AN OBSTRUCTION TO POINCARÉ TRANSVERSALITY

R. J. MILGRAM¹ AND I. HAMBLETON²

In [3] an invariant $A(X^{2n}, f)$ in $\mathbb{Z}/2$ was defined for a double cover $\pi \colon \tilde{X} \to X$ of 2n-dimensional Poincaré duality (PD) spaces classified by a map $f \colon X \to RP^{2n}$. If the homotopy class of the map f contains a representative which is Poincaré transverse to $RP^{2n-1} \subset RP^{2n}$ [10], we say that π is Poincaré splittable. The invariant A(X, f) depends only on the bordism class of (X, f) in $A^{*PD}_{2n}(RP^{\infty})$ and vanishes for Poincaré splittable covers. In particular, it vanishes for double covers of PL-manifolds. The authors pointed out that from the map $f \colon X \to RP^{2n}$, one can construct another obstruction to the existence of a Poincaré splittable double cover bordant to (X, f). Let $\gamma^q \to BG(q)$ be the universal (q-1)-spherical fibration and $S^{2n-1} \to RP^{2n-1}$ the double cover (an S^0 -fibration η). Then $MG(q) \wedge RP^{2n}$ is the Thom Space of $\gamma \times \eta \to BG(q) \times RP^{2n-1}$ and a Pontrjagin-Thom construction gives a map

$$p(f): S^{q-2n} \to MG(q) \wedge RP^{2n}$$
.

If $\pi: \bar{X} \to X$ is bordant to a Poincaré splittable cover then p(f) is homotopic to a Poincaré transversal map. According to Jones [6], Levitt [7] or Quinn [10], there is one obstruction $\theta p(f)$ (in $\mathbb{Z}/2$) to homotoping p(f) to a Poincaré transversal map. In [3] the authors conjectured that $\theta p(f) = A(X, f)$ in all dimension $2n (n \ge 2)$, but when [3] was written there were no known examples for which the invariant A(X, f) was nonzero.

In this note, we construct examples (X^{2n}, f) in all dimensions $2n \ge 4$, for which $A(X^{2n}, f) = 1$, and outline the proof of the conjecture in dimension 4. This involves using the fact that $A(X, f) \ne 0$ to obtain the exotic characteristic classes of the

AMS (MOS) subject classifications (1970). Primary 57B10: Secondary 55G99.

¹This research was supported in part by MPS 74-07491A01.

²Partially supported by the National Research Council of Canada.

Spivak normal bundle to our basic example in dimension 4.

One can establish product formulas for $\theta p(f)$ as is done in [4] and for A(X, f) on the basis of our results in §2, and both formulas have the same general shape. Moreover, both $\theta p(f)$ and A(X, f) vanish on $\operatorname{im}(\mathcal{N}_*^{\operatorname{PL}}(RP^{\infty})) \subset \mathcal{N}_*^{\operatorname{PD}}(RP^{\infty})$; hence, writing $\mathcal{N}_*^{\operatorname{PD}}(RP^{\infty})/\operatorname{im}(\mathcal{N}_*^{\operatorname{PL}}(RP^{\infty}))$ as a module over $\mathcal{N}_*^{\operatorname{PL}}(RP^{\infty})$ we must evaluate A(X, f) and $\theta(p(f))$ on generators and show they agree in order to prove their equality. According to Brumfiel and Morgan [4], the Pontrjagin-Thom map $\mathcal{N}_*^{\operatorname{PD}}(RP^{\infty}) \to \pi_*(RP^{\infty} \wedge MG)$ is an injection $(* \neq 2)$. The problem then is to construct examples to realize enough exotic characteristic numbers. (One could begin by obtaining those which appear in the cohomological formula [4] for the transversality obstruction.) On the basis of the results of [2] and [7], this program seems feasible but we have not yet attempted it.

The invariant A(X, f) is an Arf invariant based on a quadratic map $q: H^n(\tilde{X}; \mathbb{Z}/2) \to \mathbb{Z}/2$ refining the nonsingular bilinear form $l(a, b) = \langle a \cup T^*b, [\tilde{X}] \rangle$ where $a, b \in H^n(\tilde{X}; \mathbb{Z}/2)$ and $T: \tilde{X} \to \tilde{X}$ is the free involution. We prove that this map q is the same as the Browder-Livesay map φ used in [1] to define a desuspension obstruction for smooth involutions on homotopy spheres.

