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We describe the main steps in the calculation of surgery obstruction groups for finite
groups. Some new results are given and extensive tables are included in the appendix.

The surgery exact sequence of C. T. C. Wall [61] describes a method for classi-
fying manifolds of dimension ≥ 5 within a given (simple) homotopy type, in terms of
normal bundle information and a 4–periodic sequence of obstruction groups, depend-
ing only on the fundamental group and the orientation character. These obstruction
groups Lsn(ZG,w) are defined by considering stable isomorphism classes of quadratic
forms on finitely generated free modules over ZG (n even), together with their unitary
automorphisms (n odd).

Carrying out the surgery program in any particular case requires a calculation of
the surgery obstruction groups, the normal invariants, and the maps in the surgery
exact sequence. For fundamental group G = 1, the surgery groups were calculated by
Kervaire–Milnor as part of their study of homotopy spheres:

Lsn(Z) = 8Z, 0, Z/2, 0 for n = 0, 1, 2, 3 (mod 4) ,

where the non–zero groups are detected by the signature or Arf invariant, and the nota-
tion 8Z means that the signature can take on any value ≡ 0 (mod 8). The Hirzebruch
signature theorem can be used to understand the signature invariant, and a complete
analysis of the normal data was carried out by Milgram [41], Madsen–Milgram [42]
and Morgan–Sullivan [45].

The theory of non–simply connected surgery has been used to investigate three
important problems in topology:

(i) the spherical space form problem, or the classification of free finite group actions
on spheres

(ii) the Borel and Novikov conjectures, or the study of closed aspherical manifolds and
assembly maps

(iii) transformation groups, or the study of Lie group actions on manifolds.

In the first problem, surgery is applied to manifolds with finite fundamental group
and the surgery obstruction groups can be investigated by methods closely related to
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number theory and the representation theory of finite groups. In the second problem, the
fundamental groups are infinite and torsion–free, and the methods available for studying
the surgery obstruction groups are largely geometrical. The case of the n–torus was
particularly important for its applications to the theory of topological manifolds. The
third problem includes both finite group actions and actions by connected Lie groups.
The presence of fixed point sets introduces many interesting new features.

In this paper we consider only L∗(ZG) for finite groups G. The Novikov conjectures
and other topics connected with infinite fundamental groups are outside the scope of
this article.

Before giving some notation, definitions and a detailed statement of results, it may
be useful to list some general properties of the surgery obstruction groups for finite
groups.

(1) The groups L∗(ZG) are finitely generated abelian groups, the odd–dimensional
groups L2k+1(ZG) are finite, and in every dimension the torsion subgroup of
L∗(ZG) is 2–primary.

There is a generalization of the ordinary simply–connected signature, called the multi–
signature [61, 13A], [38].

(2) The multi–signature is a homomorphism σG:L2k(ZG) → R(−)k

C (G) where RC(G)
denotes the ring of complex characters of G. The multi–signature has finite 2–
groups for its kernel and cokernel.

Complex conjugation acts as an involution on RC(G), decomposing it as a sum of Z’s
from the real–valued (type I) characters, and a sum of free Z[Z/2] modules generated by
irreducible type II characters χ 6= χ̄. The (−1)k–eigenspaces of the complex conjugation

action are denoted R(−)k

C (G).

The theory of Dress induction [22, 23] greatly simplifies the calculation of L–groups. A
group G is called p–hyperelementary if G = C oP where P is a p–Sylow subgroup and
C is a cyclic group of order prime to p. Then G is determined by C, P and the structure
homomorphism t:P → Aut(C). Further, G is p–elementary if it is p–hyperelementary
and t is trivial (equivalently G = C × P ).

(3) L∗(ZG) can be calculated from knowledge of the L–groups of hyperelementary
subgroups of G, together with the maps induced by subgroup inclusions.

Moreover, one can calculate L∗(ZG) ⊗ Z(2), RC(G) ⊗ Z(2) and σG ⊗ 1 from the 2–
hyperelementary subgroups and the maps between them. Since (1) and (2) imply that

L∗(ZG)
σG−−−−−−→ RC(G)

↓ ↓
L∗(ZG) ⊗ Z(2)

σG⊗1
−−−−−−→ RC(G) ⊗ Z(2)

is a pull–back, Dress’s work computes L∗(ZG) in terms of representation theory and
the L–theory of 2–hyperelementary groups. For this reason, most of the calculational
work has been devoted to the 2–hyperelementary case.

These general properties are fine until one needs more precise information for computing
surgery obstructions. An early result of Bak and Wall (worked out as an example in
Theorem 10.1) is that for G of odd order

Lsn(ZG) = Σ ⊕ 8Z, 0, Σ ⊕ Z/2, 0 for n = 0, 1, 2, 3 (mod 4) .
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The terms Σ = ⊕ 4(χ ± χ̄) comes from the multisignatures at type II characters, and
the term Z is the summand of RC(G) generated by the trivial character. The term Z/2
is detected by the ordinary Arf invariant.

Another nice case is G = C × P , where C is a cyclic 2–group and P has odd order
(this includes arbitrary cyclic groups as well as p–hyperelementary groups G for p odd).
Assuming C is non–trivial, we have:

Lsn(ZG) = Σ ⊕ 8Z ⊕ 8Z, 0, Σ ⊕ Z/2, Z/2 for n = 0, 1, 2, 3 (mod 4) .

The signature group again has two sources, the term Σ = ⊕ 4(χ ± χ̄) from the type II
characters and the two Z’s coming from the type I characters (just the trivial character
and the linear character which sends a generator to −1). The Z/2 in dimension 2 is the
ordinary Arf invariant and the Z/2 in dimension 3 is a “codimension one” Arf invariant.
The special case G = Z/2r is worked out in Example 11.1.

Many geometric results have been obtained just from the vanishing of the odd–
dimensional L–groups of odd order groups, but unfortunately Lsn(ZG) is usually not
zero, and the torsion subgroup can be complicated (for example, even when G is a
group of odd order times an abelian 2–group).

Nor does it help to relax the Whitehead torsion requirements, and allow surgery up
to homotopy equivalence. For example, the group Lh2k(Z[Z/2r]) has torsion subgroup(
[2(2r−2 + 2)/3]− [r/2]− ε

)
Z/2, where ε = 1 if k is even and 0 if k is odd [12, Thm.A].

The notation [x] means the greatest integer in x. The source of this torsion is D(ZG) ⊆
K̃0(ZG), a part of the projective class group that is often amenable to calculation [47].

The torsion subgroup of Ln(ZG) can also involve the ideal class groups of the alge-
braic number fields in the centre of the rational group algebra QG, and the computation
of ideal class groups is a well–known and difficult problem in number theory. Another
major complication is that computing the surgery obstruction groups often requires in-
formation about the Whitehead groups Wh(ZG), the algebraic home for the theory of
Whitehead torsion.

Here the problem is that the torsion subgroup SK1(ZG) of Wh(ZG) is highly
non–trivial [46]. In particular, both the first optimistic claims for the Whitehead
groups of abelian groups (tentatively quoted by Milnor in [44]) and Wall’s conjec-
ture [70, p.64,5.1.3] about the Tate cohomology of Whitehead groups, turned out to be
incorrect.

In spite of these complications, the L–groups can be effectively computed in many
cases of interest. The approach presented here (following the procedure established by
Wall in [63]–[70]) will be to try and reduce the compution of L∗(ZG) to specific and
independent questions in number theory and representation theory. From the statement
of results in Section 2, we hope that the reader can get an overview of present knowledge,
and useful references for further investigation. In the rest of the paper, we describe the
main steps in the calculation and work out some relatively easy examples.
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E. Finite 2–groups

1. L–groups, decorations and geometric anti–structures

We begin with some algebraic definitions. An antistructure is a triple (R,α, u),
where R is a ring with unity, u is a unit in R and α:R → R is an anti–automorphism
such that α(u) = u−1 and α2(r) = uru−1 for all r ∈ R. Such rings have L–groups,
denoted Ln(R,α, u), and in [63]–[70] Wall developed effective techniques for computing
them, especially for the case when R = ZG, and G a finite group. The main idea is to
compare quadratic and hermitian forms over ZG to those over local and global fields
using the “arithmetic” pull–back square

ZG −→ QG
↓ ↓

ẐG−→ Q̂G

of rings with antistructure to obtain Mayer–Vietoris sequences in L–theory.
There is a class of antistructures which suffice for applications of L–groups to the

topology of manifolds, and which have other good properties. We say (α, u) is a geo-
metric antistructure on a group ring ZG provide that α is given by α(g) = w(g)θ(g−1),
where θ is an automorphism of G, w:G → {±1} is a homomorphism and u = ±b for
some b ∈ G [31, p.110]. A geometric antistructure is standard if θ is trivial and b = e
and oriented if w is trivial. Clearly α determines θ, w and b uniquely. Conversely,
given any automorphism θ, any homomorphism w:G → {±1} and any b ∈ G the pairs
(α,±b) are antistructures provided θ2(g) = bgb−1 for all g ∈ G, w ◦ θ = w, θ(b) = b and
w(b) = 1. In particular, a geometric antistructure induces an antistructure on the group
ring AG for any ring with unity A so they fit well with the arithmetic square. In general
Ln(R,α, u) = Ln+2(R,α,−u), so we will usually only consider the case u = b. Another
useful observation is that geometric antistructures induce involutions on Wh(ZG).

Traditionally the L–groups with standard antistructure are denoted L∗(ZG) if the
antistructure is oriented and L∗(ZG,w) if it is not. One of the main theorems of
surgery [61] states that these algebraically defined groups are naturally isomorphic to
the geometrically defined surgery obstruction groups. Wall discovered the more general
geometric antistructures while studying codimension one submanifolds (they give an
algebraic description of the Browder-Livesay groups LN , see [61, 12C]).
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The surgery obstruction groups come with K–theory decorations depending on the
goal of the surgery process. For surgery up to homotopy equivalence (resp. simple
homotopy equivalence) on compact manifolds, the relevant L–groups are Lh∗(ZG) (resp.
Ls∗(ZG)). For surgery on non–compact manifolds up to proper homotopy equivalence,
the appropriate groups are Lp∗(ZG). Cappell [11] introduced “intermediate” L–groups
for any involution invariant subgroup of K̃0(ZG) or Wh(ZG) for use in his work on
Mayer–Vietoris sequences for amalgamated free products and HNN extensions. Each of

these has the form LX̃n (ZG), denoting an algebraic L–group ([52]) with decorations in
an involution–invariant subgroup X̃ ⊆ K̃1(ZG) or X̃ ⊆ K̃0(ZG). In the first case, X̃ is
always the inverse image of an involution–invariant subgroup in Wh(ZG), so we often
refer instead to the decoration subgroup in Wh(ZG). For general antistructures (α, u)

LX̃∗ (ZG,α, u) is not defined unless u ∈ X̃, so again geometric antistructures provide the
right setting.

