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AN OBSTRUCTION TO POINCARE
TRANSVERSALITY

R.J. MILGRAM! AND I. HAMBLETON?®

In [3] an invariant A(X?", f) in Z/2 was defined for adouble cover 7: ¥ —» X of
2n-dimensional Poincaré duality (PD) spaces classified by a map f: X — RP?»,
If the homotopy class of the map f contains a representative which is Poincaré
transverse to RP2»1 = RP?[10], we say that 7 is Poincaré splittable. The invariant
A(X, f) depends only on the bordism class of (X, f) in .4"5P(RP=)and vanishes for
Poincaré splittable covers. In particular, it vanishes for double covers of PL-mani-
folds. The authors pointed out that from the map f: X - RP?", one can construct
another obstruction to the existence ol a Poincaré splittable double cover bordant
to (X, f). Let y2 - BG(g) be the universal (g — 1)-spherical fibration and §2* 1 —
RP?~1 the double cover (an SOfibration ). Then MG(g) A RP?* is the Thom
Space of 7 x » - BG(g) x RP?~' and a Pontrjagin-Thom construction givesa
map

p(f): S  MG(q) A RP?n,

If z: X - X is bordant to a Poincaré splittable cover then p(f) is homotopicto a
Poincaré transversal map. According to Jones [6], Levitt [7] or Quinn [10], there is
one obstruction Op(f) (in Z/2) to homotoping p(f) to a Poincarg transversal map.
In [3] the authors conjectured that 0p(f) = A(X, f) in all dimension 2n (n = 2), but
when [3] was written there were no known examples for which the invariant A(X, f)
was nonzero.

In this note, we construct examples (X2~ f) in all dimensions 2n = 4, for which
A(X?%" f) = 1, and outline the prool of the conjecture in dimension 4. This involves
using the fact that A(X, f) # O to obtain the exotic characteristic classes of the
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Spivak normal bundle to our basic example in dimension 4.

One can establish product formulas for 0p(f) as is done in [4] and for A(X, f) on
the basis of our results in §2, and both formulas have the same general shape.
Moreover, both Op(f) and A(X, f) vanish on im(A4"L (RP=))= AEP (RP~); hence,
writing A/ ZP(RP=)/im(A4"E-(RP~)) as a module over #/E-(RP™) we must evaluate
A(X, f) and 0(p(f)) on generators and show they agree in order to prove their
equality. According to Brumfie] and Morgan [4], the Pontrjagin-Thom map
NE(RP*) - 1 (RP= A MG) is an injection (+ # 2). The problem then is to con-
struct examples to realize enough exotic characleristic numbers. (One could begin
by obtaining those which appear in the cohomological formula [4] for the trans-
versality obstruction.) On the basis of the results of [2] and [7], this program seems
feasible but we have not yet attempted it.

The invariant A(X, f) is an Arf invariant based on a quadratic map q: H*(X; Z/2)
— Z/2 refining the nonsingular bilinear form I(a, b) = {(a |_ T*b, [X] ) where
a, be H"(X; Z/2) and T: X — X is the free involution. We prove that this map g
is the same as the Browder-Livesay map ¢ used in [1] to define a desuspension
obstruction for smooth involutions on homotopy spheres.

Our basicexample X4 in dimension 4 is the orbit space of a {ree simplicial involu-
tion on $% x S2. The other examples are obtained from this one by forming the
product with suitable smooth manifolds. In each case, the covering space is homo-
topy equivalent to a smooth manifold. We also indicate some generalizations of the
construction using the results of [9] on projective homotopy. We sketch some
proofs here; {ull details will appear elsewhere.

1. A quadratic map for double covers. In this section, we recall the definition of
the quadratic map ¢ and prove that it equals the Browder-Livesay map. All coho-
mology groups have Z/2 coeflicients and [X] denotes the fundamental class of a PD
space X.

Let 7: X - X be a double cover of 2n-dimensional PD spaces classified by
f: X > RP=. We denote the involution on X by 7 and the map covering f by
f:X > 8. Form §° x ;, (¥ x X) where Z/2 acts on X x X by interchanging the
factors and define F: X — S” x 5, (X x X) as the quotient of the equivariant
map F: ¥ - §= x (¥ x X) given by F(x) = (f(x), (x, Tx)). Now if a, isa cocycle
on X representing ¢ € H*(X) then | ® a; ® a. is an equivariant cocycle on
S= x (X x X) so represents a class @ € H2(S* x 5, (X x X)).

DEFINITION. g(a) = {F¥*(a), [X] ).

