FREE INVOLUTIONS ON 6-MANIFOLDS

Ian Hambleton

INTRODUCTION

In this paper, we give the diffeomorphism classification of smooth, closed, orientable manifolds \(M \) of dimension six with \(\pi_1 M = Z_2 \) and \(\pi_2 M = 0 \). This is equivalent to the classification of free differentiable orientation-preserving involutions on a connected sum of finitely many copies of \(S^3 \times S^3 \). In this case, it is therefore possible to carry out the program proposed in [5] for the study of involutions on \((n - 1)\)-connected \(2n\)-manifolds \((n \geq 3)\).

The paper is organized as follows. Section 1 contains an explanation of the notation and an exposition of the results needed from [1] and [5]. In Section 2, we state the classification results, Theorems 2 and 3, and give an example. The remaining sections contain the proofs.

1. BILINEAR FORMS

Let \(K \) be a finite orientable Poincaré complex of dimension six [8] with \(\pi_1 K = Z_2 \) and \(\pi_2 K = 0 \). The generator of \(\pi_1 K \) will be denoted by \(T \). Then the integral homology and cohomology groups of the universal covering space \(\tilde{K} \) are modules over the integral group ring \(\Lambda \) of \(Z_2 \) via the action of \(T \). In particular, \(H_3(\tilde{K}) \cong r\Lambda \oplus Z_+ \oplus Z_+ \) for some integer \(r \), where \(Z_+ \) is the group of integers with trivial action of \(Z_2 \). This can easily be shown, if it is recalled that since \(H_3(\tilde{K}) \) is a free abelian group it has the form \(r_0 Z_+ \oplus r_1 Z_- \oplus r_2 \Lambda \) as a \(\Lambda \)-module. From the spectral sequence of the covering \(\tilde{K} \to K \), we deduce the values \(r_0 = 2 \) and \(r_1 = 0 \).

Let us write \(H = H_3(\tilde{K}) \) and consider the effect of the involution on the intersection pairing \(\lambda: H \times H \to Z \). This is a unimodular, skew-symmetric bilinear form with the further properties

(1) \(\lambda(Tx, Ty) = \lambda(x, y) \) for all \(x, y \) in \(H \), and
(2) \(\lambda(x, x) = \lambda(x, Tx) = 0 \) for all \(x \) in \(H \).

Associated with \(\lambda \), there is the Browder-Livesay self-intersection map \(\phi: H \otimes Z_2 \to Z_2 \) (see [1] and Sections 5 and 6 below). This is related to \(\lambda \) by the equation

\[\phi(x + y) - \phi(x) - \phi(y) = \lambda(x, Ty) \pmod{2}, \]

valid for all \(x, y \) in \(H \). Although \(\phi \) is actually defined on \(H \otimes Z_2 \), it will cause no confusion to write \(\phi(x) \) for \(x \) in \(H \), instead of \(\phi(x \otimes 1) \). The geometry of \(K \) therefore gives the algebraic data \((\lambda, \phi, H)\). Any such triple, satisfying the relations listed above, will be called a \(Z_2 \)-form.

Received March 13, 1975.
This research was partially supported by NSF Grant GP-38875X.

In fact, the Z_2-forms that come from Poincaré complexes have an additional structure. From obstruction theory, there is a 2-connected map $f: \mathbb{R}P^3 \to K$, covered by $\tilde{f}: S^3 \to \tilde{K}$. In [5], it is shown that we can choose f so that $e_0 = \tilde{f}_* [S^3]$ generates a Z_+^t direct summand of H. Let $(e_1, \ldots, e_r, e_0, e_\infty)$ be a set of Λ-generators of H containing e_0 such that (e_1, \ldots, e_r) is a Λ-base for an $r\Lambda$ complementary summand to $Z_+^t \oplus Z_+^t$ generated by (e_0, e_∞). Such a set will be referred to as a *basis* of H. It is not difficult to see that the only basis changes B of H that come from homotopy equivalences of K have the property

$$(\ast) \quad Be_0 - e_0 = (1 + T)z, \quad \text{for some } z \in H.$$

This condition ensures that $e_0' = Be_0$ can be represented by a mapping of $\mathbb{R}P^3 \to K$ if e_0 has such a representation. The following definitions are motivated by this geometric fact. Suppose $H = r\Lambda \oplus Z_+^t \oplus Z_+^t$.