Intermediate L–groups appear in the arithmetic Mayer–Vietoris sequence as well:
in particular, L′

n(ZG) based on

X̃ = SK1(ZG) ⊆Wh(ZG),

where SK1(ZG) = ker
(
K1(ZG)→K1(QG)

)
, is especially important. It turns out that

these L′–groups are more accessible to computation than either Ls or Lh, and so they
have a central role in this subject.

The L–groups are related by many interlocking exact sequences [56], involving
change of K–theory and change of rings. Such sequences often have both an algebraic
and an geometric interpretation, making them useful for topological applications.

Remark: The L–groups mentioned so far only involve the K groups K0 and K1, and
it is natural to wonder about decorations in other Ki. In fact, there are geometrically
interesting L–theories for both higher and lower Ki, and these are related to the ones
studied here via change of K–theory sequences. Since there has not been a great deal
of calculational work done on them, they are omitted from this survey.

The exact sequences describing the change of K–theory decoration are often called
“Ranicki–Rothenberg” sequences [57], [52]. Some important examples are

. . .→ Lhn+1(ZG) → Hn+1(Wh(ZG)) → Lsn(ZG) → Lhn(ZG) → Hn(Wh(ZG)) → . . .

and

. . .→ Lpn+1(ZG) → Hn(K̃0(ZG)) → Lhn(ZG) → Lpn(ZG) → Hn−1(K̃0(ZG)) → . . .

although the step between Ls and Lh can also be usefully divided into Ls → L′, with
relative group H∗(SK1(ZG)), and L′ → Lh, with relative group H∗(Wh′(ZG)). Here
Wh′(ZG) = Wh(ZG)/SK1(ZG), and we use the convention that H∗(X) denotes the
Tate cohomology H∗(Z/2;X) for any Z/2–module X. There are versions of these
sequences for any geometric antistructure.

The exact sequences involving change of rings are particularly important for com-
puting L–groups. The most important example is

. . .→ L′
n+1(ZG→Ẑ2G) → L′

n(ZG) → L′
n(Ẑ2G) → L′

n(ZG→Ẑ2G) → . . .

This sequence remains exact for any geometric antistructure.
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2. Statement of Results

What does it mean to compute L–groups ? Given a finite group G and a geometric
antistructure (α, u), the rational group algebra QG becomes an algebra with involution.
Under the Wedderburn decomposition, QG splits canonically into simple algebras with
involution and it is reasonable to assume that the classical invariants for such algebras
(type, reduced norms, Schur indices, ideal class groups of centre fields, etc.) can be
worked out for the given group G.

Goal: Find an algorithm to compute L∗(ZG,α, u) for geometric antistructures, in
terms of the character theory of G and the classical invariants of QG.

Here is a brief summary of the state of progress towards this goal. Properties (1) and
(2) in the introduction hold for L–groups of finite groups with geometric antistructures
and any involution–invariant torsion decoration in Wh(ZG) or K̃0(ZG) [23], [69], [70],
although the description of the multi–signature becomes more complicated. Dress’s
results (3) certainly hold for the standard geometric antistructures (oriented or not)
with decorations p, s, ′, h and many others, but the general case has not been worked
out. In the case of the standard antistructures, we will apply Dress induction to obtain
calculations for odd order groups in §10, and p–hyperelementary groups, p odd, in §12.

One obvious difficulty in extending Dress induction is that a given geometric an-
tistructure on G may not restrict to a geometric antistructure on enough subgroups
to simplify the calculation. In any case, not much work has been done on the maps
induced by subgroup inclusion (even for the standard oriented antistructure), so we will
consider only 2–hyperelementary groups from now on.

(4) For 2–hyperelementary groups G and any geometric antistructure (α, u), the groups
Lp∗(ZG,α, u) can be computed in terms of character theory of G and the number
theory associated to QG. The torsion subgroup has exponent 2 for the standard
oriented antistructure, and exponent 4 in general. [28]

Since the goal has been achieved for the Lp–groups, we turn to the groups L′
∗(ZG,α, u)

with Wh(ZG) decoration lying in the subgroup SK1(ZG). The approach is to study

L′
∗(ZG,α, u) using the exact sequence comparing it with L′

∗(Ẑ2G,α, u). The relative
term is under control:

(5) For 2–hyperelementary groups G and any geometric antistructure, the relative

groups L′
∗(ZG→Ẑ2G,α, u) can be computed in terms of character theory of G and

number theory associated to QG. The torsion subgroup has exponent 2 (see [70]
or Tables 14.12–14.15, and Theorem 7.1 for the exponent of the torsion subgroup).

The remaining obstacles are the groups L′
∗(Ẑ2G,α, u), and the maps

ψn:L
′
∗(Ẑ2G,α, u) → L′

∗(ZG→Ẑ2G,α, u) .

The groups L′
∗(Ẑ2G,α, u) can be studied by comparing them to Lh∗(Ẑ2G,α, u) using

the change of K–theory sequence

. . .→ Hn+1(Wh′(Ẑ2G)) → L′
n(Ẑ2G,α, u) → Lhn(Ẑ2G,α, u) → Hn(Wh′(Ẑ2G)) → . . .

Every third term is easy to compute:
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(6) The groups Lh∗(Ẑ2G,α, u) for geometric antistructures are determined by the centre

of F2G, and the kernel of the discriminant Lhn(Ẑ2G,α, u) → Hn(Wh′(Ẑ2G)) is
computable from the characters and types ([66] and [27, 1.16], see also Remark
8.5).

For the Tate cohomology terms we have:

(7) Wh′(Ẑ2G) is computable by restriction to the 2–elementary subgroups of G, and

there is an algorithm to calculate Wh′(Ẑ2G) for 2–elementary groups ([46, Thm.
6.7, 12.3]). If w is trivial or if G is a 2–group, the involution induced by the
geometric antistructure has been computed fairly explicitly (see [46, p.163] and
[47, p.61]).

It follows that L′
∗(Ẑ2G,α, u) is algorithmically computable up to extensions in the

oriented case or in the case that G is a finite 2–group.

Most difficult of all is to describe the ψ∗ maps. Some examples can be worked out,
especially for the standard antistructure.

Example: If G is an abelian group then L′
∗(ZG,w) is computable in terms of the

characters of G (see [70], and Example 11.1 for cyclic 2–groups done in detail).

Example: If G = G1×G2 is a direct product where G1 has odd order, then L′
∗(ZG,w)

is computable in terms of L′
∗(ZG2, w) and the character theory of QG ([37] and Propo-

sition 12.1).

Example: Computations (modulo some extension problems) are available for L′
∗(ZG,w)

in certain families of 2–hyperelementary groups G, including
(i) groups of 2–power order, (see [70, §5] for partial results and Example 9.2 for

a reduction of the maps ψ∗ to K–theory),
(ii) groups with periodic cohomology, [40], [37]
(iii) groups G = C oP where ker(P → Aut(C)) is abelian and P is a 2–group (see

[70], and Proposition 13.4 for G dihedral done as an example).

Finally, what can one say about the L–groups of primary geometric interest ? To study
Ls∗(ZG) or Lh∗(ZG) via L′

∗(ZG) we need the groups Hn(SK1(ZG)) or Hn(Wh′(ZG)).
Observe that we only need Wh(ZG) ⊗ Z(2) for computing Tate cohomology, and this
can result in significant simplification.

(8) Extensive computations are available for the groups SK1(ZG), but it is not easy
to determine the action of the involution induced by the antistructure (see [46] as
a general reference, and [43] for a nice application to Ls–groups).

There is a short exact sequence

0 → Cl1(ZG) ⊗ Z(2) → SK1(ZG) ⊗ Z(2) → SK1(Ẑ2G) → 0

and Bak [3] (or [46, 5.12]) shows the standard oriented involution is trivial on Cl1(ZG)⊗

Z(2). Oliver [46, 8.6] shows that the standard oriented involution on SK1(Ẑ2G) is
multiplication by −1, at least for 2–groups G.

(9) The groups Wh′(ZG) are free abelian with rank depending on the characters of G.
For the standard oriented antistructure, the induced involution on Wh′(ZG) is the
identity, and H1(Wh′(ZG)) = 0 [67] (see [47, 4.8] for the answer when w 6≡ 1).
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The study of Lh∗(ZG) via Lp∗(ZG) looks promising, but we need knowledge ofHn(K̃0(ZG)).
In general this is not easy to compute, however:

Example: The groups Lh∗(ZG,w) can be computed (up to extensions) in terms of the
character theory of G, for G a finite 2–group (See [29], [47], [12] for pieces of the
solution, but there is no complete account in the literature).

Remark: In order to keep this paper reasonably short, we have omitted any discussion
of hermitian K–theory and form parameters. This approach is fully developed in [9],
[10], and [1]–[6].

3. Round decorations

There are two detours to be made along the way towards systematic computations
of the surgery obstruction groups. The first is to use the “round” algebraic L–theory
LXn (R,α, u) for a ring R with antistructure, based on involution–invariant subgroups X
of Ki(R) (see [30, §2]), instead of the geometrically useful groups. These round groups
have several algebraic advantages. They respect products, and are invariant under
quadratic Morita equivalence of rings [31]. These are related to the usual L–groups by
exact sequences which can be analyzed and largely determined in the cases considered
here. The definitions also make sense for higher and lower L–theory, but all of our
actual computations are for the L–groups based on subgroups of K0 or K1. To our
knowledge, no calculational work has been done on higher L–theory for finite groups
and very little has been done for lower L–theory.

A particular example of quadratic Morita equivalence is the notion of scaling. If
(α, u) is an antistructure on R and v ∈ R is a unit, (αv, uv) is also an antistructure
where αv(x) = vα(x)v−1 and uv = vα(v−1)u: furthermore LXn (R,α, u) ∼= LXn (R,αv, uv)
[31, p.74] for any subgroup X ⊂ Ki(R) invariant under the involution induced by α.

The second step is to choose the “right” K–theory decoration. For any ring R, let
Oi(R) = 0 ⊆ Ki(R) and let Xi(R) = ker

(
Ki(R) → Ki(R ⊗ Q)

)
. Note that L

Oi
n (R) =

L
Ki+1
n (R), so there is a Ranicki–Rothenberg sequence relating LOi → LOi−1 with relative

term H∗(Ki(R)). For group rings AG and i = 1, we define

Y1(AG) = X1(AG) ⊕ {±Gab}

where Gab denotes the set of elements in the abelianization of G. If i ≤ 0 then we define
Yi(AG) = Xi(AG). For higher L–theory (i ≥ 2) it seems that the right definition of
Yi(AG) would be the image of the assembly map in K–theory.

Fortunately, the passage between round and geometric L–theory is very uniform
so the round results suffice. Given a geometric antistructure and any invariant sub-
group Ũ ⊂ K̃i(ZG), let U ⊂ Ki(ZG) denote the inverse image. There is a natural

map τU :LU∗ (ZG,α, u) → LŨ∗ (ZG,α, u) from the round to the geometric theory. For

subgroups of K̃0, τ is an isomorphism, and for U = Y1, the following sequence is exact
(see [30, 3.2]).

