(X) denote a maximal p-subgroup
with XH 6= ∅. For any x ∈ XH , we have H ≤ Gx and if g · x = x, for some g ∈ NG(H)
of p-power order, it follows that the subgroup 〈H, g〉 ≤ Gx. Since H was a maximal
p-subgroup in Iso(X), we conclude that g ∈ H. Therefore the p-Sylow subgroup of
NG(H)/H acts freely on the fixed set XH , which is a mod p homology sphere, and hence
rankp(NG(H)/H) ≤ 1.

If q 6= p and H is a p-subgroup in Iso(X), then any q-subgroup Q of NG(H)/H must
act freely on XH (since x ∈ XH implies Gx is a p-group). Since XH is assumed to be an
integral homology sphere, Smith theory implies that rankq(Q) ≤ 1. �

Example 6.2. If G is the extra-special p-group of order p3, then the centre Z(G) = Z/p
can not be a maximal isotropy subgroup in Iso(X). On the other hand, we know that
G acts on a finite complex X ' Sn with rank one isotropy: just take the linear sphere
S(IndGZ(G)W ) for some nontrivial one-dimensional representation W of Z(G). So we can
not require that G acts on X ' Sn with Iso(X) containing all rank one subgroups.

For any prime p, we can restrict the G-action on X to a p-subgroup of maximal rank.
This gives the following well-known conclusion.

Corollary 6.3. If X is a finite G-CW-complex with X ' Sn and rank k isotropy, then
rankpG ≤ k + 1, for all primes p.

Remark 6.4. These results help to explain the rank conditions in Theorem A. First, if
we have rank one isotropy, then we must assume that G has rank two. However, condition
(ii) on the q-ranks of normalizer quotients is not necessary in general for the existence
of a finite G-CW complex homotopy equivalent to a sphere with rank one prime power
isotropy (see Example 6.7 for G = A7).
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In contrast, Lemma 6.1(ii) shows that in order to construct a geometric homotopy
representation (with prime power isotropy) the normalizer quotients must satisfy the q-
rank conditions at all p-subgroups H, with q 6= p, for which XH 6= ∅. It follows that the
corresponding condition (ii) in the setting of Theorem 5.1 is in fact a necessary condition.
Example 6.2 shows that not every rank one p-subgroup H must fix a point on X even
when X is assumed to be a geometric homotopy representation.

In order to get a complete list of necessary conditions, we must have more precise
control of the structure of the isotropy subgroups. It might also be possible to construct
finite G-CW complexes X ' Sn with rank one prime power isotropy, for which the fixed
sets XH are not homotopy spheres. The work of Petrie [20, Theorem C] and tom Dieck
[23, Theorem 1.7] explores this direction, but it is not clear to us that their results answer
our question.

An attractive open problem is the case of finite rank two groups of odd order. Such
groups admit G-representation spheres S(Wp) for each prime p ∈ SG, whose isotropy
groups have p-rank one (see Adem [1, 5.29]). These spheres S(Wp) could be used as
the preliminary p-local models, instead of the construction given in Section 3, but one
would still need to add and subtract homology to obtain the same homological dimension
function at all primes. At present, we only know how to complete this step (as in Section
4) under the conditions (ii) of Theorem 5.1. The problem is that these conditions may
not always hold for the representation spheres {S(Wp) : p ∈ SG}.

Now we discuss two applications of Theorem A and Theorem 5.1.

Example 6.5. The alternating group G = A6 admits a finite G-CW-complex X ' Sn,
with rank one isotropy. This follows from Theorem A once we verify that G satisfies the
necessary conditions. Note that A6 has order 23 · 32 · 5 = 360 so it automatically satisfies
the condition about Qd(p), since it can not include an extra-special p-group of order p3

for an odd prime p. For the q-rank condition, note that SG = {2, 3}, so we need to check
this condition only for primes p = 2 and 3. Here are some easily verified facts:

• A 2-Sylow subgroup P ≤ G is isomorphic to the dihedral group D8, so all rank
one 2-subgroups are cyclic, and H2 = {1, C2, C4}.
• NG(C2) = P , and rank3(NG(C2)/C2) = 0.