Definition 1. A *based* Z_2-form on H is a Z_2-form (λ, ϕ, H) together with a generator e_0 of a Z_+ direct summand of H.

Definition 2. Two based forms (λ, ϕ, e_0) and (λ', ϕ', e_0') on H are *base-equivalent* if there exists a Λ-isomorphism $B: H \to H$ such that

1. $\lambda'(Bx, By) = \lambda(x, y)$,
2. $\phi'(Bx) = \phi(x)$, $e_0' = Be_0$, and
3. $Be_0 - e_0 = (1 + T)z$ for some z in H.

The discussion of the preceding paragraph can be summed up: *With each Poincaré complex of our type, there is associated a based Z_2-form whose base-equivalence class is a homotopy invariant.*

It will be useful to observe that, given a based Z_2-form (λ, ϕ, e_0, H), we can, by a purely algebraic argument, find a splitting basis B of H for λ. More precisely, there exists a basis change $B: H \to H$ with property (*), such that the direct-sum splitting of H into $H_1 = r\Lambda$ and $H_0 = Z_+^t \oplus Z_+^t$, given by the new basis, is an orthogonal splitting with respect to λ. This implies that, in the new basis (e_0', e_∞') for H_0,

$$\lambda(e_0', e_\infty') = 1 \quad \text{and} \quad \lambda(e_0', e_0') = \lambda(e_\infty', e_\infty') = 0.$$

The proof of this fact is an immediate consequence of the following result of [4]. In the statement, we denote $G/2G$ by \overline{G}, for an abelian group G. Given λ, a Z_2-form on a Λ-module N, we construct a form $\overline{\lambda}$ on \overline{N} by reducing the values of λ modulo 2.

Lemma 1. Let $\overline{\lambda}$ be the reduction of a nonsingular Z_2-form on a Λ-module $N \cong r\Lambda \oplus M$, where M has no Λ-free direct summand. Then λ restricted to M is nonsingular.

Proof. We set $Q = (1 + T)r\Lambda$ and let P be the subgroup of N generated by a Λ-base for the $r\Lambda$ summand, so that as a free abelian group $N = P \oplus Q \oplus M$.

Then, if

$$\text{Ann}(Q) = \{ x \in \overline{N} \mid \overline{\lambda}(x, y) = 0 \text{ for all } y \in \overline{Q} \},$$

It is clear that $\overline{M} \oplus \overline{Q} \subseteq \text{Ann}(Q)$. Suppose $\overline{\lambda} \mid \overline{M} \times \overline{M}$ is singular. This implies that there exists a nonzero $z \in \overline{M} \cap \text{Ann}(\overline{M})$. Since $\overline{\lambda}$ is nonsingular on \overline{N}, there is an
\[x \in \overline{P} \text{ with } \overline{\lambda}(x, z) = 1. \] By adding suitable multiples of \(z \) to basis elements of \(\overline{Q} \), we obtain \(\overline{Q}' \) of the same rank (as a \(\mathbb{Z}_2 \)-vector space) with

\[\text{Ann}(\overline{Q}') \supseteq \overline{Q}' \oplus \overline{M} \oplus \langle x \rangle. \]

Since \(\overline{Q}' \) is also a direct summand of \(\overline{N} \), there is a subgroup \(\overline{T} \) of \(\overline{N} \) such that \(\overline{N} \cong \text{Ann}(\overline{Q}') \oplus \overline{T} \). Clearly, rank \(\overline{T} = \text{rank} \overline{Q}' \). Now there is a contradiction: \(\text{rank} \overline{N} = 2(\text{rank} \overline{Q}) + \text{rank} \overline{M} \geq 2(\text{rank} \overline{Q}) + \text{rank} \overline{M} + 1 \).