0 → LY1

2k(ZG,α, u)
τY1−−→L′

2k(ZG,α, u) → Z/2 → LY1

2k−1(ZG,α, u)
τY1−−→L′

2k−1(ZG,α, u) → 0.

The map into Z/2 is given by the rank (mod 2) of the underlying free module.
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Theorem 3.1: For any geometric antistructure, L
Y1

2k(ZG,α, u)
∼= L′

2k(ZG,α, u) and
L′

2k−1(ZG,α, u) is obtained from LY1

2k−1(ZG,α, u) by dividing out a single Z/2 sum-
mand.

The intermediate projective L–groups we can compute are the LY0
n (ZG) = LX0

n (ZG)
(denoted LX0

n (ZG) in [25, §3]) based on the subgroup X0(ZG). These are related to the
usual projective L–groups, Lp = LK0 , by the exact sequence [30, 3.2], [25, 3.8])

0 → L
X0

2k (ZG) → Lp2k(ZG) → Z/2 → L
X0

2k−1(ZG) → Lp2k−1(ZG) → 0 .

The map into Z/2 is given by the rank (mod 2) of the underlying projective module.

Theorem 3.2: For any geometric antistructure, LX0

2k (ZG,α, u) ∼= Lp2k(ZG,α, u) and
Lp2k−1(ZG,α, u) is obtained from LX0

2k−1(ZG,α, u) by dividing out a single Z/2 sum-
mand.

We now follow the procedure outlined in the first two sections to compute L
Yi
n ,

i = 0, 1 and then use Theorems 3.2 and 3.1 to compute Lp∗ or L′
∗.

4. The main exact sequence

Exact sequences for computing L–groups come from the arithmetic square [69],
[56, §6], where the basic form is

. . .→ LXi
n (R) → LXi

n (R̂) ⊕ LOi
n (S) → LOi

n (Ŝ) → L
Xi
n−1(R) → . . .

where R is a ring with antistructure, S = R ⊗ Q, R̂ = R ⊗ Ẑ and Ŝ = R̂ ⊗ Q. This
assumes that excision holds in algebraic L–theory, which is known for i ≤ 1.

Most of the difficulties involved in computing L
Yi
n (ZG,α, u) for a geometric anti-

structure concern the group L
Yi
n (Ẑ2G,α, u). We therefore reorganize the calculation by

considering the exact sequence

(4.1) . . .→ L
Yi
n+1(ZG→Ẑ2G)−−→LYi

n (ZG)−−→LYi
n (Ẑ2G)

ψn
−−→LYi

n (ZG→Ẑ2G) → . . .

valid for any antistructure. On the other hand, we have isomorphisms of relative groups

LYi
n (ZG→Ẑ2G) ∼= LXi

n (ZG→Ẑ2G)

so we are free to use the LXi relative groups for computation. By excision

(4.2) LXi
n (ZG→Ẑ2G) ∼= LOi

n (R̂odd ⊕ S → Ŝ),

where R̂odd is the product of the `–adic completions of R at all odd primes `.

We now introduce the groups

(4.3) CLOi
n (S) = LOi

n (S → SA)

where SA = Ŝ ⊕ (S ⊗ R) is the adelic completion of S. Let T = S ⊗ R. Then by the
arithmetic sequence and (4.2) we have a long exact sequence

(4.4) . . . CL
Oi
n+1(S) → L

Xi
n+1(ZG→Ẑ2G) → LOi

n (R̂odd ⊕ T )
γn
−−→CLOi

n (S) → . . .

valid for any geometric antistructure. This is the main exact sequence for computing
the relative groups, and then (4.1) is used to compute the absolute groups. It is a
major ingredient in Wall’s program that the groups CLOi

n (S) are actually computable
[68], although not finitely generated. In fact, they are elementary abelian 2–groups
depending only on the idèle class groups of the centre of S (see Tables 14.9–14.11).
This is a form of the Hasse principle for quadratic forms, and follows from the work of
Kneser on Galois cohomology.
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5. Dress induction and idempotents

The calculation of L–groups of finite groups can be reduced to calculating a limit
of L–groups for hyperelementary subgroups. This process is known as Dress induction.
More generally, Dress assumes that some Green ring, say G, acts on a Mackey functor
M. Write

δH
G

:
⊕

H∈H

G(H) → G(G)

for the sum of the induction maps.

Theorem 5.1: If there exists y ∈
⊕

H∈H G(H) such that δH
G

(y) = 1 ∈ G(G), then both
Amitsur complexes for M are contractible.

Remark: One writes the conclusion as M(G) = lim
←−

H

M(H) = lim
−→

H

M(H) where the

first limit made up of restrictions and the second of inductions. The result above follows
from [22, Prop.1.2, p.305] and the remark just above [23, Prop.1.3, p.190].

Dress also proves a local result which says the following about M(G). Fix a prime
p, let Hp denote the family of p–hyperelementary subgroups and let M(G)(p) denote
the p– localization of M(G). Then

(5.2) M(G)(p) = lim
←−

Hp

M(H)(p) = lim
−→

Hp

M(H)(p) .

By [69] the 2–localization map is an injection on L–groups of finite groups. To apply
these results to computation of L–groups, Dress defined a suitable Green ring (see also
[70]). For any commutative ring R, let y(G, θ,R) be the Grothendieck group of finitely–
generated, projective left R modules with an R bilinear form λ:M ×M → R which is
equivariant in that λ(m1, gm2) = λ(θ(g−1)m1,m2), symmetric in that λ(m2,m1) =
λ(b−1m1,m2), and non–singular in that the adjoint of λ is an isomorphism. Define
GU(G, θ,R) and GW (G, θ,R) by equating two forms with isomorphic Lagrangians or
moding out forms with a Lagrangian. Thomas [60] produces the necessary formulae to
check that GW (G, θ,R) acts on LPn (RG,α, b) where α is the antistructure associated
to any geometric antistructure θ, b, w where θ and b are fixed but w is allowed to vary
subject only to w ◦ θ = w. Dress proves generation results for the case θ = 1G which
yield

Theorem 5.3: For the standard geometric antistructures, the Lp–groups of finite
groups are computable from the family of 2–hyperelementary and p–elementary sub-
groups, p odd. The torsion in the Lp–groups and the Lp–groups localized at 2 are
computable from the family of 2–hyperelementary subgroups.

Remark 5.4: One can also show that the round groups LOi , LXi and LYi localized at
2 are 2–hyperelementary computable. This can be done either by refining the groups
GW or by studying the Ranicki–Rothenberg sequences.

Dress proves these results by studying the Burnside ring and its p–localizations. He
also constructed idempotents in the p–local Burnside ring and in [25, §6] and [46, §11]
these idempotents are combined with induction theory to do calculations. We discuss
the p–local case on a finite group G. Dress constructs one idempotent eE(G) in the
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p–local Burnside ring for each conjugacy class of cyclic subgroups of order prime to
p in G and shows that they are orthogonal. One can then split any p–local Mackey
functor, F , using these idempotents into pieces eE(G) ·F (G) plus a piece left over since
1G 6=

∑
E eE(G) in the p–local Burnside ring. If F (G) is generated by the images under

induction from the p–hyperelementary subgroups, then the leftover piece vanishes. The
additional result we want is Oliver’s identification of the pieces [46, 11.5, p.256]. Let F
be a p–local Mackey functor on G which is p–hyperelementary generated. In general
Oliver describes eE(G) · F (G) as a limit over subgroups H of the form E / H � P
where P is a p–group. He then makes the observation that the limit takes place inside
NG(E) so

eE(G) · F (G) = eE
(
NG(E)

)
· F

(
NG(E)

)
.

If one could compute conjugations, induction and restriction maps for index p–inclusions
of p–hyperelementary, then one could work out the limit in general. This makes 2–
hyperelementary groups especially important for L–theory.

The L–theory case has an additional feature: for general geometric antistructures,
the L–groups are not Mackey functors. The theory of “twisting diagrams”, [31] or [55],
can be used to overcome this difficulty.

Given an extension

G / Ĝ
φ

−→→ Z/2,

one can use φ to pull–back a non–trivial line bundle over a surgery problem with funda-
mental group Ĝ. This gives rise to a transfer map tr:Ln(ZĜ, wφ) → Ln+1(ZG→ ZĜ, w).

Selecting a generator t ∈ Ĝ − G gives rise to an automorphism θ of G given by conju-
gation by t. We assume that w extends over Ĝ with w(t) = 1. Setting b = t2 ∈ G gives
a geometric antistructure on G and there is a long exact sequence

· · · → Ln+2(ZG→ZĜ, w) → Ln(ZG,α, b) → Ln(ZĜ, wφ)
tr
−→ Ln+1(ZG→ZĜ, w) → · · ·

where α is the antistructure associated to θ, b and sφ. Conversely, any geometric
antistructure on G arises from such a procedure. The group Ln(ZĜ, λw) is a Mackey

functor and the relative group Ln+1(ZG→ ZĜ, w) sits in a long exact sequence where
the other two terms are Mackey functors. This allows one to produce decompositions
of Ln(ZG,α, b) mimicking the Mackey functor case even though Ln(ZG,α, b) has no
obvious Mackey functor structure.

The most important application of these decomposition techniques applies to the
2–hyperelementary case G = CoP , because here there is a further identification of the
eC(G) · F (G) with a twisted group ring of P . In principle, this reduces the calculation
to 2–groups where numerous simplifications occur. Wall [70, §4] was the first to explore
this decomposition. He produced the idempotent decomposition by hand but had to
restrict to groups with abelian 2–Sylow group. Hambleton–Madsen do the general case
using the Burnside ring idempotents, [25, §6].

If Cm is cyclic of odd–orderm, let ζm denote a primitivemth root of unity. Any d|m
determines a unique cyclic subgroup of odd order of G and we denote the corresponding
summand of our functor by F (G)(d). The map t:P → Aut(Cm) can be regarded as
a map t:P → Gal

(
Q(ζm)/Q

)
and we let Z[ζm]tP denote the corresponding twisted

group ring. Any geometric antistructure induces an antistructure on Z[ζm]tP which we
continue to denote by (α, u). The main exact sequence can be applied again.
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Theorem 5.5:([25, 6.13,7.2])For i = 0, 1 and G = Cm o P with any geometric anti-
structure, there is a natural splitting

LYi
n (ZG,α, u)(2) =

∑⊕{
LYi
n (ZG,α, u)(d) : d | m

}

(i) L
Yi
n (ZG,α, u)(1) ∼= L

Xi
n (ZP, α, u)(2) via the restriction map,

(ii) for d 6= 1, L
Yi
n (ZG,α, u)(d) ∼= L

Xi
n (ZG,α, u)(d),

(iii) L
Yi
n (ZG,α, u)(d) maps isomorphically under restriction to L

Yi
n (Z[CdoP ], α, u)(d),

(iv) for each d | m there is a long exact sequence

→ CL
Oi
n+1(S(d)) → LXi

n (ZG,α, u)(d) →
∏

`-d

LXi
n (R̂`(d)) ⊕ LOi

n (T (d)) → CLOi
n (S(d)) →

where R(d) is the twisted group ring Z[ζd]
tP with antistructure (α, u), and S(d) =

R(d) ⊗ Q, R̂`(d) = R(d) ⊗ Ẑ`, T (d) = R(d)⊗ R.