Our basic example X^4 in dimension 4 is the orbit space of a free simplicial involution on $S^2 \times S^2$. The other examples are obtained from this one by forming the product with suitable smooth manifolds. In each case, the covering space is homotopy equivalent to a smooth manifold. We also indicate some generalizations of the construction using the results of [9] on projective homotopy. We sketch some proofs here; full details will appear elsewhere.

1. A quadratic map for double covers. In this section, we recall the definition of the quadratic map q and prove that it equals the Browder-Livesay map. All cohomology groups have $\mathbb{Z}/2$ coefficients and [X] denotes the fundamental class of a PD space X.

Let $\pi \colon \tilde{X} \to X$ be a double cover of 2n-dimensional PD spaces classified by $f \colon X \to RP^{\infty}$. We denote the involution on \tilde{X} by T and the map covering f by $\tilde{f} \colon \tilde{X} \to S^{\infty}$. Form $S^{\infty} \times_{Z/2} (\tilde{X} \times \tilde{X})$ where Z/2 acts on $\tilde{X} \times \tilde{X}$ by interchanging the factors and define $F \colon X \to S^{\infty} \times_{Z/2} (\tilde{X} \times \tilde{X})$ as the quotient of the equivariant map $\tilde{F} \colon \tilde{X} \to S^{\infty} \times (\tilde{X} \times \tilde{X})$ given by $\tilde{F}(x) = (\tilde{f}(x), (x, Tx))$. Now if a_z is a cocycle on \tilde{X} representing $a \in H^n(\tilde{X})$ then $1 \otimes a_z \otimes a_z$ is an equivariant cocycle on $S^{\infty} \times (\tilde{X} \times \tilde{X})$ so represents a class $\alpha \in H^{2n}(S^{\infty} \times_{Z/2} (\tilde{X} \times \tilde{X}))$.

Definition. $q(a) = \langle F^*(\alpha), [X] \rangle$.

Let $Y = S^{\infty} \times_{Z/2} \tilde{X}$ and define $\lambda \colon Y \to S^{\infty} \times_{Z/2} (\tilde{X} \times \tilde{X})$ by $\lambda[u, x] = [u, (x, Tx)]$. If $\rho \colon Y \to X$ is given by $\rho[u, x] = \pi(x)$, then ρ is a homotopy equivalence and $F \circ \rho \simeq \lambda$. We now describe a chain approximation for λ . Suppose that $T \colon \bar{X} \to \tilde{X}$ is a simplicial map such that $T\sigma \cap \sigma = \emptyset$ for all simplices $\sigma \in X$ and partially order the simplices so that $T(a \cup_i b) = Ta \cup_i Tb$ where \bigcup_i denotes the Steenrod cupsub-i-product. We give S^{∞} its usual equivariant cellular decomposition with cells e_i and Te_i in each dimension. In the statement below, $\Delta_j \colon C_k(\tilde{X}) \to C_{k+j}(\tilde{X} \times \tilde{X})$ is the jth Steenrod map [11] and $\tau \colon C_k(\tilde{X} \times \tilde{X}) \to C_k(\tilde{X} \times \tilde{X})$ is defined by $\tau(a \otimes b) = b \otimes a$. We recall the formulas

$$\partial \Delta_j = (1 + \tau)\Delta_{j-1} + \Delta_j \partial$$
 and $\Delta_j \cdot T = (T \otimes T)\Delta_j$.

THEOREM I. The map given by

$$\lambda_{s}(e_{i} \otimes c) = \sum_{0 \leq j \leq i} e_{j} \otimes (1 \otimes T) \tau^{j} \Delta_{i-j}(c)$$

and $\lambda_s(Te_i \otimes c) = (T \otimes \tau)\lambda_s(e_i \otimes Tc)$ is a chain approximation to λ where $c \in C_k(\bar{X}; \mathbb{Z}/2)$.

COROLLARY 2. For $a \in H^n(\tilde{X})$,

$$q(a) = \left\langle \sum_{i=0}^{n} e^{i} \otimes (a_{\sharp} \cup_{i} Ta_{\sharp}), [Y] \right\rangle$$

where a_i is a cocycle representing a_i is dual to e_i and $\rho_*[Y] = [X]$.

With this explicit cochain formula, we can relate q to the Browder-Livesay map $\phi: H^n(\tilde{X}) \to \mathbb{Z}/2$. First, we summarize their definition [1].