We conclude this section by describing a condition the map \(\phi \) must satisfy for \(K \) to be smoothable. Choose an embedding of \(H_0 = \mathbb{Z}_+ \oplus \mathbb{Z}_+ \) so that \(H \cong H_0 \oplus H_1 \). Then \(\phi \mid H_0 \) is an associated quadratic map to \(\lambda \mid H_0 \) (in the usual sense); for if \(x \) is in \(H_0 \), then \(Tx = x \). Denote by \(A(\phi, H_0) \) the Arf invariant of \(\phi \mid H_0 \). The following calculation shows that \(A(\phi, H_0) \) is in fact independent of the choice of embedding of \(H_0 \).

Lemma 2. Let \(B: H \rightarrow H \) be a basis change, and let \(H' \) = BH. Then \(A(\phi, H'_0) = A(\phi, H_0) \).

Proof. Pick a basis \((e_0, e_\infty) \) of \(H_0 \) containing \(e_0 \), and set \(e'_0 = Be_0 \) and \(e'_\infty = Be_\infty \). Then

\[Be_0 = ae_0 + be_\infty + (1 + T)x \quad \text{for some } x \text{ in } H_1, \]

and

\[Be_\infty = ce_0 + de_\infty + (1 + T)y \quad \text{for some } y \text{ in } H_1. \]

Using the fact that \(\lambda(e'_0, e'_\infty) = 1 \mod 2 \) from Lemma 1, we deduce that \(ad + bc \equiv 1 \mod 2 \). This clearly implies that \(\phi(e'_0) \phi(e'_\infty) = \phi(e_0) \phi(e_\infty) \).

Now suppose we are given a Poincaré complex \(K \) as above, with its map \(\phi \) defined on \(H_3(K) \otimes \mathbb{Z}_2 \). Set \(A(K) = A(\phi, H_3(K)) \), where in view of Lemma 2, the notation for the Arf invariant has been simplified. The following restriction on \(\phi \) was obtained in [5].

Theorem 1. Let \(M \) be a closed, smooth, oriented 6-manifold with \(\pi_1 M = \mathbb{Z}_2 \) and \(\pi_2 M = 0 \). Then \(A(M) = 0 \).

2. THE CLASSIFICATION

Our classification is contained in the next two results. All manifolds mentioned are smooth, closed, and oriented, and they have dimension six.

Theorem 2. Suppose \(K \) is a finite, oriented Poincaré complex that is the homotopy type of a manifold \(M^6 \), with \(\pi_1 M = \mathbb{Z}_2 \) and \(\pi_2 M = 0 \). Then \(K \) has exactly two smoothings.

Theorem 3. Homotopy types of 6-manifolds \(M \) with \(\pi_1 M = \mathbb{Z}_2 \) and \(\pi_2 M = 0 \) are in bijective correspondence with the sets of invariants

1. a \(\Lambda \)-module \(H = r\Lambda \oplus \mathbb{Z}_+ \oplus \mathbb{Z}_+ \), for some even integer \(r \geq 0 \),

2. a based \(\mathbb{Z}_2 \)-form \((\lambda, \phi, e_0, H) \) on \(H \) with \(A(\phi, H) = 0 \), modulo the equivalence relation generated by base-equivalence of \(\mathbb{Z}_2 \)-forms.

In a special case we have computed the classification also for Poincaré complexes.
PROPOSITION 1. There are exactly ten homotopically distinct, finite, oriented Poincaré complexes K of dimension six, with $\pi_1 K = \mathbb{Z}_2$ and $\tilde{K} \cong S^3 \times S^3$. Only two are smoothable.

This is discussed in Section 6. We remark that because of the existence of a splitting basis in each base-equivalence class, and the fact that $L_6(\mathbb{Z}_2, +) \cong \mathbb{Z}_2$, the classification of Theorem 3 is computable.