There are similar splittings and calculations for the relative L–groups and the 2–adic
L–groups.

For certain purposes, it is useful to be able to detect surgery obstructions. Dress’s
results for the standard antistructures say that we can detect by transfer to the collection
of 2–hyperelementary subgroups. In some cases we can also reduce from hyperelemen-
tary groups to a smaller collection, the basic groups. More explicitly [32, 3.A.6], a
2–hyperelementary group G = C o P is basic provided

P1 = ker
(
t:P → Aut(C)

)

is cyclic, dihedral, semi-dihedral or quaternion.
In [32, 1.A.4] we introduced the category RG–Morita, for any commutative ring

R. The category QG–Morita is defined as follows. The objects are subgroups, H ⊂ G,
and the morphisms from H1 to H2 are generated by the H2–H1 bisets X, modulo some
relations spelled out in [32, p.249-250]. From [32, 1.A.12(i), p.251], RQ(G) is a functor
on QG–Morita defined by sending a rational representation V of H1 to Q[X] ⊗QH1

V .
Note if V is a permutation module on the H1–set Y , then

Q[X] ⊗QH1
Q[Y ] = Q[X ×H1

Y ] .

We proved in [32, 1.A.9, p.251] that the morphisms in QG–Morita are generated by
generalized inductions and restrictions corresponding to homomorphisms f :G1 → G2

which are either injections (subgroups) or surjections (quotient groups). Let M be a
functor on QG–Morita.

Theorem 5.6:([32], 1.A.11, p.251)The sum of the generalized restriction maps,

M(G) →
⊕

B∈BG

M(B)

is a split injection where BG denotes the set of basic subquotients of G. The sum of the
generalized induction maps is a split surjection.
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This result has an analogue for quadratic Morita theory, and it applies to detect the
relative groups L

Xi
∗ (ZG→Ẑ2G)(d) for i = 0, 1 since these are functors out of (QG,−)–

Morita. To detect Lp∗(ZG,w) we need the w–basic subquotients of G, defined in [32].
Combining [32,1.B.7] with [32,6.2] gives:

Theorem 5.7:([28, Thm.A])Let G be a 2-hyperelementary group. Then the sum of all
the (generalized) restriction maps

Lpn(ZG,w) −→ Lpn(Z[G], w)⊕
∑

{Lpn(Z[H/N ], w) : H/N a w–basic subquotient of G}

is a natural (split) injection, where G = G/[P1, P1].

We remark that [28, Thm.B] lists specific invariants which detect all oriented Lp surgery
obstructions, and [28, 5.21] shows that the torsion subgroup of the Lp–groups has ex-
ponent 4 in general (exponent 2 in the standard oriented case).

6. Central simple algebras with involution

We collect here some terminology and results about the building blocks for our cal-
culations. These are the L–groups L

Oi
n (R,α, u) where (R,α, u) denotes an antistructure

over an algebra. When the cases i = 0, 1 are being considered separately, we will use
Wall’s notation LS = LO1 and LK = LO0 .

First we summarize some of the standard facts about quadratic forms on simple
algebras with centre field continuous, local (of characteristic 0), and finite. For our
purposes, the main references are [64] and [68]. Since we are only interested in the
applications to surgery theory, we will restrict ourselves to the simple algebras which
arise from the rational group rings of finite groups. This assumption will simplify the
arguments at various points. More precisely, if D denotes such a skew field with centre
E, and A ⊆ E the ring of integers, then E is an abelian extension of Q . We fix an odd
integer d such that D̂` is split, and E` is an unramified extension of Q̂` for all finite
primes ` with `-2d. We also assume that D has “uniformly distributed invariants”: the
Schur indices of D at all primes ` ∈ E over a fixed rational prime are equal, and the
Hasse invariants are Galois conjugate. This holds for the algebras arising from group
rings by the Benard-Schacher Theorem [72, Th. 6.1].

In addition to listing the values of the groups, we mention explicit invariants (such
as signature and discriminant) used to detect them. From these facts we can compute
the CL

Oi
n and prepare for the computation of the maps γi. The LS to LK Rothenberg

sequences are tabulated in Tables 14.1–14.8.

If (D,α, u) denotes an antistructure on a division algebra with centre E (and A ⊆ E the
ring of integers), then we distinguish as usual types U , Sp and O (see [70, §1.2]). We
further subdivide into types OK if D = E , type OD if D 6= E and similarly for type
Sp. If an involution-invariant factor is the product of two simple rings interchanged by
the involution, this is type GL. Such factors make no contribution to L-theory. When
the anti-structure is understood, we will say “D has type ...” for short. Recall that
LKn (D,α,−u) = LKn+2(D,α, u) and types O and Sp are interchanged, so we usually just
list type O.

(6.1) Continuous Fields: For continuous fields (E = R or C) the signature gives an
explicit isomorphism of LK0 (C, c, 1), LK2 (C, c, 1), LK0 (R, 1, 1) and LK0 (H, c, 1) onto 2Z
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(the types are U , U , O and Sp); in all these cases except for (H, c, 1) the discriminant
map LK0 (E) → H0(E×) is onto. Indeed the groups Hn(K1(H)) = 0 so LSn(H, c, 1) =
LKn (H, c, 1). The discriminant also gives an isomorphism for LK1 (R, 1, 1) = Z/2 and
LK1 (C, 1, 1) = Z/2. The other LK–groups are zero. In the final calculation we wish to
keep track of the divisibility of the signatures. The notation 2Z stands for an infinite
cyclic group of signatures taking on any even value.

(6.2) Local Fields: Over local fields (of characteristic 0), in type U : LK
2n(D) ∼=

H0(E×) = Z/2 via the discriminant and LK
2n+1(D) = 0. In type OD, LK0 (D) ∼= H0(E×)

and the others are zero. In type OK, LK
1 (E) ∼= H1(E×) = Z/2 by the discriminant

and LK
0 (E) is an extension of H0(E×) by Z/2, while LK

2 (E) = LK
3 (E) = 0. The natural

map LS
1(E) → LK

1 (E) is zero.

(6.3) Finite Fields: For finite fields in type U , LS
n = LK

n = 0, and in type O charac-
teristic 2, LS

n = LK
n = Z/2 for each n . For type O odd characteristic, the discriminant

gives isomorphisms LK
0
∼= Z/2 , LK

1 = Z/2 and LK
2 = LK

3 = 0 . The groups LS
n = 0 for

n = 0, 3 and LS
1 = LS

2 = Z/2. The map LS
1 → LK

1 is zero.

7. Computation of the relative group, L
Xi
n (ZG→Ẑ2G)

We can now compute the map

γOi
n (d):LOi

n (R̂odd(d) ⊕ T (d)) −→ CLOi
n (S(d))

from (4.4) for each involution-invariant factor of S(d). The main result about the
relative groups is:

Theorem 7.1: For 2–hyperelementary groups G and any geometric antistructure,
there is an isomorphism

LXi
n (ZG→Ẑ2G)(d) ∼= cok γOi

n (d) ⊕ ker γ
Oi
n−1(d)

and each of the summands decomposes according to the types of the simple components
of QG.

Each simple component of QG is a matrix algebra over a skew field, and by Morita
equivalence it suffices to study γn for an antistructure (D,α, u) on a skew field D. Its
centre E is an abelian extension of Q with ring of integers A ⊆ E . We fix an odd
integer d such that D̂` is split, and E` is an unramified extension of Q̂` for all finite
primes ` with `-2d. Tables 14.12-14.14 (for i = 1) and Tables 14.16-14.22 (for i = 0) list
the domain, range, kernel and cokernel of each summand of γ

Oi
n (d).

In order to use the tables, it is necessary to determine the types (O, Sp, U or
GL) and centre fields for all the rational representations of G = Z/d o P , following
the method given in [27, p.148], or [31, Appendix I]. Recall that for a simple factor of
type Sp, the groups cok γn and ker γn are equal to cok γn+2 and ker γn+2 respectively.
For the d–component we need to consider only those representations which are faithful
on Z/d. Here is a list of the possible types, subdivided according to the behaviour at
infinite primes.

Type O:

OK(R) if D = E and E has a real embedding,
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OK(C) if D = E and E has no real embedding.

OD(H) if D 6= E and D is nonsplit at infinite primes,
OD(R) if D 6= E is split at infinite primes and E has a real embedding,
OD(C) if D 6= E is split at infinite primes and E has no real embedding.

Type U :

U(C) if D∞ has type U ,
U(GL) if D∞ has type GL.

We remark that in type U(C) the centre field of D∞ at each infinite place is the complex
numbers with complex conjugation as the induced involution. Type U(GL) algebras
are isomorphic to matrix rings over C × C or R × R, at each infinite place, with the
induced involution interchanging the two factors of C or R.

In the remainder of this section we give a brief discussion of the computation in
the case i = 0, including the definition of the maps Φ, Φ′, the group Γ(E), and related
notation (see [28] or [37] for more details).

First we consider type U where H0(C(E)) = Z/2 lies in the sequence

0 → H0(E×) → H0(E×
A ) → H0(C(E)) → 0.

At finite primes LK
n (Â`) = LK

n (Â`/Rad) = 0 , since the right-hand side is the sum of LK-
groups of finite fields. At the infinite places we have the signature group LK

2n(D∞). This
is non-zero when D∞ remains type U (a change to type GL is possible) and the fixed
field E0 ⊆ E of the involution is real. In type U(C), each factor 2Z maps surjectively
to H0(C(E)) = Z/2 so cok γ2n = 0 and ker γ2n = Σ, where Σ is a subgroup of index 2
in a direct sum of factors 2Z, one for each complex place.

Next we consider type O. It is convenient to introduce the “discriminant part” γ̃n
of γn for a factor (D,α, u) = (E, 1, 1) of type OK to fit into the following commutative
diagram:

(7.2)

∏
`-2d

LKn (Â`) × LKn (E∞)
γn
−−→ CLKn (E)

y
y

Hn(Â×2d′) ×Hn(E×
∞)

γ̃n
−−→ Hn(C(E))

where Â×2d′ =
∏
`-2d

Â×
` . Below we will also use the notation Â×2d =

∏
`|2d

Â×
` . Since γ̃n has

the same kernel and cokernel as the map

Hn(Â×2d′) ×Hn(E×∞) ×Hn(E×) −→ Hn(E×A) ,

we are led to consider the following commutative diagram (for n = 0):

(7.3)

0 → ker γ̃0 → H0(Â×2d′) ×H0(E×∞) ×H0(E×) → H0(Ê×
A ) → cok γ̃0 → 0y y ‖

y
0 → E(2)/E×2 → H0(Â×) ×H0(E×∞) ×H0(E×) → H0(Ê×

A ) → H0(Γ(E)) → 0y y
H0(Â×2d) H0(Â×2d)
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Let E(2) denotes the elements of E with even valuation at all finite primes and Γ(E) is
the ideal class groups defined by

1 → E×/A× → Ê×/Â× → Γ(E) → 1 .