Let x be a cocycle in $C^n(\tilde{X}; \mathbb{Z}/2)$. Then since $x \bigcup_{n+1} Tx = 0$, $(1 + T)(x \bigcup_n Tx) = 0$ so $x \bigcup_n Tx = (1 + T)v^n$. Assuming that v^{n+j} are constructed for $0 \le j \le i < n$ so that

$$x \bigcup_{n-j} Tx + \delta v^{n+j-1} = (1 + T)v^{n+j}$$

they construct v^{n+i+1} satisfying a similar formula. The cochain v^{2n} turns out to be determined modulo $\delta C^{2n-1}(\tilde{X}; Z/2) + (1 + T)C^{2n}(\tilde{X}; Z/2)$, and so the class $(1 + T)v^{2n}$ represents a cohomology class in $H_{Z/2}^{2n}(C_*(\tilde{X}); Z/2) \cong H^{2n}(X)$. Then if $a = \{x\} \in H^n(X)$ they set $\psi(a) = \langle \{(I + T)v^{2n}\}, [X] \rangle \in Z/2$.

THEOREM 3. For all $a \in H^n(\tilde{X})$, $\phi(a) = q(a)$.

PROOF. By construction, $(1 + T)v^{2n} = x \cup Tx + \delta v^{2n-1}$ where x is a cocycle representing a. Set

$$vv = \sum_{i=0}^{n-1} e^{n-i-1} \otimes v^{n+i}$$

and compute

$$\delta v = \sum_{i=0}^{n} e^{i} \otimes \left(x \bigcup_{i} Tx \right) + e^{0} \otimes (1 + T)v^{2n}.$$

Therefore,

$$\delta v = \lambda^{\sharp}(e^0 \otimes x \otimes x) + \rho^{\sharp}(1 + T)v^{2n}$$

so

$$\langle \lambda^{\sharp}(e^0 \otimes x \otimes x), [Y] \rangle = \langle e^0 \otimes (1 + T)v^{2n}, [Y] \rangle$$

and the result follows.

2. A product formula. For the construction of the next section, we need to compute q on $\tilde{X} \times N \to^{\pi \times 1} X \times N$ where N^{2m} is a PD space of dimension 2m. Our main applications are the cases $N = CP^2$ and $N = RP^2$.

THEOREM 4. Let $\tilde{X} \times N \to^{\pi \times 1} X \times N$ be the product covering and p + r = n + m.

Let $a \in H^p(\tilde{X})$ and $b \in H^r(N)$, then

$$q(a \otimes b) = \left\langle \sum_{0 \leq j \leq r} F^*(1 \otimes a \otimes a) \cup f^*(u)^j \otimes \operatorname{Sq}_j(b), [X] \otimes [N] \right\rangle$$

where u generates $H^1(RP^{\infty})$.

We now recall the definition of A(X, f). $(f: X \to RP^{\omega} \text{ classifies } \pi: \tilde{X} \to X.)$ According to [1] or [3],

$$q(a + b) - q(a) - q(b) = \langle a \cup Tb, [\tilde{X}] \rangle$$

for all $a, b \in H^n(\tilde{X})$. The bilinear form defined by the formula on the right-hand side is nonsingular and even, so there exists a symplectic base for $H^n(\tilde{X})$ with respect to this form. A(X, f) is the Arf invariant associated to any such base. From the definition of q we easily verify that A(X, f) depends only on the class of (X, f) in $A^{\text{PD}}(RP^x)$ and vanishes for double covers of PL-manifolds. More generally,

PROPOSITION 5 [3]. If $\pi: \tilde{X} \to X$ is a Poincaré splittable double cover of 2n-dimensional PD spaces, then A(X, f) = 0 where $f: X \to RP^{\infty}$ classifies π .

Using the product formula, we establish

COROLLARY 6. If $\tilde{X} \times CP^2 \to \pi^{\times 1} X \times CP^2$ is the product covering, $A(X \times CP^2, fp_1) = A(X, f)$ where $p_1: X \times CP^2 \to X$ is the projection.

3. The examples. We will now describe the basic example in dimension 4. It is a PD space X^4 with fundamental group Z/2 and nonzero A-invariant.