3. PROOF OF THEOREM 2

Suppose M is a manifold of the kind considered above. According to surgery theory, the proof of Theorem 2 amounts to computing $\mathcal{F}_{PL}(M)$ and the action of $L_7(\mathbb{Z}_2, +)$ on it [9]. In dimension six, it is clearly enough to work in the PL category.

LEMMA 3. $[M, G/PL] \cong [M, G/PL_{(2)}] \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Proof. It is known that $G/PL_{(odd)} = BO \otimes \mathbb{Z} [1/2]$, and that $[M, BO \otimes \mathbb{Z} [1/2]]$ can be computed by means of a spectral sequence with

$$E_2^{p,q} = H^p(M; KO^q(\ast)) \otimes \mathbb{Z} [1/2].$$

However, $\tilde{h}^p(M, \mathbb{Z} [1/2]) = 0$ unless $p = 3$ or $p = 6$, and $KO^q(\ast) \otimes \mathbb{Z} [1/2] = 0$ unless $q \equiv 0 \pmod{4}$. Therefore $E_2^{p,-p} = 0$ for all p, and $[M, G/PL_{(odd)}] = 0$.

Now it is clear that

$$[M, G/PL_{(2)}] \cong [M, Y] \oplus [M, K(Z_2, 6)],$$

where Y is the 2-stage Postnikov system occurring as a factor of $G/PL_{(2)}$ [7]. From the exact sequence

$$[M, K(Z_2, 4)] \rightarrow [M, Y] \rightarrow [M, K(Z_2, 2)] \rightarrow 0$$

and the fact that $H^4(M; \mathbb{Z}) = 0$, we see that $[M, Y] \cong \mathbb{Z}_2$.

We shall now prove Theorem 2 by calculating the surgery obstruction $\gamma: [M, G/PL] \rightarrow L_6(\mathbb{Z}_2, +) = \mathbb{Z}_2$, using the formula of [9, p. 178]. The map $L_7(\mathbb{Z}_2, +) \rightarrow \mathcal{F}_{PL}(M)$ is trivial [6, p. 48]. In fact, if $g: M \rightarrow G/PL$ corresponds to the essential map $M \rightarrow K(Z_2, 6)$, then

$$\gamma(M, g) = \{1 + w_2(M)\} g^*(1 + Sq^2 + Sq^4 Sq^2)k[M] = g^*k[M] = 1,$$

where $k = k_2 + k_6$, and k_i is in $H^i(G/PL; \mathbb{Z}_2)$. Similarly, if g corresponds to the essential map $M \rightarrow K(Z_2, 2)$, then $\gamma(M, g) = 0$, since $Sq^2 = 0$ on $H^2(M; \mathbb{Z}_2)$.

4. CONSTRUCTION OF 6-MANIFOLDS

In this section, we prove half of Theorem 3 by constructing a one-to-one map from the equivalence classes of invariants to the homotopy classes of manifolds. This is a special case of a construction in [5].

Suppose we are given a based form (λ, ϕ, e_0, H), and set $w_2 = 1 + \phi(e_0)$ in \mathbb{Z}_2. Let ξ be the orientable 3-plane bundle over RP^3, with second Stiefel-Whitney class
w_2. Then ξ is either 3ε or ε ⊕ 2η, where ε (respectively, η) is the trivial (respectively, nontrivial) line bundle over RP^3. After changing the Z_2-form, if necessary, within its base-equivalence class, we may assume that H ≅ H_0 ⊕ H_1 is a split decomposition of H for λ with e_0 in H_0. Let (e_1, ..., e_r, e_0, e_∞) be the splitting basis, and denote by D(ξ) and S(ξ) the disk and sphere bundles, respectively, associated with ξ.

We begin the construction by forming W_0 = D(ξ) ∪ f D^3 × D^3 and using an embedding f: S^2 × D^3 → S(ξ), obtained from trivializing S(ξ) over a disk D^3 ⊂ RP^3. Observe that ∂W_0 = S(ξ_0), where ξ_0 is i*(ξ ⊕ η), the bundle ξ ⊕ η pulled back over i: RP^2 ⊂ RP^3.