To obtain the middle sequence, add H0(Â×2d) to the domain of γ̃0, then the map to

H0(E×A) has the same kernel and cokernel as H0(Ê×) → H0(I(E)) where I(E) =

Ê×/Â× is the ideal group of E .

From (7.3) we obtain the following exact sequence

(7.4) 0 → ker γ̃0 → E(2)/E×2 Φ/
−−→H0(Â×2d) → cok γ̃0 → H0(Γ(E)) → 0

for the computation of γ̃0 in type OK. In type OD(H) when (D,α, u) is non-split at
all infinite primes, the term H0(E×∞) is missing from the top row of 7.3. This produces
instead:

(7.5) 0 → ker γ̃0 → E(2)/E×2 Φ′
−→H0(Â×2d) ⊕H0(E×∞) → cok γ̃0 → H0(Γ(E)) → 0

For the map γ̃1 in type OK a similar but easier analysis gives ker γ̃1 = 0 and an exact
sequence

(7.6) 0 → H1(A×) → H1(Â×
2d) → cok γ̃1 → 0.

In type OD, nonsplit at infinite primes, H1(E×
∞) is added to the middle term.

The maps Φ and Φ′ occur in number theory, and the 2–ranks of their kernel and
cokernels are determined by classical invariants of E (see [70, 4.6]). A similar discussion
can be carried out for the maps γO1(d), and it turns out that the same maps Φ, Φ′ appear
in the calculation.

Proposition 7.7:([28, 2.18])
(i) The 2-rank of ker ΦE (resp. ker Φ

′

E) is γ∗(E, 2d) (resp. γ(E, 2d) ).

(ii) The 2-rank of cokΦE (resp cok Φ
′

E) is g2d(E)+r2+γ
∗(E, 2d))−γ(E) (resp. g2d(E)+

r1 + γ(E, 2d))− γ(E)).
Here γ(E,m) (γ∗(E,m)) denotes the 2–rank of the (strict) class group of A[ 1

m ], gm(E)
is the number of primes in E which divide m and r1 (r2) is the number of real (complex)
places of E.

Example 7.8: If Γ(E) has odd order then the exact sequence

0 → H0(A×) → E(2)/E×2 → H1(Γ(E)) → 0

gives an isomorphism H0(A×) ∼= E(2)/E×2. Then the map Φ is just the reduction map
H0(A×) → H0(Â×2d). For example, if E ⊆ Q(ζ2k) and d = 1, then ker Φ = 0 and
cokΦ = (Z/2)r2+1.
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8. The 2–adic calculation, L
Yi
n (Ẑ2G)

We want to state the main result of [27, 1.16] which which computes the map

(8.1) Ψn : LK

n (Ẑ2G,α, u) → LK

n (Q̂2G,α, u)

for G = CoP a 2–hyperelementary group with a geometric antistructure (α, u) with
K = O0. This map appears in the calculation of the ψ maps in the next section as
well as in the Ranicki–Rothenberg sequence for computing L

Yi
n (Ẑ2G,α, u). Since Ψn

splits as in (5.5), it is enough to give the answer for the d-component for each d | |C|
which we know is determined by the top component for the various G = Cd o P . If
T ∈ C denotes a generator, then θ induces an automorphism of C given by θ(T ) = T ϑ

(there is a misprint in the formula in [27, p.148,line-9]). The domain of Ψn is easy to
compute:

Theorem 8.2:

LY0
n (Ẑ2G)(d) = LK

n (Ẑ2G)(d) = g2(d) · (Z/2)

where g2(d) = g2
(
Q(ζd)

P
)

denotes the number of primes ` dividing 2 in the field Q(ζd)
P ,

where P acts as Galois automorphisms via the action map t.

Recall that if P1 = ker (t:P → (Cd)
×), then any irreducible complex character of

G which is faithful on Cd is induced up from χ ⊗ ξ on Z/d × P1 where χ is a linear
character of Z/d and ξ is an irreducible character of P1. These are the representations
in the semi–simple algebra S(d). They are divided as usual into the types O, Sp and
U , and we say that the order of a linear character ξ is the order of its image ξ(P1). Let
S(d, ξ) denote the simple factor of S(d) associated to an involution-invariant character
(χ⊗ ξ)∗, induced up from χ⊗ ξ.

Theorem 8.3: ([27, 1.16]) Let (α, u) be a geometric antistructure. If d > 1 and there

is no element g0 ∈ P satisfying t(g0) = −ϑ−1, then LK
n (R̂2(d), α, u) = 0. Otherwise if

d > 1 pick such a g0 (or when d = 1 set g0 = e), and let m = n if w(g0) = 1 (resp.
m = n+2 if w(g0) = −1). For each irreducible complex character ξ of P1 the composite

LK

n (R̂2(d), α, u)
Ψn(d)
−−−−→LK

n (Ŝ2(d), α, u)
proj.
−−−→LK

n (Ŝ2(d, ξ), α, u)

is injective or zero and detected by the discriminant. It is injective if and only if the
character ξ is
(a) linear type O (and m ≡ 0 or 1 (mod 4))
(b) linear type Sp (and m ≡ 2 or 3 (mod 4))

(c) linear type U (and m even), order 2` and ξ(b2
`−1

0 ) = −1.

Here the types refer to the antistructure (Q̂2[P1], α0, b0), with α0(a) = g0α(a)g−1
0 and

b0 = g0α(g−1
0 )bw(g0) ∈ ±P1.

Remark: A type I linear character ξ has type O (resp. Sp) if ξ(b0) = 1 (resp.
ξ(b0) = −1). If P1 has a linear character ξ of type 8.3(c), then (by projecting onto the
Z/2 quotient of ξ(P1)) it also has linear characters of type O and Sp.

Corollary 8.4: For X = O1(R̂2) or X = X1(R̂2), the discriminant map

dK/X

n :LK

n (R̂2(d), α, b) → Hn(K1(R̂2(d))/X)
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is injective or zero. For X = X1(R̂2), it is injective if m ≡ 0, 1 (mod4), or if m ≡
2, 3 (mod 4) and there exists a linear character ξ with type Sp.

Remark 8.5: The first statement in Corollary 8.4 holds for any decoration subgroup
X(R̂2) that decomposes completely over the primes ` | d in Q[ζd]

P , but O1 and X1

are the usual examples. If m ≡ 2, 3 (mod 4) and under certain assumptions, this con-
dition is also known to be necessary for the discriminant maps dK

n to be non–zero (see
[37, 3.14]). In either case (X = O1 or X1), when dn = 0 the kernel ker dn ∼= g2 · Z/2

can be lifted to a direct summand of LS
n(Ẑ2G) or LX1

n (Ẑ2G) isomorphic to (Z/4)κ if n
is odd, and to (Z/2)κ if n is even. A basis for these summands is represented by flips
or rank 2 quadratic forms with Arf invariant one at primes ` | 2 in Q[ζd]

P .

It is not hard to check that these flips and Arf invariant one planes in LX1
n (Ẑ2G)

map to zero under
ΨX1
n (d):LX1

n (Ẑ2G) → LS

n(Q̂2G) ,

so the computation of ΨX1
n (d) is reduced to the map

Hn+1(K1(R̂2(d))/X1) → Hn+1(K1(Ŝ2(d))) ,

which only involves K–theory.

When the discriminant map intoHn(K1(Ŝ2(d, ξ))) is injective, its image inHn(Â×
` )

for ` | 2 is either 〈1 − 4β〉 if n = 0, 2, or 〈−1〉 if n = 1, 3. The element β ∈ Â×
` is a unit

whose residue class has non–zero trace in F2. This description allows us to identify the
image of the discriminant in Hn(K1(R̂2(d))) once the Tate cohomology group has been

calculated, and thus compute LX1
∗ (Ẑ2G).

Example 8.6: Consider the simplest case, where G = 1. Then K1(Ẑ2) = Ẑ×2 is

generated by the units 〈5,−1〉. Therefore Hn(K1(Ẑ2)) = Z/2 ⊕ Z/2 (n even) or Z/2

(n odd), and LK
n (Ẑ2) = Z/2 in each dimension. In particular, the element 1− 4β = 5 is

the discriminant of the generator in LK
0 (Ẑ2).

By the results above, we get

LS

n(Ẑ2) = 0, Z/2 ⊕ Z/2, Z/2 ⊕ Z/2, Z/4 for n ≡ 0, 1, 2, 3 (mod 4) .

The Z/4 in L3 is generated by the flip automorphism τ(e) = f , τ(f) = −e of the

hyperbolic plane over (Ẑ2, 1,−1). Since X1(Ẑ2) = 0, we also have computed LX1
∗ (Ẑ2) =

LS
∗(Ẑ2).

9. The maps ψ
Yi
n :L

Yi
n (Ẑ2G) → L

Xi
n (ZG→Ẑ2G)

The final step in computing the main exact sequence is to determine the maps ψn
for 2–hyperelementary groups. First we consider the case i = 0 needed for computing
the Lp–groups:

ψn(d) : LK

n (Ẑ2G)(d) −→ LX0
n (ZG→Ẑ2G)(d) .

Here ψn factors through

ψ̄n:L
K

n (Ẑ2G)
Ψn−−→LK

n (Q̂2G) → CLK

n (QG) → cok γK

n
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and after taking the d–component these can be studied one simple component of QG at
a time. The maps Ψn(d) are given in Theorem 8.3, and the other maps in the composite
are contained in Tables 14.16–14.22.

Computing ψ̄n(d) also computes the kernel and cokernel of ψn(d) since kerψn(d) =
ker ψ̄n(d), and cokψn(d) ∼= cok ψ̄n(d) ⊕ ker γn−1(d).

Example 9.1: We continue with the example G = 1 from the last section. The group
cok γ0 = Z/2 generated by the class 〈5〉 ∈ H0(K1(Ẑ2)) (see Example 7.8) and otherwise
is zero. It follows that the map ψ̄0 is an isomorphism, and we get the values

LX0
n (Z, 1, 1) = 8Z, Z/2, Z/2, Z/2 for n ≡ 0, 1, 2, 3 (mod 4) .

To obtain the geometric Lp–groups, we cancel the terms Z/2 in odd dimensions. Note
that since K̃0(Z) = 0 = Wh(Z), the other geometric L–groups are isomorphic to Lp∗(Z).

The calculation of the maps ψn:L
Y1
n (Ẑ2G) → LY1

n (ZG→Ẑ2G) needed to determine
the L′–groups is more involved. Notice, however, that by Theorem 5.6 it is enough in
principle to do the calculation for basic subquotients of G and then compute some gener-
alized restriction maps. Because of the difficulties involved computing restriction maps
on LY1

∗ (Ẑ2G) this approach remains more a theoretical simplification than a practical
one.