Let Y = S* x 5 Xanddefine A: ¥ —» S x 55 (X x X) by A[u, x] = [u, (x, Tx)].
If p: Y - X is given by o[u, x] = n(x), then p is a homotopy equivalence and
Fop ~ A We now describe a chain approximation for A. Suppose that T: X —» X
is a simplicial map such that 7o | ¢ = @ for all simplices ¢ € X and partially order
the simplices so that 7(a U, b) = Ta {J; Th where |J,; denotes the Steenrod cup-
sub-i-product. We give $* its usual equivariant cellular decomposition with cells
e; and Te, in each dimension. In the statement below, 4,: C,(X) - Cp (X x X)
is the jth Steenrod map [11] and 7: C(X x X) > CyX x X)is defined by 7(a ® b)
= b ® a. We recall the formulas

3.4, = (1 + T)Aj—] + A,B and A/ - T=(T® T)Aj-
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THEOREM 1. The map given by
e, ®@c)= 2 ¢,® (1 ® T)rid-(c)

0= /¢

and 2,(Te; ® ¢) = (T ® 7)A(e; ® Tc) is a chain approximation 10 A where ¢ €
Cy(X; Z/)2).

COROLLARY 2. For a € H(X),
={(ye ® (a. J; Ta,),
q(a) <lZ}____Oe (a; J; Tag), [Y] >

where a is a cocycle representing a, €' is dual to e; and p,[ Y] = [X].

With this explicit cochain formula, we can relate ¢ to the Browder-Livesay map
¢: HY(X) — Z/2. First, we summarize their definition [1].

Let x be a cocycle in C*(X; Z/2). Thensince x 01 Tx = 0,(1 + T)(x J,Tx) =
Osox U, ITx = (I + T)v'. Assuming that v/ are constructedfor0 < j < i <n
so that

x JTx +ovr 77t =(l 4+ Ty 7

n—j
they construct v**i*l satisfying a similar formula. The cochain v2* turns out to be
determined modulo §C>~Y(X; Z/2) + (I + T)C*(X; Z/2), and so the class
(I + T)v2» represents a cohomology class in H2%,(Cy(X); Z/2) = H?(X). Then
if a = {x} e H (X) they set ¢(a) = ({(1 + T)v2}, [X])>eZ/2.

THrorEM 3. For all ae HY(X), ¢(a) = q(a).

Proor. By construction, (1 + 7)v2» = x {, Tx + ov®~! where x is a cocycle
representing a. Set

n—1

vy = Z enr 1 ® pnte
0
and compute
oy = i}e‘@(x U TX> + e ® (1 + T)ven,

-0 12

Therefore,
0v = (e ® x ® x) + p*(l + T)v2»
SO
CAE® x ®x), [Y]) =2® (1 + Ty, [Y])

and the result follows.

2. A product formula. For the construction of the next section, we need to com-
putegon X x N -1 X x N where N2~ isa PD space of dimension 2m. Our main
applications are the cases N = CP2and N = RP2

THEOREM 4. Let X x N -1 X x N be the product covering andp + r = n + m.
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Let ae H¥X) and b e H'(N), then

qa®b)={ L F1®a®a) i/ u ®Sab) X N]>

sfilr
where u generates H'(RP~).

We now recall the definition of A(X, f). (f: X — RP” classifies 7: X - X.)
According to [1] or [3],

gla + b) — g(a) — q(b) = {a J Th,[X])

forall @, b € H*(X). The bilinear form defined by the formula on the right-hand side
is nonsingular and even, so there exists a symplectic base for H#(X) with respect to
this form. A(X, f)is the Arf invariant associated to any such base. From the defini-
tion of g we easily verify that A(X, f) depends only on the class of (X. f) in
A4 EP(RP~) and vanishes for double covers of PL-manifolds. More generally,

PrOPOSITION 5 [3]. If 7: X — X is a Poincaré splittable double cover of 2n-dimen-
sional PD spaces, then A(X, f) = Owhere f: X — RP~ classifies r.

Using the product formula, we establish

COROLLARY 6. If X x CP? »7“! X x CP? is the product covering, A(X x CP2, fp;)
= A(X, f) where p: X x CP? - X is the projection.

3. The examples. We will now describe the basic example in dimension 4. Itisa
PD spacc X* with fundamental group Z/2 and nonzero A-invariant,

The complex X* is among those constructed in [12. p. 240]. Let K3 be the 3-skele-
ton of RP?2 x S2 in a normal cell decomposition and note that K3~ Sz v §3 v
S3. We obtain X by attaching the 4-cell et by a different map than that used to get
RP? x S% To describc the map, we necd to denote generators of 7,52 7353 and
n3S? by I;, J and 7,, respectively, for i = 1, 2. Then, according to the Hilton-Milnor
theorem, z3K3 is gencrated by J, ny, 7, and [/}. Is]. The Z/2 action on these is given
by

T(J) =J - [11’ 12]5 T7]x = Y T[II’ 12] = - [115 12]

and the attaching map used to obtain RP2 x S? has class J. To construct X* we use
a map in the class J + »; where the notation is chosen so that S} is the sphere
covering RP? in (RP? x S?)® = K3. Since (1 — T)e! is then attached with class
[1;, I,]). X* ~ §2 x S2 Observe that X¢is nonorientable. In fact, there is no orient-
able cxample in dimension four.