If r = 0, we finish by attaching D(ξ_0) to W_0 along ∂W_0 with some diffeomorphism. If r > 0, we attach r disjoint handles D^3 × D^3 to W_0 along ∂W_0 to obtain W. We construct the required embeddings f_i: S^2 × D^3 → ∂W_0 by first picking r unknotted and unlinked embeddings f_i^0: S^2 × D^3 → ∂W_0 (i = 1, ..., r) inside disjoint embedded disks D^3 ⊂ ∂W_0. These embeddings are then moved by regular homotopies η_i: S^2 × D^3 × I → ∂W_0 (i = 1, ..., r) (with both ends embedded) whose intersections and self-intersection numbers are prescribed by λ and φ as in [9, p. 53]. For f_i we take η_i | S^2 × D^3 × 1.

An easy surgery argument (see [5]) now shows that ∂W ≅ S(ξ_0) also, and we finish as before by attaching D(ξ_0) with a diffeomorphism h: ∂W → S(ξ_0). Denote M = W ∪_h D(ξ_0) by Γ(θ), where θ = (λ, φ, e_0, H). The following lemma shows that we may omit the map h from our notation.

Lemma 4. Any two choices of the diffeomorphism h: ∂W → S(ξ_0) result in homotopy-equivalent manifolds M.

This is the main step in showing that Γ is surjective. It will be carried out in the next two sections. First we apply the result to conclude that Γ is well-defined on equivalence classes and is one-to-one.

Lemma 5. Let θ = (λ, φ, e_0, H) and θ' = (λ', φ', e_0', H). Then M = Γ(θ) and M' = Γ(θ') are homotopy-equivalent if and only if the forms θ and θ' are base-equivalent.

Proof. Since any homotopy equivalence induces a base-equivalence of the forms and w_2 is a homotopy invariant, the necessity is clear.

Now suppose that e_0 and e_0' are contained in splitting bases and that B: H → H gives a base-equivalence of θ and θ'. Then φ(e_0) = φ'(e_0'). Because B is based, there is a map RP^3 → M' representing Be_0 that is a 2-connected and can be taken to be an embedding, by Haefliger's theorem [3]. In fact, by general position, we can assume that this embedding lies in W'; therefore we let N ⊂ W' be a small tubular neighborhood. One can use the basis Be_1 of H to attach handles to N inside W' and thus to produce an embedding of W ⊂ interior W'. It is easy to see that W' - W is an h-cobordism between ∂W' and ∂W, so that W ≅ W'. From Lemma 4, we conclude that M ≅ M'.

5. Reduction to involutions on S^3 × S^3

We shall prove Lemma 4 by listing the possible homotopy types of oriented Poincaré complexes K^n, then proving that the smoothable homotopy types can be specified by our invariants.
The first step is to reduce the problem to the case where \(r = 0 \). Consider a normal cell decomposition [8] of \(K \) induced by a splitting basis of \(H_3(\tilde{K}) \) with respect to \(\lambda \). It will be necessary to have a notation for the skeleta \(K^i \):

\[
K^3 = \mathbb{R}P^3 \vee S_\infty^3 \vee L_r, \quad \text{where} \quad L_r = \bigvee_{k=1}^{r} S_k^3,
\]

\[
K^{i+1} = K^i \cup D^{i+1} \quad \text{for} \quad 3 \leq i \leq 5.
\]

One can show [5] that for \(i = 4 \) and \(i = 5 \),

\[
\tilde{K}^i \simeq S_t^1 \vee N_r, \quad \text{where} \quad N_r = S_0^3 \vee S_\infty^3 \vee L_r \vee L_r^*.
\]

As the notation indicates, the obvious inclusion \(j: S_\infty^3 \vee L_r \subset \tilde{K}^4 \subset \tilde{K} \) has the property that \(j_*[S_3^3] = \epsilon_i \) for \(i = 1, \cdots, r \) and \(i = \infty \), while the inclusion \(\mathbb{R}P^3 \subset \tilde{K}^4 \subset \tilde{K} \) is covered by \(S_0^3 \subset \tilde{K}^4 \subset \tilde{K} \) and represents \(e_0 \). Finally, \(L_r^* \) is another copy of \(L_r \), the image of \(L_r \) under the covering transformation \(T \) in \(\tilde{K} \).