• NG(C4) = P and rank3(NG(C4)/C4) = 0.

Now, let Q be a 3-Sylow subgroup in G. Then Q ∼= C3 × C3.

• Any subgroup of order 3 in G is conjugate to CA
3 = 〈(123)〉 or CB

3 = 〈(123)(456)〉.
• |NG(CA

3 )/CA
3 | = 6 and rank2(NG(CA

3 )/CA
3 ) = 1.

• |NG(CB
3 )/CB

3 | = 6 and rank2(NG(CB
3 )/CB

3 ) = 1

We conclude that condition (ii) of Theorem A holds for this group.

Remark 6.6. Note that by the criteria given in [3, Lemma 5.2], the group A6 does not
have a character which is effective on elementary abelian 2-subgroups. On the other hand,
the triple cover of A6 is a subgroup of SU(3), and hence acts linearly on a sphere with
rank one isotropy by results of Adem, Davis and Ünlü [2, 2.6, 2.9] on the fixity of faithful
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unitary representations. More generally, they show that if G ⊂ U(n) has fixity f , then G
acts linearly with rank one isotropy on U(n)/U(n− f). If G ⊂ SU(n), then G has fixity
at most n− 2.

We now give an example which does not satisfy the q-rank conditions in Theorem A,
but where we can apply Theorem 5.1 directly.

Example 6.7. The alternating group G = A7 admits a finite G-CW-complex X ' Sn,
with rank one isotropy. The order of G is 23 · 32 · 5 · 7, so this group also automatically
satisfies the Qd(p) condition. Here is a summary of the main structural facts:

• The 3-Sylow subgroup Q ≤ G is isomorphic to C3 × C3.

• Any subgroup of order 3 in G is conjugate to CA
3 = 〈(123)〉 or CB

3 = 〈(123)(456)〉.
• The 2-Sylow subgroup of NG(CA

3 ) is isomorphic to D8.

• |NG(CA
3 )/CA

3 | = 24 and rank2(NG(CA
3 )/CA

3 ) = 2.

• NG(CB
3 ) ∼= (C3 × C3) o C2 and rank2(NG(CB

3 )/CB
3 ) = 1.

• |NG(C2)| = 24, and rank3(NG(C2)/C2) = 1.

• NG(C4) ∼= D8 and rank3(NG(C4)/C4) = 0

We see that the rank condition in Theorem A fails for 3-subgroups, since there is a cyclic 3-
subgroup H = CA

3 with rank2(NG(H)/H) = 2. On the other hand, by applying Theorem
5.1 directly, we can still find a finite G-CW-complex X ' Sn, with rank one isotropy in
the family generated by {1, C2, C4, C

B
3 }.

In this case, we have SG = {2, 3}. For p = 2, we can use the F2-representation V2 from
[15], since A7 satisfies the rank condition for 2-subgroups. It remains to show that there
exists an F3-representation of G with isotropy subgroups only type B cyclic 3-subgroups.
But this is easily constructed by taking V3 as the direct sum of augmented permutation
modules I(Q/K1) ⊕ I(Q/K2) where K1 = 〈(123)(456)〉 and K2 = 〈(123)(465)〉. It is
clear that this representation respects fusion, and has isotropy given only by the cyclic
3-subgroups of type B lying in F3.

Remark 6.8. When G is a finite group with a rank two elementary abelian q-Sylow
subgroup Q, the representation

Vq =
⊕
{I(Q/Ki) : 1 ≤ i ≤ s}

over some family of rank 1 subgroups Ki, which is closed under G-conjugacy, will give
a q-effective representation χ : Q → U(n) which respects fusion. But for more general
rank 2 q-Sylow subgroups, the above representation may fail to satisfy the condition that
〈χ|E, 1E〉 = 0 for every rank 2 elementary abelian p-subgroup E of G. Note that for Vq to
be q-effective one needs to have exactly one double coset in E\Q/Ki for every Ki and for
every rank 2 elementary abelian subgroup E of Q. This fails, for example, if Q = Cp2×Cp2
is a non-elementary rank two abelian group.