This PD space has A(X4, f) = 1 where the map f- X — RP= induces the universal
covering z: X — X. To see this we nced to describe the generators of H%(X*). By
construction, X4 ~ (RPZ v S?) ! ¢8|, et. Let a denote the cohomology dual of
the class represented by the cover of RP? = RP? v $2 = X*, and b denote the dual
of the class represented by onc cover of S? = RP2 v S = X4 Then b =z*b for
some b e H2(X*). Since {a, b} forms a symplectic base, it is enough to show g(a) =

q(b) =
LeMMa 7. Let 7: X —» X be a double cover of 2n-dimensional PD spaces and
be H(X). Then
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ax*B) = { 5 (ruy U Said), [X1)
- 0
where u generates H(RP>).

From this lemma,

b = (S U Sy 1x1) = (a U B 1x]) = 1

where @ is dual to the class represented by RP?2 = X% To prove g(a) = | it is
necessary to compute a. |,; 7a; where a, is the obvious cochain representing a.
We omit the details.

One can generalize the construction of X* to higher dimensions in several ways.
Here is one direction. Let K»"! be the (n + 1)-skeleton of RP” x §” in a normal
cell decomposition. Since

. .
Tptl Kn:l = Tnel RP" ® T el S» @ ﬂnilsn l,

we can construct K7'2 by attaching an (n + 2)-cell to K»~! using a map representing
» + a where 9 € z,,,| RP~is the nontrivial element and a € 7,4, K»7! is the class of
the attaching map for the normal (n + 2)-skeleton of RP? x S».

PROPOSITION 8. If n = 2 (mod 4), then there exists a PD space X% with X ~
S* x St ;X = Z[2, X172 >~ Kn 2in a normal cell decomposition; and A(X,f) = 1.

The point here is thaty e z,.; RP” is a projective clement if and only if n = 2 (4)
(see [9]). Similarly, by using other projective elements in x,., RP” for k < n, one
can construct more examples. For n = 3, even though % is not projective, we can
obtain a PD space X6 with A(XS, ) = 1 by this construction. This is described in
[5].

4. Realization of the transversality obstruction. Our main result is

THEOREM 9. In each dimension 2n = 4 there exists a PD space X°* and a map
f: X2  RP> such that A(X?", f) = |, and X has the homotopy type of a smooth
manifold.

Proor. The method of proof is clear. The example X4 of §2 is crossed with
copies of CP? to obtain examples in dimensions = 0 (4). From Corollary 6, all
these PD spaces have nonzero A-invariant. In addition, we note that the above
examples X* provide examples X*~2 (k = 1). Consider X4 x RP2 - =<l X4 x RPZ.
By an argument similar to that of Corollary 6 we sce that A(X%* x RP2, fp;) = 1
and these give the cxamples in dimensions 4k + 2.

5. The Spivak normal bundle to X¢. Decfine an injection p: AEP (pt) —
A7EP (RP>) by o{ X"} = {X», w|} where w: X» - RP= classifies the first Stiefel-
Whitney class of X». We need the following

LemMMA 10 [3]. The Pontrjagin-Thom map A LP(RP*) - w«(RP* A MG) is an
injection, so every class in A"EP (RP®) is detected by characteristic numbers (x # 2).

Consider the class of {X4} in #%P(pt). We calculate that the Stiefel-Whitney
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class of X4 is | + e!. On the other hand, the fact given in §3 that A(X4, f) =1
together with the fact that p{X*} = (X4, f) shows that {X4} # 0 in A§P(pt). This
gives

COROLLARY 11. K3(X?%) # 0 and X* generates the cokernel of (A 'Fif(pt) —
N EP(pt)). (Since the only further characteristic classes in dimensions < 4 are Kj
and Sq' K5 [8].)

Letx: X4 -7 .83 (U, et —* B be the composition where 7 is the pinching map
and A satisfies A*(x3) # 0, A*(wy) = 0. If («) is the induced bundle we have that
the Spivak normal bundle of X* is the Whitney sum &; P («) where &, is the non-
trivial line bundle.

COROLLARY 12. In dimension 4, A(X, f) coincides with the stable transversality
obstruction of [4].

ProoF. The calculations of [4] show the stable transversality obstruction is given
by e, K3, and the result follows from Corollary 11.
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