We ask what complexes \(K^i \) have the same homology and cup-product as \(K \). Clearly, \(K^4 \) is determined by homology. However, the attaching map of the 5-cell has homotopy class in \(\pi_4 \tilde{K} \simeq \pi_4 S^4 \oplus \pi_4 N_r \). Let \(\alpha \) be the summand from \(\pi_4 N_r \) (which is a direct sum of copies of \(Z_2 \equiv \pi_4 S^3 \)). This element \(\alpha \) must have the property that \((1 - T)\alpha = 0 \). It is not detected by homology or cup-product. Similarly, the summand of the homotopy class of the attaching map for the 6-cell that is not detected by this means is \(\beta \), in

\[
(Z_2)^2 \oplus \bigoplus_{k=1}^{r} \pi_5(S^3 \vee S^3)_{(k)}.
\]

We shall use \(e_k \) for the inclusions \(S_k^3 \subset \tilde{K} \) as well as for the homology classes they represent.

Lemma 6. Let \((e_1, \cdots, e_r, e_0, e_\infty)\) be a splitting basis for \(K \). There exists a normal cell decomposition of \(K \) induced by the basis, as above, such that

1. \(\alpha = e_0 \circ \alpha_0 + e_\infty \circ \alpha_\infty \), where \(\alpha_0 \) and \(\alpha_\infty \) are in \(\pi_4 S^3 \), and

2. \(\beta = \sum_{k=1}^{r} e_k \circ \beta_k + e_0 \circ \beta_0 + e_\infty \circ \beta_\infty + \sum_{k=1}^{r} m_k [e_k, T e_k] \),

where the element \(\beta_k \) is in \(\pi_5 S^3 \), the coefficient \(m_k \) is in \(Z_2 \), and \([e_k, T e_k]\) generates \(\pi_5(S^3 \vee S^3)_{(k)} \).

Lemma 7. The covering space \(\tilde{K} \) is smoothable if and only if \(\beta_k = 0 \) for \(1 \leq k \leq r \).

Proof. In the notation established at the beginning of the section, \(\tilde{K} \simeq N_r \cup_{(1 + T)\beta} D^6 \). Clearly, \(\tilde{K} \) is smoothable if and only if it is the homotopy type of a connected sum of copies of \(S^3 \times S^3 \). In that case, there exists for each \(k = 1, \cdots, r \) a projection \(p_k: \tilde{K} \rightarrow \tilde{K}^k \) such that \(p_k \circ e_k \) is the identity. Hence \(\beta_k \), the obstruction to the existence of \(p_k \), is zero.
Next we identify the coefficients m_k occurring in the expression for β of Lemma 6. Recall that in $[1] \phi$ is defined by means of a cohomology operation $\psi: H^3(\tilde{K}, Z_2) \to H^0(K, Z_2) \cong Z_2$ (see also Section 6 below). In fact, if \tilde{x} is the Poincaré dual to x in $H_3(\tilde{K}, Z_2)$, then

$$\phi(x) = \psi(\tilde{x})[K], \quad \text{where } [K] \text{ generates } H_0(K; Z_2).$$

An easy calculation using the definition of ψ yields the following result.

Lemma 8. Let e_k^* be reduction modulo 2 of the class in $H^3(\tilde{K})$ dual to e_k. Then $m_k = \psi(e_k^*)$ for $k = 1, \ldots, r$.

By the construction of Section 4, each value of $\phi(e_k)$ (and therefore each value of m_k) is possible for $k = 1, \ldots, r$ in smoothable complexes. Note that $K_0 = K/L_k$ has the homotopy type of a Poincaré complex with $\pi_1 K_0 = Z_2$ and $\tilde{K}_0 \cong S^3 \times S^3$. The following result is a consequence of Lemmas 6 to 8.