We can again define ψ̄n as the composite

ψ̄n:L
X1
n (Ẑ2G)

Ψn−−→LS

n(Q̂2G) → CLS

n(QG) → cok γS

n

but this time we only have a commutative diagram

Hn+1(K1(Ẑ2G)/X1) → L
X1
n (Ẑ2G)

ψ̄n
−−→ cok γS

n

↓ ↓ ↓
Hn+1(K1(Ẑ2G)/Y1) → LY1

n (Ẑ2G)
ψn
−−→ L

Xi
n (ZG→Ẑ2G)

where the right–hand vertical arrow is a (split) injection. Note that the quotient group

K1(Ẑ2G)/Y1 = Wh′(Ẑ2G), which has been studied intensively in [46], [47]. Applying
the idempotent splitting partly solves the problem: on the d–component for d > 1
the groups LY1

n (Ẑ2G)(d) ∼= LX1
n (Ẑ2G)(d), and in Remark 8.5 we pointed out that the

calculation of ψ̄n(d) is now reduced to K–theory.

For d = 1 we may assume that G is a finite 2–group. Then LK
n (Ẑ2G) = Z/2 and

the map ψn also factors through cok γS
n
∼= cok γ

Y1
n . (both assertions follow because there

is just one prime ` | 2 in the centre fields of QG). We may assume that ψ̄n is known
from Theorem 8.3.

To proceed, we first compute LY1
n (Ẑ2G) via the discriminant map d

K/Y1
n :LY1

n (Ẑ2G) →

Hn(Wh′(Ẑ2G)), either directly (starting with the known map d
K/X1
n ), or using the long

exact sequence

. . .→ Hn+1({±1}⊕Gab) → LX1
n (Ẑ2G) → LY1

n (Ẑ2G) → Hn({±1}⊕Gab) → . . .

It is quite likely that the “twisting diagram” method introduced in [24] and [31] would
be useful here.
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Next, we must compute ψn. One remark that may be helpful is that the the image
of Hn+1({±1}⊕Gab) in LX1

n (Ẑ2G) is mapped by Ψn into integral units, hence mapped to

zero under ψ̄n. Hence, if LX1
n (Ẑ2G) → LY1

n (Ẑ2G) happens to be surjective, we are done.

An alternate approach is to apply Remark 8.5 (valid for Y1(Ẑ2G) if G is a finite

2–group) to the LY1 to LK Rothenberg sequence for Ẑ2G. As before, this reduces the
computation of ψn to K–theory calculation. We can compute the composite

Hn+1(K1(Ẑ2G)/Y1) → Hn+1(K1(Q̂2G)/Y1) → CLS

n(QG)

using the algorithm from [46], [47] for computing Wh′(Ẑ2G). For a general geomet-
ric antistructure, this can involve a lot of book–keeping. For the standard oriented
antistructure, things are not so difficult.

Example 9.2: For the standard oriented antistructure, we can always split off Ln(Z)

from Ln(ZG) or Ln(Ẑ2G) by using the inclusion and projection 1 → G→ 1.
If G is a finite 2–group, then

LK

n (Ẑ2G) ∼= LK

n (Ẑ2G/Rad) ∼= LK

n (F2)

so the image of LY1
n (Ẑ2G) → CLS

n(QG) is just the image of the composite

Hn+1(K1(Ẑ2G)/Y1) → Hn+1(K1(Q̂2G)/Y1) → LY1
n (Q̂2G) → CLS

n(QG) .

This directly reduces the calculation of ψn to a K1–calculation.

10. Groups of odd order

We prove a well–known vanishing result, as an example of the techniques developed
so far.

Theorem 10.1: Let G be a finite group of odd order. Then in the standard oriented
antistructure, L?

2k+1(ZG) = 0 for ? = s, ′, h and p.

Proof : For groups of odd order, the 2–hyperelementary subgroups are cyclic, so it is
enough to let G = Cm denote a cyclic group of odd order m. We have a decomposition
into components L

Yi
∗ (ZG)(d) indexed by the divisors d | m, and there are two distinct

cases according as d = 1 or d 6= 1.
Let’s start with i = 0 or Lp–groups. By Theorem 5.5, when d = 1 we are computing

Lp∗(Z) which was done in Example 9.1. For d > 1, all the summands in S(d) have type
U(C), so by Table 14.21 we have

LX0
n (ZG→Ẑ2G) = 0, Σ, 0, Σ for n ≡ 0, 1, 2, 3 (mod 4) .

Next LK
n (R̂2(d)) = 0, for all n, since R̂2(d) = Ẑ2 ⊗ Z[ζd] reduces modulo the radical to

a product of finite fields with type U antistructure. Therefore

Lpn(ZG)(d) = Σ, 0, Σ, 0 for n ≡ 0, 1, 2, 3 (mod 4)

and in particular the Lp–groups vanish in odd dimensions.
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Next we consider the d > 1 components in the main exact sequence for L
X1
∗ (ZG)(d).

Since type U factors of R̂odd or QG make no contribution to the relative L′–groups, we
have

LX1
n (ZG→Ẑ2G) = 0, Σ, 0, Σ for n ≡ 0, 1, 2, 3 (mod 4) .

as before. Now consider the 2–adic contribution. Here

Hn+1(K1(R̂2(d))/X1) ∼= LX1
n (R̂2(d))

and X1(R̂2(d)) = 0 since the ring is abelian, so K1 is just the group of units. Let

A = Ẑ2[ζd] and consider the sequences

1 → (1 + 2A)
×
→ A× → (A/2A)

×
→ 1

and

1 → (1 + 2r+1A)
×

→ (1 + 2rA)
× ϕ
−→A/2A→ 1

for r ≥ 1, where ϕ(1 + 2ra) = a (mod 2). Since (A/2A)
×

has odd order and A/2A =
F2[ζd] has non-trivial involution, both are cohomologically trivial as Z/2–modules.
Therefore H∗(A×) = 0 and

L′
n(ZG)(d) = Σ, 0, Σ, 0 for n ≡ 0, 1, 2, 3 (mod 4)

so once again the L–group vanish in odd dimensions. For G cyclic, SK1(ZG) = 0 and so
L′ = Ls. Also, H1(Wh′(ZG)) = 0 in the standard oriented antistucture, so L′

2k+1(ZG)

surjects onto Lh2k+1(ZG).

Remark 10.2: We don’t want to leave the impression that all the L–groups of odd
order groups G are easy to compute. For G cyclic of odd order, the groups Lh2k(ZG)

have torsion subgroup H0(K̃0(ZG)) and this can be highly non–trivial.

11. Groups of 2–power order

In [31] the groups Lp-groups for ZG were completely determined, for G a fi-
nite 2-group with any geometric anti-structure. For L′

∗(ZG) with the standard ori-
ented antistructure, there is in principle an algorithm for carrying out the computa-
tion. We have already discussed the steps in computing the main exact sequence (see
Example 9.2) and mentioned that results of Oliver give an algorithm for computing

K ′
1(Ẑ2G) = K1(Ẑ2G)/X1, together with the action of the antistructure, by using the

integral logarithm [46, Thm. 6.6]. Thus we can regard the L′–groups for 2–groups
as computable up to extensions, although the method can be difficult to carry out in
practice.

Example 11.1: Let’s compute L′
∗(ZG) for G a cyclic 2–group of order 2k ≥ 2 in

the standard oriented antistructure (done in [70, 3.3]). Since SK1(ZG) = 0, this also
gives us Ls∗(ZG). Note that Lp∗(ZG) is tabulated in [31], and Lh∗(ZG) was reduced
to the computation of H0(D(ZG)) in [29] or [2]. The final step, the computation of
H0(D(ZG)) was carried out independently in [47] and [12].
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We begin as usual with the relative groups, this time from Table 14.23 and Ta-
ble 14.15. The types are U(C) and OK(R), where the latter are the two quotient
representations arising from the projection G→ Z/2. We get

LX1
n (ZG→Ẑ2G) = 0, Σ ⊕ (8Z)2 ⊕ (Z/2)2, 0, Σ for n = 0, 1, 2, 3 (mod 4) .

Here Σ = ⊕ 4Z is the is the signature group from the type U(C) representations.

Next we compute LY1
n (Ẑ2G) by comparing it to LK

n (Ẑ2G). Since the antistructure

is oriented, we can split off LY1
n (Ẑ2) = LX1

n (Ẑ2) computed in Example 8.6, and obtain

LY1
n (Ẑ2G) = LX1

n (Ẑ2) ⊕Hn+1
(
(1 + I)

×
/G

)

where I = I(Ẑ2G) is the augmentation ideal of Ẑ2G. It is not hard to see that

Hn
(
(1 + I)

×
/G

)
= Z/2, 0 for n = 0, 1 (mod 2),

and a generator for the non–trivial element in H0 is given by 〈3 − g − g−1〉 where
g ∈ G is a generator. Since this element has projection 〈5〉 at the non–trivial type
OK(R) representation (where g 7→ −1), the map ψ̄1 has image Z/2 in this summand
of the relative group. This is an example of the “book–keeping” process mentioned in
Example 9.2. Putting the summand from the trivial group back in, we get the well–
known answer

L′
n(ZG) = Σ ⊕ 8Z ⊕ 8Z, 0, Σ ⊕ Z/2, Z/2 for n = 0, 1, 2, 3 (mod 4) .

12. Products with odd order groups

Here we correct an error in the statement of [28, 5.1] where G = σ × ρ with σ an
abelian 2–group and ρ odd order. More generally, for G = G1 × G2 where G1 has odd
order, we can reduce the calculation of L∗(ZG,w) to knowledge of L∗(ZG2, w) and the
character theory of G.

Proposition 12.1:Let G = G1 ×G2, where G1 has odd order. Then for i = 0, 1

LXi
n (ZG,w) = LXi

n (ZG2, w) ⊕ LXi
n (ZG2→ZG,w)

where w:G → {±1} is an orientation character. For n = 2k, the second summand is
free abelian and detected by signatures at the type U(C) representations of G which
are non–trivial on G1. For i = 0 and n = 2k + 1, the second summand is a direct sum
of Z/2’s, one for each type U(GL) representation of G which is non–trivial on ρ.

Remark 12.2: In the important special case when G2 is an abelian 2–group, note that
type U(C) representations of G exist only when w ≡ 1, and type U(GL) representations
of G exist only when w 6≡ 1. In both cases, the second summand is computed by transfer
to cyclic subquotients of order 2rq, q > 1 odd, with r ≥ 2. If G2 is a cyclic 2–group,
then Ls = L′ by [46, Ex.3,p.14].
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Proof : The given direct sum decomposition follows from the existence of a retraction
of the inclusion G2 → G compatible with w. It also follows that

L
Xi
n+1(ZG→Ẑ2G,w) ∼= L

Xi
n+1(ZG2→Ẑ2G2, w) ⊕ LXi

n (ZG2→ZG,w)

since the map induced by inclusion L
Xi
n (Ẑ2G2, w) → L

Xi
n (Ẑ2G,w) is an isomorphism

([37, 3.4] for i = 1).