The complex X^4 is among those constructed in [12, p. 240]. Let K^3 be the 3-skeleton of $RP^2 \times S^2$ in a normal cell decomposition and note that $\tilde{K}^3 \simeq S_1^2 \vee S_2^2 \vee S^3$. We obtain X^4 by attaching the 4-cell e^4 by a different map than that used to get $RP^2 \times S^2$. To describe the map, we need to denote generators of $\pi_2 S_i^2$, $\pi_3 S^3$ and $\pi_3 S_i^2$ by I_i , J and η_i , respectively, for i=1,2. Then, according to the Hilton-Milnor theorem, $\pi_3 K^3$ is generated by J, η_1 , η_2 and $[I_1,I_2]$. The Z/2 action on these is given by

$$T(J) = J - [I_1, I_2], \quad T\eta_i = \eta_i, \quad T[I_1, I_2] = -[I_1, I_2]$$

and the attaching map used to obtain $RP^2 \times S^2$ has class J. To construct X^4 we use a map in the class $J + \eta_1$ where the notation is chosen so that S_1^2 is the sphere covering RP^2 in $(RP^2 \times S^2)^{(3)} = \tilde{K}^3$. Since $(1 - T)e^4$ is then attached with class $[I_1, I_2]$, $\tilde{X}^4 \simeq S^2 \times S^2$. Observe that X^4 is nonorientable. In fact, there is no orientable example in dimension four.

This PD space has $A(X^4, f) = 1$ where the map $f: X \to RP^\infty$ induces the universal covering $\pi: \bar{X} \to X$. To see this we need to describe the generators of $H^2(\tilde{X}^4)$. By construction, $X^4 \simeq (RP^2 \vee S^2) \cup e^3 \cup e^4$. Let a denote the cohomology dual of the class represented by the cover of $RP^2 \subset RP^2 \vee S^2 \subset X^4$, and b denote the dual of the class represented by one cover of $S^2 \subset RP^2 \vee S^2 \subset X^4$. Then $b = \pi^*\bar{b}$ for some $\bar{b} \in H^2(X^4)$. Since $\{a, b\}$ forms a symplectic base, it is enough to show q(a) = q(b) = 1.

LEMMA 7. Let $\pi \colon \tilde{X} \to X$ be a double cover of 2n-dimensional PD spaces and $b \in H^n(X)$. Then

$$q(\pi^*\tilde{b}) = \left\langle \sum_{i=0}^n (f^*u)^i \cup \operatorname{Sq}_i(\tilde{b}), [X] \right\rangle$$

where u generates $H^1(RP^{\infty})$.

From this lemma,

$$q(b) = \left\langle \sum_{i=0}^{2} (f^*u)^i \cup \operatorname{Sq}_i(\tilde{b}), [X] \right\rangle = \left\langle a \cup \tilde{b}, [X] \right\rangle = 1$$

where \bar{a} is dual to the class represented by $RP^2 \subset X^4$. To prove q(a) = 1 it is necessary to compute $a_z \cup_i Ta_z$ where a_z is the obvious cochain representing a. We omit the details.

One can generalize the construction of X^4 to higher dimensions in several ways. Here is one direction. Let K^{n+1} be the (n + 1)-skeleton of $RP^n \times S^n$ in a normal cell decomposition. Since

$$\pi_{n+1} K^{n+1} = \pi_{n+1} RP^n \oplus \pi_{n+1} S^n \oplus \pi_{n+1} S^{n+1},$$

we can construct K^{n+2} by attaching an (n+2)-cell to K^{n-1} using a map representing $\eta + \alpha$ where $\eta \in \pi_{n+1} RP^n$ is the nontrivial element and $\alpha \in \pi_{n+1} K^{n-1}$ is the class of the attaching map for the normal (n+2)-skeleton of $RP^n \times S^n$.

PROPOSITION 8. If $n \equiv 2 \pmod{4}$, then there exists a PD space X^{2n} with $\tilde{X} \simeq S^n \times S^n$, $\pi_1 X = Z/2$, $X^{(n+2)} \simeq K^{n+2}$ in a normal cell decomposition; and A(X, f) = 1.

The point here is that $\eta \in \pi_{n+1} RP^n$ is a projective element if and only if $n \equiv 2$ (4) (see [9]). Similarly, by using other projective elements in $\pi_{n+k} RP^n$ for k < n, one can construct more examples. For n = 3, even though η is not projective, we can obtain a PD space X^6 with $A(X^6, f) = 1$ by this construction. This is described in [5].

4. Realization of the transversality obstruction. Our main result is

THEOREM 9. In each dimension $2n \ge 4$ there exists a PD space X^{2n} and a map $f: X^{2n} \to RP^{\infty}$ such that $A(X^{2n}, f) = 1$, and \tilde{X} has the homotopy type of a smooth manifold.