Lemma 9. K is smoothable if and only if K_0 and \tilde{K} are smoothable.

6. INVOLUTIONS ON $S^3 \times S^3$

First we shall prove part of Proposition 1.

Lemma 10. There are ten distinct complexes K of our type with $\tilde{K} \cong S^3 \times S^3$.

Proof. The possibilities for $(\alpha_0, \alpha_\infty)$ may be written $(00), (10), (01)$, and (11). Similarly for (β_0, β_∞). For constructing K^5, given K^4, we have three choices: $K^5(00), K^5(10)$, and $K^5(01)$, since $K^5(11)$ is homotopy-equivalent to $K^5(01)$. For constructing K^6, given K^5, we have three complexes based on $K^5(00)$ or $K^5(10)$, but four on $K^5(01)$. These must all be shown to be distinct.

Suppose that K and K_1 are two of the complexes above and that $f: K \to K_1$ is a cellular homotopy equivalence. Since both complexes are orientable, f maps the top cell with degree ± 1 and induces a homotopy equivalence $\tilde{f}: K^5 \to K_1^5$. This proves that $f^* \beta = \beta$. Moreover, because K^5 is nonorientable, \tilde{f} maps the 5-cell with degree ℓ (odd). Therefore $f^* \alpha = \ell \alpha' = \alpha'$. The only variation is therefore caused by basis changes in $H_2(\tilde{K})$. The only one that affects the attaching maps, namely setting $e_\infty = e_0 + e_\infty$ and $e_0' = e_0$, is allowed for in our list. (Recall here that the isomorphism defined by $e_0' = e_0 + e_\infty$ and $e_\infty' = e_\infty$ is not a base-equivalence.)

Remark. The complex corresponding to the choice $\alpha = \beta = 0$ is $\mathbb{R}P^3 \times S^3$; the choice $\alpha = (01)$ and $\beta = 0$ gives $K = S(2 \varepsilon \oplus 2 \eta)$. These are distinguished by $w_2(K)$ or Sq^2.

The remainder of the proof of Proposition 1 is contained in the three lemmas below. These show how the homotopy description of Section 5 can be given in terms of the Z_2-form, at least for smoothable complexes, and enable us to identify the other invariants $w_2(K)$ and Sq^2.

In the statement that follows, recall that e_0^*, e_∞^* is the (cohomology) dual basis to e_0, e_∞. By \tilde{e}_∞^* we mean the class in $H^3(K)$ dual to that represented by $S_\infty^3 < K$, reduced modulo 2. It should also be noted that the Poincaré duals of e_0 and e_∞ are e_∞^* and e_0^*, respectively.

Lemma 11. $\alpha_0 \neq 0$ if and only if $\psi(e_0^*) = \phi(e_\infty) \neq 0$.

LEMMA 12. (1) $\alpha_\infty \neq 0$ if and only if $\psi(e_0^\infty) = \phi(e_0) = 0$.

(2) $\alpha_\infty \neq 0$ if and only if $\text{Sq}^2 e_0^\infty \neq 0$ (or $w_2 \neq 0$).

LEMMA 13. If K is smoothable, then $\beta_0 = \beta_\infty = 0$.

Application of Lemmas 11 to 13, together with Theorem 1, which eliminates the case $\alpha = (10)$, reduces the list of ten complexes to two possible smooth ones. These are precisely $\text{RP}^3 \times S^3$ and $S(2c \oplus 2\eta)$, and clearly they are smoothable. This proves Proposition 1.

Combined with Lemma 9, the result evidently establishes that the homotopy type of a smoothable complex is completely determined by the base-equivalence class of its based Z_2-form, and Lemma 4 follows. As we observed earlier, we can now conclude that the map Γ is one-to-one and surjective. This proves Theorem 3.