7. The proof of Theorem C

The finite simple groups of rank two are listed in Adem-Smith [3, p.423] as follows:
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PSL2(Fq), q ≥ 5; PSL2(Fq2), q odd ; PSL3(Fq), q odd ;

PSU3(Fq), q odd ; PSU3(F4); A7 and M11

where q denotes a prime. Extensive information about the maximal subgroups of these
simple groups is provided in [17], [9]. To prove Theorem C we will consider separate cases.
Note that G = A7 is done in Example 6.7.

Case 1: G = PSL2(Fq), q ≥ 5. The order of G is q(q2−1)/2 and the maximal subgroups
of G are listed in [9, 6.5.1]. From this list it is easy to see that the 2-Sylow subgroup
of G is a dihedral group and for odd primes the Sylow subgroups are cyclic (see also [9,
4.10.5]). It follows that SG = {2} and G is Qd(p)-free at odd primes, so Corollary B
applies. By inspecting the character table of G, and applying the criterion [3, Lemma
5.2], we see that PSL2(Fq), q > 7, does not admit an orthogonal representation V with
rank one isotropy on S(V ).

Case 2: G = PSL2(Fq2), q ≥ 3. We did PSL2(F9) = A6 explicitly in Example 6.5. In

general, the order of G is q2(q4 − 1)/2 and the maximal subgroups are again listed in [9,
6.5.1]. The conditions on the normalizer quotients needed for Theorem A can be checked
at the primes SG = {2, q} using the information in [9], and [12, Chap. II]. The 2-Sylow
subgroups are dihedral [9, 4.10.5], and the q-Sylow subgroup Q is elementary abelian of
rank two [9, 6.5.1] (with normalizer NG(Q) represented by the parabolic subgroup of upper
triangular matrices). At the other primes p 6= 2, q, any p-Sylow subgroup is contained in
a dihedral group, and hence cyclic (see [12, II.8.27]).

Case 3: PSL3(Fq), q ≥ 3. We refer to [17, §15] or [9, 6.5.3] for the maximal subgroups.
Since G contains Qd(p) for p = q, this series of groups is ruled out. An explicit embedding
is given by the matrices:

Qd(p) =


 a b e

c d f

0 0 1

 : ad− bc = 1


with entries in Fq.

Case 4: G = PSU3(Fq), q ≥ 3. The order of G is (q3+1)q3(q2−1)/d, where d = (3, q+1),
and the maximal subgroups are given in [17, §16] or [9, 6.5.3]. In particular, G contains
an abelian subgroup of order (q + 1)2/d. If 9 | (q + 1), then G contains Qd(3), hence is
ruled out, so we assume that 9 - (q + 1).

If 3 | (q + 1), then the 3-Sylow subgroup of G is elementary abelian of order 9. If
r > 3 is an odd prime dividing q + 1, then the r-Sylow subgroup is abelian of rank
two, and order equal to the r-primary part of (q + 1)2. Finally, if r is an odd prime
not dividing q + 1, then r divides (q2 − q + 1) or r divides q − 1, and the r-Sylow
subgroup of G is cyclic (see [9, 6.5.3(c)], [17, p. 228, 241] for the list of subgroups,
and [12, II.10.12], and [18, §1] for additional details about the structure). In summary,
SG = {2, q} ∪ {r | (q + 1) : r an odd prime}.

We claim that Theorem A applies to G if and only if q is a Mersenne prime, meaning
that q + 1 = 2a, for some a ≥ 2. The discussion in the last paragraph shows that our
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normalizer rank conditions fail at p = 2 for rank one r-subgroups whenever r | (q + 1),
since 2 | (q+ 1)2/d. Therefore, in these cases our Theorem A does not apply. Conversely,
if q+ 1 = 2a, then SG = {2, q} and we must check our normalizer rank condition at these
primes.