PROOF. The method of proof is clear. The example X^4 of §2 is crossed with copies of $\mathbb{C}P^2$ to obtain examples in dimensions $\equiv 0$ (4). From Corollary 6, all these PD spaces have nonzero A-invariant. In addition, we note that the above examples X^{4k} provide examples X^{4k+2} ($k \geq 1$). Consider $\tilde{X}^{4k} \times RP^2 \to \pi^{\times 1} X^{4k} \times RP^2$. By an argument similar to that of Corollary 6 we see that $A(X^{4k} \times RP^2, fp_1) = 1$ and these give the examples in dimensions 4k + 2.

5. The Spivak normal bundle to X^4 . Define an injection $\rho: \mathcal{N}^{PD}_*$ (pt) $\to \mathcal{N}^{PD}_*$ (RP^{∞}) by $\rho\{X^n\} = \{X^n, w_1\}$ where $w_1: X^n \to RP^{\infty}$ classifies the first Stiefel-Whitney class of X^n . We need the following

LEMMA 10 [3]. The Pontrjagin-Thom map $\mathcal{N}_*^{PD}(RP^\infty) \to \pi_*(RP^\infty \land MG)$ is an injection, so every class in $\mathcal{N}_*^{PD}(RP^\infty)$ is detected by characteristic numbers $(* \neq 2)$.

Consider the class of $\{X^4\}$ in $\mathcal{N}_4^{PD}(pt)$. We calculate that the Stiefel-Whitney

class of X^4 is $1 + e^1$. On the other hand, the fact given in §3 that $A(X^4, f) = 1$ together with the fact that $\rho\{X^4\} = (X^4, f)$ shows that $\{X^4\} \neq 0$ in $\mathcal{N}_4^{PD}(pt)$. This gives

COROLLARY 11. $K_3(X^4) \neq 0$ and X^4 generates the cokernel of $(\mathcal{N}_4^{\text{Diff}}(pt) \rightarrow \mathcal{N}_4^{PD}(pt))$. (Since the only further characteristic classes in dimensions ≤ 4 are K_3 and Sq^1K_3 [8].)

Let $\kappa: X^4 \to^{\tau} S^3 \cup_2 e^4 \to^{\lambda} B_G$ be the composition where τ is the pinching map and λ satisfies $\lambda^*(\kappa_3) \neq 0$, $\lambda^*(w_4) = 0$. If (κ) is the induced bundle we have that the Spivak normal bundle of X^4 is the Whitney sum $\xi_1 \oplus (\kappa)$ where ξ_1 is the nontrivial line bundle.

COROLLARY 12. In dimension 4, A(X, f) coincides with the stable transversality obstruction of [4].

PROOF. The calculations of [4] show the stable transversality obstruction is given by e_1K_3 , and the result follows from Corollary 11.

REFERENCES

- 1. W. Browder and R. Livesay, Free involutions on homotopy spheres, Tohoku Math. J. 25 (1972), 69-88.
- 2. G. Brumfiel, I. Madsen and R. J. Milgram, PL characteristic classes and cobordism, Ann. of Math. (2) 97 (1973), 83-159.
- 3. G. Brumfiel and R. J. Milgram, Normal maps, covering spaces and quadratic functions, Duke Math. J. (to appear).
- 4. G. Brumfiel and J. Morgan, Homotopy theoretic consequences of N. Levitt's obstruction theory to transversality for spherical fibrations, Pacific J. Math. 67 (1976), 1-100.
- 5. I. Hambleton, Free involutions on 6-mantfolds, Michigan Math. J. 22 (1975), 141-149. MR 52 #6762.
 - 6. L. Jones, Patch spaces, Ann. of Math. (2) 97 (1973), 306-343. MR 47 # 4269.
 - 7. N. Levitt, Poincaré duality cobordism, Ann. of Math. (2) 96 (1972), 211-244. MR 47 # 2611.
- 8. R. J. Milgram, The mod (2) spherical characteristic classes, Ann. of Math. (2) 92 (1970), 238-261. MR 41 # 7705.
 - 9. R. J. Milgram, J. Strutt and P. Zvengrowski, *Projective stable stems of spheres* (to appear).
- 10. F. Quinn, Surgery on Poincaré and normal spaces, Bull. Amer. Math. Soc. 78 (1972), 262-267. MR 45 # 6014.
 - 11. D. B. A. Epstein and N. Steenrod, Cohomology operations, Ann. Math. Studies No. 50.
 - 12. C. T. C. Wall, Poincaré complexes. I, Ann. of Math. (2) 86 (1967), 213-245. MR 36 # 880.

STANFORD UNIVERSITY

McMaster University