The computation of the relative groups for Z → Ẑ2 can be read off from Table
14.22: for each centre field E of a type U(GL) representation, the contribution is
H0(C(E)) ∼= Z/2 if i ≡ 1 (mod 2).

The detection of Lpn(ZG→Ẑ2G,w) by cyclic subquotients is proved in [32, 1.B.7,
3.A.6, 3.B.2].

Corollary 12.3:Let G = C2rq, for q odd and r ≥ 2. If q = 1 assume that r ≥ 3.
Then the group

Lp2k−1(ZG,w)(q) =

r⊕

i=2

CLK2k(Ei)
∼= (Z/2)r−1

when w 6≡ 1, where the summand CLK2k(Ei) = H0(C(Ei)), 2 ≤ i ≤ r, corresponds to
the rational representation with centre field Ei = Q(ζ2iq).

13. Dihedral groups

Wall [70], Laitinen and Madsen [40], [37] did extensive computations for the L′–
groups of the groups G with periodic cohomology, because of the importance of these
computations for the spherical space form problem.

As a final, and much easier example, we will consider the dihedral groups G =
Cd o Z/2. These are the simplest kind of 2–hyperelementary groups which are not
2–elementary. Here the action map is injective, as a generator of the Z/2 quotient
group acts by inversion on Cd. We take the standard oriented antistructure. Note that
L′ = Ls for dihedral groups [46, p.15].

It is enough to do the d > 1 component, and we see that S(d) contains a single
type OK(R) representation with centre field E = Q(ζd + ζ−1

d ) and ring of integers A.
Let gp denote the number of primes in this field lying over the rational prime p. For
any integer d, let gd =

∑
{gp : p | m}.

For the Lp calculation, we have relative groups

LX0
n (ZG→Ẑ2G)(d) = cok γK

n ⊕ ker γK

n−1

which can be read off from Table 14.16. The groups LK
n (Ẑ2G) = g2 · (Z/2) in each

dimension and Ψn(d) is injective for n ≡ 0, 1 (mod 4) but zero for n ≡ 2, 3 (mod 4).
Since the image of Ψ1(d) hits the classes 〈−1〉 at primes lying over 2, it follows

that ψ̄1(d) is injective with cokernel H1(Â×
d )

/
H1(A×), an elementary abelian 2–group

of rank gd − 1.
Similarly, the image of Ψ0(d) hits the classes g2〈1 − 4β〉 in H0(Â×

2 ), so we must
compute the kernel and cokernel of the map

(13.1) Φ̄:E(2)/E×2 → H0(Â×2d)
/
g2(1 − 4β) .
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It is not hard to see that ker Φ̄ = kerΦ⊕ker ψ̄0(d) and cok Φ̄ = cok ψ̄0(d) (see [28, p.566]).
In the short exact sequences

0 → cok ψ̄n+1(d) ⊕ ker γn(d) → LX0
n (ZG)(d) → ker ψ̄n(d) → 0,

the only potential extension problem occurs for n = 0. Let λE = gd + γ∗(E, d). Then a
similar argument to that in [28, p. 551], together with [28, 5.19], shows that

Proposition 13.2: Let G = Cd o Z/2 be a dihedral group, with d > 1 odd. Then

Lp0(ZG)(d) = Σ ⊕ (Z/2)λE−1

Lp1(ZG)(d) = 0

Lp2(ZG)(d) = g2 · Z/2

Lp3(ZG)(d) = g2 · Z/2 ⊕ (Z/2)λE

Remark 13.3: The signature divisibility is given by

Σ = 8Z ⊕ (4Z)m−r̄E−1 ⊕ (2Z)r̄E

where r̄E is the 2–rank of the image of (Θ| ker Φ̄) as in [28, p.550] and m = φ(d)/2 is
the number of real places in E. The formula in [28, 5.17(ii)] is incorrect. It should read

(8Z)r(S) ⊕ (4Z)r1(S)−rO(S)−r(S) ⊕ (2Z)rO(S)

where r(S) denotes the number of type OK(R) factors in S(d), and r1(S), rO(S) are
as defined in [28]

For the L′ calculation, we have relative groups

LX1
n (ZG→Ẑ2G)(d) = cok γS

n ⊕ ker γS

n−1

which can be read off from Table 14.12. The groups LX1
n (Ẑ2G)(d) are computed from

the Rothenberg sequence using the same method as in Section 9. We have

LS

0(Ẑ2G)(d) =





0 n ≡ 0 (mod 4),

H0(Â×
2 ) n ≡ 1 (mod 4),

H1(Â×
2 ) ⊕ g2 · Z/2 n ≡ 2 (mod 4),

H0(Â×2 )

g2〈1−4β,−1〉 ⊕ g2 · Z/4 n ≡ 3 (mod 4),

where H0(Â×
2 ) has 2–rank m+ g2. The analogous number theoretic map to (13.1) is

Φ̃E :E(2)/E×2 → H0(Â×
d ) .

and the 2–ranks of its kernel and cokernel can again be given in terms of classical
invariants (see [70, p.56]). We then have the torsion subgroup of LX1

1 (ZG) isomorphic
to

ker ψ̄1 ⊕ cok ΦE ⊕ (gd − 1) · Z/2 ∼= ker Φ̃E ⊕ (gd − 1) · Z/2 .
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However, the exact sequence

0 → ker ΦE → ker Φ̃E → H0(Â×
2 ) → cok γ1 → cok Φ̃E → 0

allows us to compute the 2–rank of ker Φ̃E in terms of the 2–rank of cok Φ̃E and
previously defined quantities. Recall that γE denotes the 2–rank of H0(Γ(E)) and
m = φ(d)/2. It is also useful to define the quantity

φE = νE + γE

where cok Φ̃E = (Z/2)νE . Putting the information together gives:

Proposition 13.4: Let G = Cd o Z/2 be a dihedral group, with d > 1 odd. Then

L′
0(ZG)(d) = Σ ⊕ (Z/2)φE

L′
1(ZG)(d) = (Z/2)m+φE−1

L′
2(ZG)(d) = g2 · Z/2

L′
3(ZG)(d) = LS

3(Â2)(d) = g2 · Z/4 ⊕ (Z/2)m−g2

Remark 13.5: The signature divisibility this time is given by

Σ = 8Z ⊕ (4Z)m−1 .

These are the same divisibilities as in the relative group.

14. Appendix: Useful Tables

14.A L–groups of fields and skew fields

We give the LS to LK change of K–theory sequences for the antistructures (D,α, u)
where D is a (skew) field with center E, and E is either finite, continuous (R or C) or

local (a finite extension field of Q̂p).
From the tables below, one can read off invariants determining the L–groups in most

cases (e.g. discriminant, signature, and Pfaffian). The remaining cases are labelled c,
κ, and τ for the Arf invariant, Hasse-Witt invariant or flip respectively (τ in LS is

represented by the automorphism

(
0 1
u 0

)
of the hyperbolic plane). Note that LS–

groups are all zero for finite fields or local fields in type U , and that for a division
algebra D with centre E the group LK

1 (D,α, u) = 0 unless (D,α, u) = (E, 1, 1) and
LK

1 (E, 1, 1) = Z/2 detected by the discriminant.

Table 14.1: Finite fields, odd characteristic, Type O

LS
n(E, 1, 1) LK

n (E, 1, 1) Hn(E×)

n = 3 0 0 Z/2

n = 2 Z/2 0 Z/2

n = 1 Z/2 Z/2 Z/2

n = 0 0 Z/2 Z/2
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For finite fields in type U , both LS
n(E, 1, 1) = LK

n (E, 1, 1) = 0. In characteristic 2,
LS
n(E, 1, 1) = LK

n (E, 1, 1) = Z/2 in each dimension (detected by c in even dimensions,
and τ in odd dimensions)

Table 14.2: Local fields, Type OK

LS
n(E, 1, 1) LK

n (E, 1, 1) Hn(E×)

n = 3 0 0 Z/2

n = 2 Z/2 0 H0(E×)

n = 1 H0(E×) Z/2 Z/2

n = 0 Z/2 〈κ〉 Z/2×̃H0(E×) H0(E×)

The extension Z/2×̃H0(E×) appearing in this table is split if and only if −1 ∈ E×2.

Table 14.3: Local fields, Type OD

LS
n(D,α, 1) LK

n (D,α, 1) Hn(E×)

n = 3 0 0 Z/2

n = 2 Z/2 0 H0(E×)

n = 1 H0(E×) 0 Z/2

n = 0 Z/2 H0(E×) H0(E×)

In type OD we can always scale the antistructure so that it has u = +1. For local fields
in type U , we have two–fold periodicity LK

n (E, 1, 1) = LK
n+2(E, 1, 1).

Table 14.4: Local fields, Type U

LS
n(E, 1, 1) LK

n (E, 1, 1) Hn(E×)

n = 1, 3 0 0 0

n = 0, 2 0 Z/2 Z/2
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Table 14.5: Continuous Fields, E = R, Type O

LS
n(E, 1, 1) LK

n (E, 1, 1) Hn(E×)

n = 3 0 0 Z/2

n = 2 Z/2 0 Z/2

n = 1 Z/2 Z/2 Z/2

n = 0 4Z 2Z Z/2

Table 14.6: Continuous Fields, E = C, Type O

LS
n(E, 1, 1) LK

n (E, 1, 1) Hn(E×)

n = 3 0 0 Z/2

n = 2 Z/2 0 0

n = 1 0 Z/2 Z/2

n = 0 0 0 0

Table 14.7: Continuous Fields, E = C, Type U

LS
n(E, c, 1) LK

n (E, c, 1) Hn(E×)

n = 1, 3 0 0 0

n = 0, 2 4Z 2Z Z/2

Table 14.8: Continuous Fields, D = H, Type O

LS
n(D, c

′, 1) LK
n (D, c′, 1) Hn(E×)

n = 3 0 0 0

n = 2 2Z 2Z 0

n = 1 0 0 0

n = 0 0 0 0
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Here c′ denotes the type O involution on the quaternions H. Explicitly, it is given by
c′(i) = i, c′(j) = j and c′(k) = −k. For the usual (type Sp) involution c(i) = −i,
c(j) = −j, we have Ln(D, c, 1) = Ln+2(D, c

′, 1).

14.B The Hasse principle

We will need the groups CLOi
n (D,α, u) describing the kernel and cokernel of the

Hasse principle L
Oi
n (D,α, u) → L

Oi
n (DA, α, u). We will tabulate the associated change

of K–theory sequences

. . .→ CLS

n(D,α, u) → CLK

n (D,α, u) → Hn(C(E))
δ
−→CLS

n−1(D,α, u) → . . .

where C(D) ∼= C(E) = E×A/E
× is the idè le class group of the center field E in D.