Proof of Lemma 11. We recall the definition of ψ in [1]. Let $T: \tilde{K} \to \tilde{K}$ be a simplicial, free involution and z a cocycle in $Z^3(\tilde{K}, Z_2)$. Then there exist cochains v^{3+i} for $0 \leq i \leq 3$ in $C^{3+i}(\tilde{K}, Z_2)$ such that

$$z \cup_{3-i} Tz + \delta v^{3+i-1} = (1 + T)v^{3+i} \quad (0 \leq i \leq 3),$$

where $v^2 = 0$. It turns out that cocycle $(1 + T)v^6$ represents a class in $H^6_T(\tilde{K}, Z_2) \cong H^6(K, Z_2)$, which depends only on the cohomology class of z. Set $\psi(z) = \text{cls}((1 + T)v^6)$.

This operation can be evaluated on a complex L obtained from K by forming $K/S^3 = (\text{RP}^3 \vee S^4) \cup D^5 \cup D^6$, and then collapsing the resulting S^4. Let $j: K \to L$ be the quotient map, and u the generator of $H^3(L, Z_2)$. Evidently,

$$L \simeq (\text{RP}^3 \cup \alpha_0 D^5) \cup D^6,$$

and $j^*u = e_0^\infty$. Using the fact that Sq^2 detects the generator of $\pi_4 S^3$, we see that $\text{Sq}^2 u \neq 0$ as a cochain if and only if $\alpha_0 \neq 0$;

therefore $\psi(u) \neq 0$ if and only if $\alpha_0 \neq 0$. The result now follows by naturality.

Proof of Lemma 12. For this argument, let $L = K/\text{RP}^3$, let $j: K \to L$ be the quotient map, and let u be the generator of $H^3(L, Z_2)$. Clearly,

$$L \simeq (S^3 \cup_{\alpha_\infty} D^5 \cup_{\beta_\infty} D^6) \vee S^4 \quad \text{and} \quad j^*u = e_0^\infty.$$

Part (2) now follows by naturality of Sq^2. Since $e_0^\infty = (1 + T)\sigma^3$, where σ^3 is in $C^3(\tilde{K}, Z_2)$, it is easy to compute $\psi(e_0^\infty)$ and obtain (1).

Proof of Lemma 13. Suppose that M is a smoothing of K and that ξ is the normal bundle of an embedded RP^3 in M. It follows from the decomposition

$$M \simeq D(\xi) \cup D(\xi)$$

that $K/\text{RP}^3 \simeq M/\text{RP}^3 \simeq (\text{Thom space of } \xi)$. But if $\beta_\infty \neq 0$, then $T(\xi)$ carries the nonzero secondary cohomology operation on the Thom class U described in [2]. This implies that the Gitler-Stasheff characteristic class of ξ is nonzero, so that ξ is not a vector bundle.
For the other part, consider the decomposition

\[M \cong W \cup_h D(\xi_0) \]

of Section 4, where \(\xi_0 \) is the normal bundle to a 2-connected embedding of \(\mathbb{R}P^2 \) in \(M \). By Theorem 1 and Lemma 11, there is a basis of \(H_3(R) \) in which \(\phi(e_\infty) = 0 \).

Therefore \(\beta_0 \) is the only obstruction to a map \(p: M \to \mathbb{R}P^3 \) with the property that \(p|\mathbb{R}P^3 \) is the identity. However, \(W \cong S^3_\infty \vee \mathbb{R}P^3 \); hence we can try to extend the projection \(W \to S^3_\infty \vee \mathbb{R}P^3 \to \mathbb{R}P^3 \) to all of \(M \). Since the homotopy class of the attachment of a cell in a cell decomposition of \(M \) modulo \(W \) factors through the map

\[h_*: \pi_i(S(\xi_0)) \to \pi_i(\partial W), \]

and since the composition

\[\pi_i(\partial W) \to \pi_i(W) \to \pi_i(\mathbb{R}P^3) \quad (i > 1) \]

is zero, the extension is possible.

REFERENCES

University of Chicago
Chicago, Illinois 60637