The 2-Sylow subgroups P are either quasi-dihedral, if q ≡ 1 (mod 4), or wreathed, if
q ≡ −1 (mod 4) (a good reference for the facts we need is [4, Chap. I]). In either case, all
involutions x ∈ G are conjugate, and N = CG(x), modulo a central cyclic subgroup of odd
order d = (q + 1, 3), is isomorphic to GU(2, q) (see [4, Proposition 4, p. 21]). Therefore,
for any rank one 2-subgroup H, we have NG(H) ⊆ N . Since SU(2, q) ∼= SL(2, q) [9,
p. 69], we see that rankq(NG(H)/H) = 1 for any rank one 2-subgroup H.

A q-Sylow subgroup Q of G is contained in a maximal subgroup K of order q3(q2−1)/d.
By [17, p. 241(1)], any such group leaves invariant a line in the projective space P 2(V ),
where V is a 3-dimensional vector space over the field Fq2 . On the invariant line, K acts
effectively as a metacyclic group of order q2(q2−1)/d. It follows that rank2(NG(H)/H) = 1
for any rank one q-subgroup of G. We note that this property can also be checked from
the explicit matrix description of Q and a cyclic subgroup normalizing Q given by O’Nan
[18, §1]. Since PSU3(Fq) contains A6 for primes of the form q = 15f − 1, 15f − 4 (see [17,
p. 241 (10)]), there is an infinite sub-family of these unitary groups which do not admit
representation spheres with rank one isotropy. However, at present we can only construct
finite G-CW complexes for the Mersenne primes q, and it is not known whether infinitely
many such primes exist.

Case 5: G = M11. The order of G is 7920 = 24 · 32 · 5 · 11 and SG = {2, 3}. This group
is Qd(p)-free, but the 2-rank rank2(NG(H)/H) = 2, for H a subgroup of order three (see
[9, p. 262]). Since all the subgroups of order three are conjugate, neither Theorem A or
the method used in Example 6.7 applies, so this case is open. Note that the normalizer
rank conditions is satisfied for H a rank one 2-subgroup by [4, Proposition 4, p. 21], since
there is only one conjugacy class of involutions in M11. Since M11 contains A6, it does
not admit a representation sphere with rank one isotropy.

Case 6: G = PSU3(F4). The order of G is 65280 = 26 · 3 · 52 · 13 and SG = {2, 5}. This
group is Qd(p)-free and Theorem A applies. However, this group also acts linearly on S23

with rank one isotropy [3, p. 425].
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[11] I. Hambleton and E. Yalçın, Algebraic homotopy representations, preprint (arXiv:1402.3306v2).
[12] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134,

Springer-Verlag, Berlin, 1967.
[13] S. Jackowski, J. McClure, and B. Oliver, Homotopy classification of self-maps of BG via G-actions.

I, Ann. of Math. (2) 135 (1992), 183–226.
[14] M. A. Jackson, A quotient of the set [BG,BU(n)] for a finite group G of small rank, J. Pure Appl.

Algebra 188 (2004), 161–174.
[15] , Qd(p)-free rank two finite groups act freely on a homotopy product of two spheres, J. Pure

Appl. Algebra 208 (2007), 821–831.
[16] W. Lück, Transformation groups and algebraic K-theory, Lecture Notes in Mathematics, vol. 1408,

Springer-Verlag, Berlin, 1989, Mathematica Gottingensis.
[17] H. H. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Amer.

Math. Soc. 12 (1911), 207–242.
[18] M. E. O’Nan, Automorphisms of unitary block designs, J. Algebra 20 (1972), 495–511.
[19] S. Pamuk, Periodic resolutions and finite group actions, Ph.D. thesis, McMaster University, 2008.
[20] T. Petrie, Three theorems in transformation groups, Algebraic topology, Aarhus 1978 (Proc. Sympos.,

Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 549–572.
[21] R. G. Swan, Periodic resolutions for finite groups, Ann. of Math. (2) 72 (1960), 267–291.
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[25] Ö. Ünlü, Constructions of free group actions on products of spheres, Ph.D. thesis, University of
Wisconsin, 2004.
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