The map δ is the coboundary map in the long exact sequence. There are short exact
sequences (n = 0, 1):

0 → Hn(E×) → Hn(E×A) → Hn(C(E)) → 0

and the maps are induced by the inclusions of fields.

Table 14.9:Type OK

CLS

n(E) CLK

n (E) Hn(C(E))

n = 3 0 0 H1(C(E))

n = 2 H1(C(E)) 0 H0(C(E))

n = 1 H0(C(E)) H1(C(E)) H1(C(E))

n = 0 Z/2 Z/2×̃H0(C(E)) H0(C(E))

The extension 0 → Z/2 → CLK

0 (D) → H0(C(E)) → 0 appearing in this table is split if
and only if −1 ∈ E×2.

Table 14.10:Type OD

CLS

n(E) CLK

n (E) Hn(C(E))

n = 3 0 0 H1(C(E))

n = 2 H1(C(E)) 0 H0(C(E))

n = 1 H0(C(E)) ker{δ:H1(C(E)) → Z/2} H1(C(E))

n = 0 Z/2 H0(C(E)) H0(C(E))
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Table 14.11:Type U

CLS

n(E) CLK

n (E) Hn(C(E))

n = 1, 3 0 0 0

n = 0, 2 0 Z/2 Z/2

14.C The relative groups LX1
n (ZG→Ẑ2G)

We now suppose that G is a 2–hyperelementary group and give the tables for calcu-
lating the relative groups LX1

n (ZG→Ẑ2G) and LX0
n (ZG→Ẑ2G). Recall that by excision

these split up according to the way QG splits into simple algebras with involution. Then
if G = C o P where C = Cd we can compute the d–component in terms of the map
γn defined earlier. In particular, a summand of γn(d) is determined by a single algebra
(D,α, u) with centre field E and ring of integers A ⊂ E. Restricted to this summand it
is the natural map

γn(d):
∏

`-2d

LS

n(Â`) × LS

n(E∞) −→ CLS

n(D)

and in the domain the terms

LS

n(Â`) = LS

n(Â`/Rad)

are just L–groups of finite fields. Thus all the terms in the domain and range are given in
the previous tables for fields. The maps γn(d) are also easy to relate to number theory.
In particular, note that mapping a term Hn(Â×2d′) or Hn(E×∞) to Hn(C(E)) is the map
induced by the inclusion into Hn(E×A) followed by the projection Hn(E×A) → Hn(C(E)).
The symbol Σ in the tables denotes a free abelian group of signatures at infinite primes.

Table 14.12: Type OK(R) or Type OD(R)

∏
`-2d

LS
n(Â`)×L

S
n(E∞) CLS

n(D) ker γS
n(d) cok γS

n(d)

n = 3 0 0 0 0

n = 2 H1(Â×2d′) ×H1(E×∞) H1(C(E)) 0 H1(Â×2d)
/
H1(A×)

n = 1 H0(Â×2d′) ×H0(E×∞) H0(C(E)) ker Φ cokΦ ⊕H0(Γ(E))

n = 0 0 ×⊕ 4Z Z/2 Σ 0
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Table 14.13: Type OK(C) or Type OD(C)

∏
`-2d

LS
n(Â`)×L

S
n(E∞) CLS

n(D) ker γS
n(d) cok γS

n(d)

n = 3 0 0 0 0

n = 2 H1(Â×2d′) ×H1(E×∞) H1(C(E)) 0 H1(Â×2d)
/
H1(A×)

n = 1 H0(Â×2d′) ×H0(E×∞) H0(C(E)) ker Φ cokΦ ⊕H0(Γ(E))

n = 0 0 × 0 Z/2 0 Z/2

Table 14.14: Type OD(H)

∏
`-2d

LS
n(Â`)×L

S
n(D∞) CLS

n(D) ker γS
n(d) cok γS

n(d)

n = 3 0 0 0 0

n = 2 H1(Â×2d′) ×⊕ 2Z H1(C(E)) Σ H1(Â×2d)
/
H1(A×)

n = 1 H0(Â×2d′) × 0 H0(C(E)) ker Φ′ cok Φ′ ⊕H0(Γ(E))

n = 0 0 × 0 Z/2 0 Z/2

Table 14.15: Type U

∏
`-2d

LS
n(Â`)×L

S
n(E∞) CLS

n(E) ker γS
n(d) cok γS

n(d)

n = 1, 3 0 0 0 0

n = 0, 2 0 ×⊕ 4Z 0 ⊕ 4Z 0

Since the LS–groups are all zero in type GL, this completes the LS–tables.
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14.D The relative groups L
X0
n (ZG→Ẑ2G)

We now give the relative group tables for the Lp–groups. Some additional notation
is defined as it appears.

Table 14.16: Type OK(R)

∏
`-2d

LK
n (Â`)×L

K
n (E∞) CLK

n (E) ker γK
n (d) cok γK

n (d)

n = 3 0 0 0 0

n = 2 0 0 0 0

n = 1 H1(Â×2d′) ×H1(E∞) H1(C(E)) 0 H1(Â×2d)
/
H1(A×)

n = 0 H0(Â×2d′) ×⊕ 2Z Z/2×̃H0(C(E)) Σ ⊕ ker Φ′ cokΦ ⊕H0(Γ(E))

Table 14.17: Type OD(R)

∏
`-2d

LK
n (Â`)×L

K
n (E∞) CLK

n (D) ker γK
n (d) cok γK

n (d)

n = 3 0 0 0 0

n = 2 0 0 0 0

n = 1 H1(Â×2d′) ×H1(E∞) ker δ 0 ker ∆′

n = 0 H0(Â×2d′) ×⊕ 2Z H0(C(E)) Σ ⊕ ker Φ′ cokΦ ⊕H0(Γ(E))

Here the map ∆′ is the map

∆′:
H1(Â×2d) ⊕H1(E×∞)

H1(A×)
−→ {±1}

defined by ∆′(〈−1〉`) = −1 if and only if D̂` is nonsplit.

Table 14.18: Type OK(C)

∏
`-2d

LK
n (Â`)×L

K
n (E∞) CLK

n (E) ker γK
n (d) cok γK

n (d)

n = 3 0 0 0 0

n = 2 0 0 0 0

n = 1 H1(Â×2d′) ×H1(E∞) H1(C(E)) 0 H1(Â×2d)
/
H1(A×)

n = 0 H0(Â×2d′) × 0 Z/2×̃H0(C(E)) ker Φ Z/2×̃(cokΦ ⊕H0(Γ(E)))
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Table 14.19: Type OD(C)

∏
`-2d

LK
n (Â`)×L

K
n (E∞) CLK

n (D) ker γK
n (d) cok γK

n (d)

n = 3 0 0 0 0

n = 2 0 0 0 0

n = 1 H1(Â×2d′) ×H1(E∞) ker δ 0 ker ∆

n = 0 H0(Â×2d′) × 0 H0(C(E)) ker Φ cokΦ ⊕H0(Γ(E))

The map ∆ has the same definition as ∆′ but H1(E×∞) is missing from the domain.

Table 14.20:Type OD(H)

∏
`-2d

LK
n (Â`)×L

K
n (D∞) CLK

n (D) ker γK
n (d) cok γK

n (d)

n = 3 0 0 0 0

n = 2 0 ×⊕2Z 0 Σ 0

n = 1 H1(Â×2d′) × 0 ker δ 0 ker ∆′

n = 0 H0(Â×2d′) × 0 H0(C(E)) ker Φ′ cokΦ′ ⊕H0(Γ(E))

Table 14.21:Type U(C)

∏
`-2d

LK
n (Â`)×L

K
n (D∞) CLK

n (D) ker γK
n (d) cok γK

n (d)

n = 1, 3 0 0 0 0

n = 0, 2 0 ×⊕ 2Z H0(C(E)) Σ 0

Table 14.22: Type U(GL)

∏
`-2d

LK
n (Â`)×L

K
n (D∞) CLK

n (D) ker γK
n (d) cok γK

n (d)

n = 1, 3 0 0 0 0

n = 0, 2 0 × 0 H0(C(E)) 0 Z/2
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14.E Finite 2–groups

Here complete calculations already appear in [31, §3, p.80]. To compare our results
with the tables there note that Γ(E) and Γ∗(E) have odd order (Weber’s Theorem) for
all the centre fields appearing in QG and g2(E) = 1 . Hence Φ and Φ′ are injective
with cok ΦE of 2-rank 1 + r2 (resp. cokΦ′

E of 2-rank 1 + r1). As above, the degree
[E,Q] = r1 + 2r2, where r1 denotes the number of real places of E and r2 the number
of complex places.

In [31] the basic antistructures on the simple components of QG are labelled ΓN ,
FN , RN , HN , UI and UII. These have type OK(C), OK(C), OK(R), OD(H), U(C)
and U(GL) respectively in our notation. In our tables, the distinction between ΓN
and FN is whether −1 ∈ E×2. Let ζN denote a primitive 2N th root of unity. The
centres E for the type O factors are Q(ζN+1), Q(ζN+2 − ζ−1

N+2), Q(ζN+2 + ζ−1
N+2),

Q(ζN + ζ−1
N ) so that (r1, r2) equals (0, 2N−1), (0, 2N−1), (2N , 0), (2N−2, 0) respectively.

Therefore using Tables 14.12–14.14 and 14.16–14.20 we can list the contribution of the
type O components to LX1

n (R→ R̂2) or LX0
n (R→ R̂2). The contributions from type U

components are already easily read off from Tables 14.15, 14.21 and 14.22 . Note that
only the rank and not the divisibilities in the signature groups are given in the tables.

Table 14.23: LX1
n (R→ R̂2) in Type O

O ΓN FN RN HN

n = 3 0 0 0 Zr1

n = 2 0 0 0 0

n = 1 (Z/2)r2+1 (Z/2)r2+1 Zr1 ⊕ Z/2 (Z/2)r1+1

n = 0 Z/2 Z/2 0 Z/2

Table 14.24: LX0
n (R→ R̂2) in Type O

O ΓN FN RN HN

n = 3 0 0 0 Zr1

n = 2 0 0 0 0

n = 1 0 0 Zr1 (Z/2)r1−1

n = 0 (Z/2)r2+2 Z/4 ⊕ (Z/2)r2 Z/2 (Z/2)r1+1

The divisibilities for Lp are determined in [28, 2.8] to be Σ = 8Z ⊕ (4Z)r1−1 in type
RN (for 2–power cyclotomic extensions E, the quantity rE = 0), and Σ = ⊕ 2Z in type
HN . Those for L′ are the same, by the Rothenberg sequence tables.
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Table 14.25: Hn(K1(R→ R̂2)) in Type O

O ΓN FN RN HN

n = 3 0 0 0 (Z/2)r1

n = 2 (Z/2)r2+1 (Z/2)r2+1 Z/2 (Z/2)r1+1

n = 1 0 0 0 (Z/2)r1

n = 0 (Z/2)r2+1 (Z/2)r2+1 Z/2 (Z/2)r1+1
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